
CSC148H1S Midterm Test | Solutions Winter 2001

Question 0. [2 marks]

Complete the \identi�cation section" at the top of page 1, then write your student number legibly at the

bottom of every page of this test except page 1 (where indicated).

Question 1. [10 marks]

Complete the method deleteSecondLast below according to the contract speci�ed by all the comments
in the LList class. Include appropriate internal comments.

// Nodes for our linked list.

public class LNode {

int value;

LNode next;

}

// Exception class for our linked list.

public class ListUnderflowException extends Exception { }

// A simple linked list class.

public class LList {

/* Representation invariant: Either

* a) head == null and size == 0, or

* b) head != null and size == the number of elements of this linked list.

*/

private LNode head;

private int size;

/* Assume that `insert' and other methods are here... */

// Delete the second-last element of this linked list

// (i.e., the element that comes just before the last one).

// Throws ListUnderflowException if the list contains less than two elements.

public void deleteSecondLast() throws ListUnderflowException {

if (size < 2)

throw new ListUnderflowException();

if (size == 2) {

// The second-last element is the head; delete it.

head = head.next;

} else { // size > 2

// Find the predecessor of the second-last element.

LNode pred = head;

for (int i = 0; i < size - 3; i++)

pred = pred.next;

// Delete the second-last element.

pred.next = pred.next.next;

}

// Update the size of this list.

size--;

Student #: Page 1 of 6 cont'd: : :



CSC148H1S Midterm Test | Solutions Winter 2001

} // end of deleteSecondLast()

} // end of class LList

Student #: Page 2 of 6 cont'd: : :



CSC148H1S Midterm Test | Solutions Winter 2001

Question 2. [15 marks]

Consider running the main method in the following class.

public class GphNode {

private static int m = 0;

private int value;

private GphNode edgeA;

private GphNode edgeB;

public GphNode(int value, GphNode edgeA, GphNode edgeB) {

m += value;

this.value = value;

this.edgeA = edgeA;

this.edgeB = edgeB;

edgeA = edgeB;

edgeB = edgeA;

}

public static void hopAlong(GphNode n, int c) {

System.out.print(" " + n.value);

if (c > 0)

hopAlong(n.edgeA.edgeB.edgeA, c - 1);

}

public static void main(String[] args) {

GphNode start = new GphNode(9, null, null);

start.edgeB = new GphNode(6, start, null);

start.edgeB.edgeB = new GphNode(5, start.edgeB, start);

start.edgeA = start.edgeB.edgeB;

// Line number 5.

System.out.println(m);

hopAlong(start, 3);

System.out.println();

}

} // end of class GphNode

Part (a) [5 marks]

What does the program above print when it is compiled and run? This is not a trick question: the program

does compile and run without error. (Hint: You may wish to do the next part of this question �rst.)

Student #: Page 3 of 6 cont'd: : :



CSC148H1S Midterm Test | Solutions Winter 2001

Question 2. (continued)

Part (b) [10 marks]

Sketch the memory model for the program on the previous page at the point when the execution reaches

\// Line number 5" of the main method. To keep the sketch small, only draw the items for the given

GphNode class in the object space. Include the run-time stack, the object space, and the static space in

your sketch.

Student #: Page 4 of 6 cont'd: : :



CSC148H1S Midterm Test | Solutions Winter 2001

Question 3. [13 marks]

Consider the classes below that implement a \Ternary Search Tree". A Ternary Search Tree is a labelled

tree with a branching factor of 3 that satis�es the following property: for every node n in the tree,

� every key in the left subtree of n is less than the key at n,

� every key in the middle subtree of n is equal to the key at n,

� every key in the right subtree of n is greater than the key at n.

(Obviously, duplicate keys are allowed in a Ternary Search Tree.)

Write the body of method countOccurrences in class LinkedSimpleTST below so that it meets its speci-

�cation, without using recursion. Include appropriate internal comments.

class TSTNode {

Comparable key;

TSTNode left, middle, right;

TSTNode(Comparable key) { this.key = key; }

}

public class LinkedSimpleTST {

// The root of this TST.

private TSTNode root;

/* Assume that methods `insert' and `delete' are here... */

// Return the number of times that key appears in this tree

// (return 0 if key does not appear at all in this tree).

public int countOccurrences(Comparable key) {

// Starting at the root, traverse the tree looking for `key' until

// it is found, or until a null reference is reached.

TSTNode current = root;

while (current != null && key.compareTo(current.key) != 0) {

if (key.compareTo(current.key) < 0) {

current = current.left;

} else { // key > current.key

current = current.right;

}

}

// Count the number of occurrences of key.

int count = 0;

while (current != null) {

count++;

current = current.middle;

}

return count;

Student #: Page 5 of 6 End of Solutions



CSC148H1S Midterm Test | Solutions Winter 2001

} // end of countOccurrences(Comparable)

} // end of class LinkedSimpleTST

Total Marks = 40

Student #: Page 6 of 6 End of Solutions


