CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

Question 1. [10 MARKs]

No

A)

sense at all: give O or 1 depending on amount and odor of crap.

no call to grfn()

if grfn logic done in hasNext()

grfn before storing current result

doesn’t check whether hasAnotherSentence
doesn’t throw exception

.5 if it doesn’t append ’.’

no return

not preserving next sentence in a variable.
treating a primitive like a class

making up a method to do whatever they can’t figure out
private on local vars

.5 problem with scope of local variable

no setup for hasNext

private on local vars

doesn’t throw exception

treating a primitive like a class

making up a method to do whatever they can’t figure out

if set condition to -1 to terminate but check for -1 for EOF
extraneous while loop

invalid value at loop entry

return String from grfn (it’s void)

.5 uses ’.’ instead of SENTENCE_TERMINATOR

.5 uses || instead of &&

doesn’t use Reader.read

terminate with only one condition

not setting hasAnotherSentence when return value on read is -1
no while loop

.5 problem with scope of local variable

Student #: _ Page 1 of 12 CONT’D..

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

import java.io.;
import java.util.x*;

/**

* An iterator for English sentences. A sentence is a sequence of characters
* ending with a period.

*/

public class Sentencelterator implements Iterator {

/** Where the sentences come from. */
private Reader reader;

/** The next sentence to be returned. */
private String nextSentence;

/** The character marking the end of a sentence. */
public static final char SENTENCE_TERMINATOR = ’.°’;

/** True if there is another sentence; false otherwise. */
public boolean hasAnotherSentence = true;

/%%
* An iterator for the sentences in r.
* Requires: r != null;
*/

public Sentencelterator(Reader r) {
reader = r;
getReadyForNext () ;

}

VAL
* Return whether there is another sequence of characters ending with a period.
*/

public boolean hasNext() {
return hasAnotherSentence;

}

/%%
* Return the next sentence: a sequence of characters ending with a period.
* Q@throws NoSuchElementException if there are no more sentences.
*/
public Object next() {
if (thasNext()) {
throw new NoSuchElementException();

¥
String result = nextSentence;
getReadyForNext () ;
return result;
X
VAL

* Read the next sequence of characters into nextSentence. Set
* hasAnotherSentence to false if either the end of the input

Student #: _ Page 2 of 12 CONT’D. ..

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS

* stream is reached (that is, if read() returns -1), or if an
* I0Exception is thrown by read().
*/
private void getReadyForNext() {
nextSentence = "";
try {
int i = reader.read();
while (i !'= -1 && (char) i '= SENTENCE_TERMINATOR) {
nextSentence += (char) i;
i = reader.read();

if ((char) i != SENTENCE_TERMINATOR) {
hasAnotherSentence = false;
} else {
nextSentence += SENTENCE_TERMINATOR;
}
} catch (IOException e) {
hasAnotherSentence = false;
}
}

/%%
* Throw an UnsupportedOperationException.
*/

public void remove() {
throw new UnsupportedOperationException();

}
}

Student #: _ , . . . Page 3 of 12

APRIL/MAY 2004

CONT’'D...

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

Question 2. [10 MARKs]

Part (a) [b MARKS]

public static Node mergesort(Node head) {

if (head == null || head.next == null) {
return head;

}

Node temp = head.next;
Node middle = head;
while (temp != null) {

// FILL IN MISSING LINES HERE

temp = temp.next;

if (temp != null) {
temp = temp.next;
middle = middle.next;

temp = middle;

middle = temp.next;

temp.next = null;

return merge (mergesort(head), mergesort(middle));

Student #: _ , . . . Page 4 of 12 CONT’D. ..

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

Question 3. [10 MARKs]

public class JumpList {

/** A node in the JumpList. */
private static class Node {

/** The value in the node. */
public int data;

/** The next and previous pointers. */
public Node next, prev;

/** Pointers to nodes several steps to the right and left. */
public Node jump, backjump;
/*% The first and last nodes in the list, or null if there are none. */

private Node head, tail;

YOUR CODE WILL GO HERE

Student #: _ Page 5 of 12 CONT’D. ..

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

Part (a) [b MARKS]

MARKING

-2.5 Just using next and not jump

-1 q is not used or used improperly.

-2 boolean variable declared but used incorrectly.

-1/2 solution correct but misses requirement (for each requirement)
-0.5 Second loop test: missing either g.data < k or q != null

-0.5 missing p!= null && p.data == k in return

-0.5 missing q !'= null check in return

VAL

* Return true if k is an element in this list, and false otherwise.
* Q@param k The value sought.

*/

public boolean contains(int k) {

Node p = head; // the current node being examined
Node q = null; // the node last examined, or null if p == head.

while (p != null && p.data < k) {
q=Pp;
P = p.jump;

}

while (q != null &% g.data < k) {
g = q.next;
}

return (q != null && g.data == k)
[l (g == null && p '= null && p.data == k);
}
}

Part (b) [b MARKS]

VAL
* Return true if and only if the jump list referred to by front satisfies

*

* Requires: front != null and front.prev == null.
*/
public static boolean isValidJumpList(Node front) {

Student #: _ , Page 6 of 12

the two jump list properties, and if the prev pointers are set correctly.

