
LINKED DATA STRUCTURES
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Linked Lists

A linked list is a structure in which objects refer to the same kind of object,
and where:

• the objects, called nodes, are linked in a linear sequence.

• we keep a reference to the first node of the list (called the “front” or
“head”).

The nodes are used to store data. For example, here is a class for nodes in
a linked list of ints:

public class IntNode {
public int value;
public IntNode link;
public IntNode(int v) { value = v; }

}

Note: having public instance variables is not as bad here as it might first look.
Why?

Drawing a linked list

The next slide shows in detail how memory might look for a linked list con-
taining 5 nodes.
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Assume we have a class
LExample whose main builds a
linked list for front to refer to.

main:9 LExample

IntNode front x88

Static area not of interest in this example.

xAE IntNode

int value 98

IntNode link null

x7F IntNode

int value 161

IntNode link xAE

x57 IntNode

int value 5

IntNode link x7F

xD0 IntNode

int value 14

IntNode link x57

x88 IntNode

int value -31

IntNode link xD0
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A simpler picture

−31
5

14

161

98

front

When drawing such diagrams, always be careful to ‘anchor’ the references
clearly, i.e., to show where they are stored.

Note that there are several conventions for drawing a null reference, including:

Preferred: Not as nice:
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Tracing

It’s easy for linked structures to get all tangled up, so you will have to develop
some new debugging skills for working with them.

When writing, debugging, or understanding code with linked structures, it is
extremely useful to trace by hand, using diagrams.

Exercise: Trace this code.

public class Example {
public static void main(String[] args) {

// Make a variable to refer to the list,
// and put one element into the list.
IntNode front = new IntNode(95);

// Put another element into the list
IntNode temp = new IntNode(104);
temp.link = front;
front = temp;

// We can chain together dots:
System.out.println(front.link.value); // 95

}
}
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Questions and Exercises

• What happens if we repeat the 3 lines “Put another . . .” several times,
using a different integer each time?

• Suppose you want to write a general method that inserts a new element
at the front of a linked list of IntNodes, for use in the example code.
What header would you use? Have you considered the case where the
list is empty?

• Write your insert method.

• Write a general method that prints out the contents of a linked list of
IntNodes.

• Write a test driver for your two methods and use it to test them.

• Think up other methods to practice using linked lists.

6



Hints for working with linked structures

• Trace your code by hand, using pictures, as you write it.

• If you are ever unsure of what some code does to references, make up
fake memory addresses for the references and treat them like ordinary
integers.

• Every time you write a line like this:

blah.bloop

to follow a reference, be sure the reference (in this case blah) is not null.
Either (1) use an if, or (2) be sure that the reference cannot possibly
be null in that context, and assert that fact in a comment.

7



Linked Lists vs Arrays

Arrays are contiguous

• In an array, the elements have to be in a contiguous (connected and
sequential) portion of memory.

• Memory immediately next to the array may already be in use for some-
thing else.

• So programming languages don’t generally provide for arrays that can
grow and shrink in place.

Question: Doesn’t Java’s ArrayList do just that?

Linked lists are not contiguous

• In a linked list, the reference in each node says where to find the next
one.

• So the nodes can be all over memory.
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Implications

• With an array, we must choose a size once and for all. (This can waste
memory, or we could run out of spaces).

• With a linked list, we can add and remove elements at will. (Each one
does take up a little more space for its link field, and it may take time
to ‘get to’ the insertion / removal spot).

• With an array, we can immediately access the n
th element.

• With a linked list, we cannot. We have to follow n pointers.
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Which is better?

Neither arrays nor linked lists are best; it depends on

• what you’re going to do most
(e.g., search or update?), and

• what your priorities are
(e.g., time or space?).

Java also takes time managing the location of objects in memory. It has to
find an empty range of memory when we construct a new object. And it
looks for unreferenced objects, to reuse their memory. But this is outside the
scope of our course.

10



Deletion from a Linked List

Question: If the list is sorted, should we use binary search to find the element
to delete?

Unlike an array, there is no need to shift any elements up to fill the “hole”
left by deletion. We just unlink the unwanted element.

−31
5

14

161

98

front
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Implementing the queue ADT: Deletion

/** A node in a linked list. */
class ListNode {

public Object value;
public ListNode link;

/** A ListNode containing o. */
public ListNode(Object o) { value = o; }

}

/** Note: elements are compared by equals(Object). */
interface ExtendedQueue extends Queue {

/** Return whether I contain o. */
public abstract boolean contains(Object o);

/** Remove first (starting from the front)
* occurrence of o from me if it’s there. */

public abstract void delete(Object o);
}

public class LinkedQueue implements ExtendedQueue {
/** Front node in my linked list. */
private ListNode front;

// Methods go here. See next slide for delete.
}
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Method details

/** Remove first (starting from the front)
* occurrence of o from me if it’s there. */

public void delete(Object o) {

ListNode previous = null;
ListNode current = front;

// Follow links until we fall off, or until we
// find the node to delete.
while (current != null && ! current.value.equals(o)) {

previous = current;
current = current.link;

}

// If we didn’t fall off, we found it.
// Update either the front of the list or the previous link.
if (current != null) {

if (current == front) {
front = current.link;

} else {
previous.link = current.link;

}
}

}
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Questions:

• Why did we initialize previous?

• When implementing Queue with a linked list, should we keep a pointer to
the end of the linked list? What about when implementing Stack?

Exercises:

• Devise a thorough set of test cases for delete.

• Modify delete so that it handles null elements.

• In delete, previous is used to pass information from one iteration to
the next: it ‘remembers’ information from the previous iteration. Write
delete using only one local variable, by ‘looking ahead’.

• Implement all Queue methods in LinkedQueue.

• Trace the code by hand for each method.
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Other Linked Data Structures

References can be used to create many different data structures.

Circularly-linked lists

front

wasp tree

honeyapple bee

The last element contains a reference to the first element, rather than null.
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Doubly-linked lists

Each element keeps both a frontwards and a backwards reference.

front

by hiace

/** A node for a doubly linked list of Strings. */
class DoubleNode {

public String value;
public DoubleNode next, prev;

/** A DoubleNode containing v. */
public DoubleNode(String v) {

value = v;
}

}

This could be useful for a list presented on screen, so we can easily write
code to scroll up and down.
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When traversing a doubly-linked list to prepare for insertion or deletion, there
is no need to use both a current and previous reference: each node has a
built-in reference to the previous element.

Deletion with a doubly-linked list:

deleteRecordfront

by hiace

Insertion with a doubly-linked list:

newRecord

front insertBefore

by hiace

apple
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Exercise: Write complete insertion and deletion methods for a sorted doubly-
linked list.

/** Insert a new node containing s into the appropriate
* position in the sorted, doubly-linked list whose
* first node is front.
* Return the (possibly new) first node. */

public static DoubleNode insert(DoubleNode front,
String s)

/** Delete s, if it exists, from the doubly-linked list
* whose first node is front.
* Return the (possibly new) first node. */

public static DoubleNode delete(DoubleNode front,
String s)

Questions:

• The above comments aren’t clear about the behaviour in certain circum-
stances.
What are those circumstances?

• Why do we make these methods static?

Exercise: Think about the pros and cons of using a doubly-linked list of
Comparables instead of Strings.
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