

University of Toronto
CSC148 – Introduction to Computer Science Fall 2001

Mid Term Test – Section L5101

Duration: 50 minutes
Aids allowed: none

Make sure that your examination booklet has 8 pages (including this one). Write your
answers in the spaces provided. Write legibly. You may use page 8 for rough work (tear it
off, if you like). If you require more space to answer a question, write on the back of the
previous page, and indicate in the answer space where you answer is.

Surname:

Given name(s):

Student #:

TA’s name:

(please circle below)

Irum Godil Hank Tu Wei Zhang

Please note that if you write the mid
term in pencil, you will not be allowed

to submit a remark request.

0. / 1
1. / 6
2. / 15
3. / 5
4. / 8
Total: / 35

Mid Term Test: CSC148 (Fall 2001). Page 2 of 2

 Page 2 of 8

Question 0: Administrative
[1 marks]

Write your surname and student number at the top of every page (except page 1) of this test.

Question 1: Design by Contract
 [3 x 2 marks each – 6 marks total]

Below are methods with their comments. There is something wrong with each comment.
Briefly explain what’s wrong with each one (if there is more than one problem, pick the one
you feel is most important).
/* Searches a queue for an object, v. Returns true if it contains
 * v, false otherwise
 */
static boolean search (Queue h, Object v);
Error:

Searches which Queue? Should say “Searches h for…”

/* Loops through Vector d to find and return its middle object
 */
static Object middle(Vector d);
Error:

Reference to “loop” give away internal details

Or

Does not address which object is the “middle” when there is an even number of
objects

Or

Does not explain what happens when d is empty, or when d==null.
/* Returns the length of the longest String in Queue q.
 * Pre: q is not null
 */
static int lengthOfLongest(Queue q);
Error:

Does not explain what happens if q contains no Strings

Mid Term Test: CSC148 (Fall 2001). Page 3 of 3

 Page 3 of 8

Question 2:
[10 marks]

On the last page of the exam, you will find the code for the ArrayQueue class and the Stack
interface. You will be modifying the ArrayQueue class so that it also implements the Stack
interface. The top of the stack will be the tail of the queue, so that when something is
enqueued it is last in line to be dequeued, but first to be popped.

(a) First, change the class declaration to reflect the new implementation:
[2 marks]

class ArrayQueue implements Stack, Queue

(b) Next, implement each of the methods from the Stack interface. None of these methods
should require that you add member variables to the class. Remember that all the member
variables and methods from ArrayQueue are still present in the class you’re adding these
methods to. Marks will be awarded for correctness of your algorithm and for code reuse (that
is, making sure you don’t write code for something for which has already been written). Note
that the space below may be far more than you need to complete this section.

Note that you must write good internal documentation for your methods.
[13 marks: 8 for implementation and 5 for comments]

 // Add o to the end (the “top”) of the stack.
 // Precondition: the stack must not be full.
 void push(o) {

 // since the queue’s tail & stack’s top are at
 // same place, this is simple
 enqueue(o);

 }

Mid Term Test: CSC148 (Fall 2001). Page 4 of 4

 Page 4 of 8

 // Remove and return the top element on the stack.
 // Precondition: the stack must not be empty
 Object pop() {

 // we need to maintain the representation invariant for
 // the queue here.
 return contents[size--];

 }

 //Returns true if the stack is empty; return false otherwise
 boolean isEmpty() {

 return size==0;

 }

 // Return true if the stack cannot hold any more items; return
 // false otherwise.
 boolean isFull() {

 // Assertion: the capacity of the queue is equal to contents.length
 return size==contents.length;

 }
}

Mid Term Test: CSC148 (Fall 2001). Page 5 of 5

 Page 5 of 8

Question 3: Memory Model Tracing
[5 marks]

Here is a memory model (this
leaves out the address & object for
argv, but don’t worry about that).
This memory model is from
running the main() method in
class Blah.

Below are 4 possible classes Blah.
Indicate which class matches this
memory model by circling the
letter above the class.