CONT’'D...

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS

Question 4. [10 MARKs]

Part (a) [3 MARkS] MARKING

-2 for changing r.left != null case.
-2 for changing result += r.key line.
-2 for not changing r.right != null case.

Special case: -1 degenerate case, e.g.
result += r.key + " ";
result += toString(right);

Change the last line to:

if (r.right != null) {
result += " " + toString(r.right);

}

Part (b) [5 MARKS]
MARKING

-1 each kind of syntactic error
-4 no recursion
-2 Each flaw with setup.
-2 Right setup but problem with recursion.
Some people weren’t returning the recursive call, etc.

-1 Not handling the ’c is in the tree’ case.

/** Return a pointer to the parent of the node that will contain c
* in the subtree rooted at r, or null if c is already in the tree.

Requires: r != null.
O@param c the key to find.

* X X *

or null if c¢ is in this tree.
*/
public static BSTNode findParent(BSTNode r, Comparable c) {

BSTNode t = r; // assume r is the parent.
if (c.compareTo(r.key) < 0) {
if (r.left !'= null) {
t = findParent(r.left, c);
}
} else if (c.compareTo(r.key) > 0) {
if (r.right != null) {
t = findParent(r.right, c);
}
} else {

Student #: _ , Page 7 of 12

@return the parent of the node that will be the parent of c,

APRIL/MAY 2004

CONT’'D...

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

// r contains c.
t = null;
}

return t;

}

Part (c) [2 MARKS]

MARKING

-2 incorrect
-1 poorly worded or unclear

Correct answers:

- it reveals the implementation.
— TreeNode is private so users of the class will be confused.

Question 5. [10 MARKS]

Part (a) [4 MARKS]

Complete the following recursive method.

/** Calculate the number of coins in a coin pyramid with numlLevels levels. */
public static int numCoins(int numLevels) {

if (level == 0) {
return O;
} else {
return level * level + numCoins(level - 1);
}
}

MARKING:

-2 no recursion

-1 no n==0 base case

-1 doesn’t add correct value to total
-1 doesn’t return anything

-1 recursive call no stored

-2 no base case/recursive step

-1 inexplicable behaviour

Student #: _ Page 8 of 12 CONT’D. ..

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

Part (b) [3 MARKS]

Complete the following iterative method to calculate the number of coins in the pyramid:

/** Calculate the number of coins in a coin pyramid with numlevels levels. */
public static int numCoins(int numlevels) {

int sum = 0;
for (int i = 1; i <= numLevels; i++) {
sum += i * i;

}

return sum;

MARKING:

-1 using wrong bounds for loop
-1 omitting zero case

-2 using recursion

-1 using iterators

-1 ignoring numlLevels

-1 inexplicable behaviour

Student #: _ Page 9 of 12 CONT’D. ..

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

Part (c) [3 MARKS]

Complete the following method. You may make use of method numCoins from the previous parts even if
you did not complete it.

/*x
* Print on separate lines:
* - the height of the largest pyramid that could be built with n coins
* — the total value of that pyramid assuming each coin is worth coinValue cents
* - the change left over.
*/
public static void printCoinInfo(int n, int coinValue) {
int height = 0;
while (numCoins(height) < n) {
height++;
}

System.out.println(height);
System.out.println(numCoins(height) * coinValue);
System.out.println(n - numCoins(height) * coinValue);

MARKING:

-1 making height one level too high

-1 not printing out/calculating a value correctly
-1 not finding height accurately

-1 omitting zero case

-2 using sqrt or log to find height

-1 inexplicable behaviour

Student #: _ Page 10 of 12 CONT’D. ..

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS APRIL/MAY 2004

Question 6. [10 MARKs]

MARKING

b: log_26 n (-1, +1 are okay, ceiling okay); no base: 0.5; base 2: 0;
log n / log 26 okay

c: k™n; if 26°n: 0.5
d: O(m * n); if no 0() notation then 0.5
e: x72; if 0(x"2) 0.5
f: 2xy; if 0(2xy) 0.5

Part (a) [1 MARK]
Answer: n

Part (b) [l MARK]
Answer: logogn
Part (c) [1 MARK]
Answer: k"

Part (d) [l MARK]
Answer: O(m *n)
Part (e) [l MARK]
Answer: z?

Part (f) [l MARK]

Answer: 2z xy

Student #: _ Page 11 of 12 CONT’D. ..

CSC148H1S/A48H3 S FINAL EXAMINATION — SOLUTIONS

Part (g) [4 MARKS]
MARKING

Okay to skip 0(1) part.

-1 for each missing part.

-2 not using right analysis style.
-1 for n(n2+n)/2

for (int i = 1; i <= n; i++) {
int[] array = new int[i];
for (int col = 0; col < i; col++) {
array[col] = doExpensiveThing() ;

}

Total Marks = 60

Student #: _ Page 12 of 12

APRIL/MAY 2004

END OF SOLUTIONS

