
TIME ANALYSIS OF

ALGORITHMS WITHOUT RECURSION
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Time efficiency

We like to know the time efficiency of a program for several reasons:

• To get an estimate of how long a program will run. (Waiting for it to
finish may not be feasible!)

• To get an estimate of how large an input the program can handle without
taking too long.

• To compare the efficiency of different programs for solving the same
problem.

We could run timing tests on the program, but we prefer to analyze the
efficiency of the algorithm — before we’ve written the program.

Why?
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Big differences

We have seen that, for a given problem, one algorithm may be vastly more
efficient than others. Examples:

Searching a list of n elements:

• linear search takes time on the order of n.

• binary search takes time on the order of log2 n.

Calculating the nth Fibonacci number:

• the obvious recursive algorithm takes time on the order of the Fibonacci
number itself, roughly φn.

• using a helper function, the algorithm takes time on the order of n.

[ Is “on the order of” bothering you? Good — we’ll define things properly
very soon.]
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Small differences

We can sometimes fine tune a given algorithm to make it a little faster.

Example: Linear search with a dummy record is faster than ordinary linear
search because there is less work per iteration.

(But any kind of linear search takes takes time on the order of n because
there are roughly n iterations in the worst case.)
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Big differences are the first priority

When analyzing algorithms for a given problem, it makes sense to pay atten-
tion to the big differences first.

• Example: We prefer to calculate Fibonacci numbers using the more com-
plicated algorithm rather than the simple but slow one.

Only then does it make sense worry about the small differences.

• Example: There is no sense in fine tuning the simple algorithm. Any ef-
fort towards fine tuning should be spent on the helper-function algorithm,
where for example we might be able to cut out one parameter.
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What we need

We need a technique for analyzing algorithm efficiency that:

• is precise about what we mean by “on the order of”

• can distinguish the big differences

• (ideally) allows for quick and easy analysis

Solution: We will learn a technique that estimates time to within a constant
factor.

Because we ignore the constant factors, the analysis is both easier and
machine-independent. And it still makes the big distinctions.
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Ignoring constant factors

Consider two programs A and B for solving a given problem, with these run-
ning times on inputs of size n:

TA(n) = n3 and TB(n) = 8n + 3.
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Which program is faster?

For inputs of size less than 3: program A.
For inputs of size greater than 3: program B.

n = 3 is called the breakpoint.
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B is eventually faster
no matter what the constants

What if program A were a million times faster and program B a million times
slower, i.e., if:

TA(n) = n3/1,000,000 and
TB(n) = (8n + 3) ∗ 1,000,000.

It would still be true that:

• B would eventually be faster than A, and

• B’s superiority would grow as n increases.

(The breakpoint would change, however.)

This is true no matter what the constants are!

Conclusion: For large values of n, the form of this mathematical function
has more effect on its growth rate than a constant multiple.
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Growth rates of various functions

function Approximate Value of T(n) for n =
T(n) 10 100 1,000 10,000 105

logn 3 6 9 13 16√
n 3 10 31 100 316

n 10 100 1000 10,000 105

n logn 30 600 9000 13 × 104 16 × 105

n2 100 10,000 106 108 1010

n3 1000 106 109 1012 1015

2n 1024 1030 10300 103000 1030,000

There is a computational cliff when we reach “exponential” functions: ones
in which the variable appears in the exponent.

To get a sense of scale:

• there are 1043 atoms in the universe

• there have been 1017 seconds since the big bang

If we can perform 1 billion operations per second,

• 1016 operations take 1 year

• 1020 operations take 10,000 years!

Would it help if we could do 100 million billion per second? How about 1050?
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Constants Can Matter

Constant factors are insignificant relative to the form of the mathematical

function.

But they are important in these situations:

• When we’ve already picked the algorithm to use, and we’re ready to fine
tune it.
We may be able to reduce the constants.

• When two algorithms have the same order.
Considering the constants may reveal that one is faster than the other.

• When the problem size is small.
We may be below the breakpoint.

Sometimes, we need to know the actual running time of a program, e.g., with
real-time systems.

