
EXCEPTIONS

1

Introduction

You’ve probably run a program that crashed and gave you a message about
an “exception” such as:

• ArithmeticException: for example, if you try to divide by zero.

• ArrayIndexOutOfBoundsException: if you try to access an element beyond
the beginning or end of an array.

• NullPointerException: if you try to access a member of an object through
a null reference.

We’re going to examine:

• how exceptions work

• when to write code that “throws” (signals) them

• how to use code that throws them

2

A program

public class AbuseArray {
/** Set the first n elements of a to v.

Requires: 0 <= n < a.length. */
public static void init(int[] a, int n, int v) {

for (int i=0; i != n; i++) {
a[i] = v;

}
}

public static void main(String[] args) {
int[] myArray = new int[10];
init(myArray, 25, -1);

}
}

What happens when we run it?

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException

at AbuseArray.init(AbuseArray.java:6)
at AbuseArray.main(AbuseArray.java:12)

An exception is an unexpected event, interrupting the normal flow of control.

Think of this as a violation of a contract: something happened that prevented
the code from meeting its specification.

3

Where Do Exceptions
Come From?

Java has a class called Exception, with descendants like ArrayIndexOutOfBoundsException
for more specific kinds of problems. You can also define your own descen-
dants.

When something goes wrong, a called method can construct an instance
of the appropriate kind of exception and throw it (using a throw statement,
which we’ll see later).

This causes the called method to abort immediately, without returning a
value. The calling method then has a choice of dealing with the exception,
or else it also aborts to the method that called it, and so on.

This game of “hot potato” continues until one of the methods on the call
stack deals with the exception; otherwise it lands in the user’s lap.

4

An Approach to
Exception Handling

What do we mean by “dealing” with an exception? If we call a method and
get an exception, then:

• we violated the method’s preconditions, or

• the method, or a method called during execution of the method, violated
some method’s preconditions, or

• the method (or a method called during its execution) noticed it couldn’t
ensure its postconditions

5

Questions

Do we prepare for the worst every single time we call a method?

How do we ‘recover’? Isn’t that harder than writing correct code in the first
place?

These are difficult and subtle questions, which we mostly avoid in this course.

Our Approach

In your assignments for this course, you will usually be expected to use ex-
ceptions to produce good debugging information.

6

Signalling Queue Overflow
with Exceptions

With both ArrayQueue and CircularQueue, the array is of a fixed size. What if
one calls enqueue(Object) on a full queue?

We might get an ArrayIndexOutOfBoundsException, or wrong values later when
we call dequeue().

Let’s make sure the error gets noticed immediately, and the exception has a
more descriptive name.

Defining our own kind of exception

Here’s how:

public class QueueFullException
extends Exception {}

That’s it! There’s no need to write any methods.

7

Rewriting CircularQueue’s enqueue

/** Append o to me. Throw a QueueFullException if
there is no room because I am already full. */

public void enqueue(Object o)
throws QueueFullException {

if (size == contents.length) {
throw new QueueFullException();

}
tail = (tail+1) % contents.length;
contents[tail] = o;
++size;

}

Now when a program calls enqueue on a full CircularQueue, the program au-
tomatically stops and reports a QueueFullException to the user.

Reacting to an exception

Sometimes we may want to proceed anyway. For example, if we’re queueing
up requests we might simply want to ignore the rest.

To have our program react to an exception, we use a “try” block and “catch”
the exception.

8

Catching an Exception

/** Add Strings (representing requests) from in to q,
until the String "done", or the queue is full. */

public static void getRequests(Queue q, BufferedReader in)
throws IOException {

String s = in.readLine();
while (!s.equals("done") {

try {
q.enqueue(s);
s = in.readLine();

} catch (QueueFullException qfe) {
return;

}
}

}

The catch block is skipped entirely if nothing goes wrong.

Question: Why bother with the try block? Won’t the method return anyway
if an exception occurs?

Exercise: Define a new type of exception: TruncatedException. Make getRequests
throw it if the queue gets full, instead of proceeding.

9

Exception objects

Exceptions are objects, and have (at least) the members defined in Exception.
We could have added more members to QueueFullException.

In a catch clause we can use the exception like a parameter.

When we construct an Exception, we can give it a string as a message. A
catch clause can access the message via getMessage(). If the exception isn’t
caught, the message gets printed automatically.

A good example of this is in the Java API: if we call add(Component) on a
JFrame, we get an exception with the helpful error message:

Do not use javax.swing.JFrame.add() use
javax.swing.JFrame.getContentPane().add() instead

Exercise: Make CircularQueue put a message into the exception it throws,
and getRequests() print it out.