(the line numbering for method u()
in the memory model may be
slightly off – don’t let this bother
you)

A: B:
class Blah {
 static int z = 5;
 static int y = 17;
 public static void main(String[]
 argv) {

 int x = 4;
 u(21);
 }
 static void u (int r) { //no code }
}

Class Blah {
 static int z = 5;
 int y = 17;
 public static void main(String[]
 argv) {

 int x = z – 1;
 u(x+y);
 }
 static void u(int r) { Blah.z = r; }
}

C: ? correct answer D:
class Blah {
 static int z = 3;

 public static void main(String[]
 argv) {

 int x = 4;
 u(25-x);
 }
 static void u(int r) { z = r; }
}

class Blah {
 int z = 21;

 public static void main(String[]
 argv) {

 int x = 5;
 u(z);
 }
 static void u(int r) { // no code }
}

Mid Term Test: CSC148 (Fall 2001). Page 6 of 6

 Page 6 of 8

Question 4: Exceptions
[8 marks]

Below is a method that does something with an array:

// Sets the first n elements of array a to zero
public static void setZero(int[] a, int n) {
 for (int i=0; i<n; i++) {
 a[i] = 0;
 }
}

(a)
[4 marks]
The problem with this method is that n may be larger than the length of a. If this happens, the
program will crash. Instead, it would be better if the method threw a specific exception if n
were too large. Assume there is already an exception defined called
ArrayTooSmallException that extends Exception. Use the space below to rewrite the
setZero method so that it will throw the ArrayTooSmallException when the array is too
small for the value n. Note that if n is too large, no elements of a should be set to zero.

public static void setZero(int[] a, int n) throws ArrayTooSmallException {

 if (n > a.length) {
 throw new ArrayTooSmallException;
 }
 for (int i=0; i<n; i++) {
 a[i] = 0;
 }
}

Mid Term Test: CSC148 (Fall 2001). Page 7 of 7

 Page 7 of 8

(b)
[4 marks]
Below is code that declares an array of ints and then asks the user repeatedly how many of the
elements should be set to zero. The code is not yet complete. Complete the code for the for
loop so that it will attempt to use the setZero method to set the first n slots in theArray to
zero. Each time through the loop, your code should print nothing if it works correctly, or
“failure!” if they entered a value for n that is too large. You may assume the user will input
an int greater than or equal to zero.

public static void main(String[] argv) throws IOException {
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));

 int[] theArray = int[50];

 for(int j=0; j < 500; j++) {
 System.out.println(“How many to set to zero?”);
 int n = Integer.parseInt(br.readLine());

 try {
 setZero(theArray,n);
 } catch (ArrayTooSmallException) {
 System.out.println(“failure!”);
 }
 }
} // main

Mid Term Test: CSC148 (Fall 2001). Page 8 of 8

 Page 8 of 8

public class ArrayQueue implements Queue {
 // The number of elements in me
 private int size;

 // The elements in me, stored in contents[0..size-1]
 private Object[] contents;

 /* Representation Invariant:
 * If size is 0, I am empty, and size=0; otherwise:
 * contents[0] is the head, contents[size-1] is the tail,
 * contents[0..size-1] contains the Objects in the order they
 * were inserted
 */

 // Append o to me.
 public void enqueue(Object o) {
 contents[size++] = o;
 }

 // Remove and return my front Object.
 // Precondition: I am not empty
 public Object dequeue() {
 Object head = contents[0];
 for (int i=0; i < size-1; i++) {
 contents[i]=contents[i+1];
 }
 size--;
 return head;
 }

 // Return my front Object.
 // Precondition: I am not empty.
 public Object head() { return contents[0]; }

 // Return the number of Objects in me.
 public Object size() { return size; }
}
interface Stack {
 // a First-In, Last Out data structure where the object most recently
 // pushed onto the stack is the first to be “popped” off.

 // Add o to the end (the “top”) of the stack.
 // Precondition: the stack must not be full.
 void push(o);

 // Remove and return the top element on the stack.
 // Precondition: the stack must not be empty
 Object pop();

 //Returns true if the stack is empty; return false otherwise
 boolean isEmpty();

 // Return true if the stack cannot hold any more items; return
 // false otherwise.
 boolean isFull();
}