10

IOException

If readLine() throws an IOException in the try block of getRequests(Queue,
BufferedReader), the exception won’t get caught there and will propagate to
the calling method as usual. It would be better style to move readLine()
outside the try block.

So getRequests might throw an IOException, and must declare this in its header
with “throws IOException”.

The header informs callers of getRequests that they might get an IOException;
those callers must catch the exception or declare that they might throw an
IOException.

Notice however that even though q or in could be null and thus getRequests
could throw a NullPointerException, we don’t have to declare this fact.

Why not?

11

Part of the Java API
Class Hierarchy

java.lang.IndexOutOfBoundsException java.lang.ArithmeticException

java.lang.RuntimeException

java.lang.ArrayIndexOutOfBoundsException java.lang.StringIndexOutOfBoundsException

java.io.IOException

java.io.EOFException

java.lang.Exception java.lang.Error

java.lang.Throwable

java.lang.Object

A method is not required to catch (or declare that it might throw) any kind
of RuntimeException or Error.

NullPointerException is a RuntimeException.

Okay, but why is it a RuntimeException?

12

Preventable Exceptions: RuntimeException

Writing try blocks, or declaring all exceptions we might throw (even ones
we’re pretty sure we won’t) is time-consuming and buries the main logic of
the program under all the exception code.

For people who use exceptions mainly for debugging, it’s of even less use.

We want the compiler to assume that we’re paying attention to the precondi-
tions of methods we’re calling. We shouldn’t have to tell it that we’re doing
so every single time.

Question: We didn’t make QueueFullException a RuntimeException. What
changes does this force us to make to our programs?

Exercise: Add an isFull() method to Queue, modify enqueue() appropriately,
and change QueueFullException to be a RuntimeException.

13

Non-Runtime Exceptions and Errors

But there are still exceptions that are impossible or too inefficient to prevent.

For example when we call readLine(), we can’t know if the user is going to
rip the keyboard out of the computer in the middle of typing the line.

So we must prepare to deal with them in a try block, or tell the compiler
that we don’t care.

14

But what if there’s no reasonable way to deal with a particular problem?

For example, what if the program runs out of memory? Then we probably
don’t even have memory space to run code that tries to deal with the problem.

These kinds of problems are signalled by throwing an Error.

15

More about Catching

You can have multiple catch clauses.

/** Add each line of input (representing requests)
from in to q, until the String "done", or
the queue is full, or an IOException occurs. */

public static void getRequests(Queue q,
BufferedReader in) {

try {
String s = in.readLine();
while (!s.equals("done") {

try {
q.enqueue(s);
s = in.readLine();

} catch (QueueFullException qfe) {
return;

}
}

} catch (EOFException e) {
} catch (IOException e) {

System.out.println(
"Problems reading input! " +
"Processing previous requests.");

}
}

16

At most one catch block is executed — the first one that matches.

Question: How could more than one ever match?

Notice that we removed “throws IOException”. It’s worth noting that the
original version could have said “throws Exception”; the compiler assumes
that (an instance of) any descendant of the listed class(es) might be thrown.

Question: Why was it better not to write “throws Exception” in the original
version?

We could even leave the clause in, because the compiler doesn’t assume that
the class(es) will be thrown. It just cares that we’ve safely covered all those
that might be thrown.

Question: Why would leaving the clause in be a bad idea?

17

Summary: When to Use Exceptions

Remember that an exception indicates a contract violation.

It occurs when something prevented the code from meeting its specification.
There are two possibilities:

• The client failed to ensure that the preconditions were met before calling
a method.

• The preconditions were met, but something else prevented the method
from making its postconditions true.

These are the only times when you should throw an exception.

Often, an existing Java exception class is appropriate, so you can just throw
an instance of it. If not, define your own exception class.

18

Aren’t preconditions assumed to be true?

When a precondition hasn’t been met, the contract leaves us under no obli-
gation; we can do whatever we want — even crash.

But if we want to be kind to the client programmer, we can check the
precondition and throw an exception.

This will show exactly where things went wrong; otherwise, an error can
propagate for a while before it becomes apparent.

19

Avoiding inefficiency

Checking preconditions isn’t kind to the client if it ruins the efficiency of your
method. Can you think of an example where this would happen?

In some languages, checks can be turned on during debugging and testing
and then turned off again when the code goes into use.

In other languages, a reasonable choice is to only check a precondition if it
can be done in “constant time”.

20