We can determine running time by directly measuring it (on the desired com-
puter and for various sizes of input with various characteristics).
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Towards a Definition

Say we have an algorithm (or program) whose running time on an input of
size n is f(n).

We don’t know what f(n) is, but we want to estimate it to within a constant
factor.
Let’s call that estimate g(n).

We would be happy with our estimate g(n) even if the relationship between
g(n) and f(n) holds only after some point B.

In other words, from B onwards, we want g(n) to estimate an upper bound
on f(n), to within a constant factor.

That is, we want there to be some constant factors c and B such that
f(n) ≤ c · g(n) for all n ≥ B.

We don’t care what these constants are; we just need them to exist.
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O Notation, or “big-oh” notation

Consider any 2 functions f, g defined on the nonnegative integers N = {0,1,2, . . .}
such that f(n), g(n) ≥ 0 for all n ∈ N.

Definition: f(n) is O(g(n)) if there exist positive constants c and B such
that

f(n) ≤ c · g(n) for all n ≥ B.

This means that, to within a constant factor, f(n) grows no faster than g(n).

We pronounce this:

f has order g, or
f is “oh” or “big-oh” of g

In CSC 148, we are not going to use this formal definition in any particularly
rigorous way, but whenever your instructor is covering an example, you need
to realize that this definition is in the back of her or his mind.
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2 Key Properties of O Notation

Constant factors disappear

If d > 0, then
df(n) is O(f(n)) and f(n) is O(df(n)).

Examples:
6n and n

2
are O(n).

n is O(29n) and O(642n).

Low-order terms disappear

If h(n) is generally smaller than g(n), then we can ignore h(n). More formally:

If lim
n→∞

h(n)

g(n)
= 0 then g(n) + h(n) is O(g(n)).

Examples:
n5 + n3 + 6n2 is O(n5).
n2 + n(logn)3 is O(n2).
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More O Notation Examples

6n is O(n) and O(3n) and O(2n).
In fact, it is all of these:

...
O(2n)
O(n3)
O(6n − 99)
O(3n)
O(n + 8)
O(n)

But it is not any of these:
O(logn)
O(

√
n)

...
How can a function be both O(n) and O(3n), for example?

If some constant times n is an upper bound on the function (after some point
B), then certainly some constant times 3n will be.
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Simplicity

We always prefer the smallest (“tightest”) and simplest upper bound function
that will satisfy the big-oh criteria.

E.g., for 6n, O(n) is the smallest upper bound
instead of, say, O(n2),

and is also the simplest description of it
instead of, say, O(6n + 22).
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Remember this

O(1) ⊂ O(logn) ⊂ O(n) ⊂ O(n logn) ⊂ O(n2) ⊂ O(n3) ⊂ O(2n) ⊂ O(3n) ⊂
O(n!) ⊂ O(nn)

(Why are we using set notation?)

We can use this to determine which term in a mathematical function is the
most dominant, and which other terms can be “cancelled”.

Examples

• O(5 logn + n2 + 2n3

5
)

• O(12n + n logn)

• O(12n + n logn + 2n + n2)
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Using O notation to Analyze the Running Time
of Programs

Using very simple techniques, we can analyze code and know that the time
to execute it is, for example,

O(n2)

without having to know that the more detailed answer is, for example,

n2 + 7 logn

3
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Example

static void silly (float num) {
num = 0;
num = (float) Math.sqrt(567.2);
num = num / .000931f;
System.out.println("num is " + num);
System.out.println("Bye!");

}

. . .

if (n > 1000) {
System.out.println("That’s big");

} else {
System.out.println("That’s not so big");

}
silly(n);

Analysis:

• This code involves no loops or recursion.

• Therefore it takes a constant amount of time, for some unknown con-
stant.

• We call this “constant time” or O(1).
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Example

for (int i=100; i<=n; i++) {
sum++;

}
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Example

for (int i=1; i<=n/2; i++) {
for (int j=1; j<=n*n; j++) {

sum++;
}

}

Analysis (working from the inside out):

• Each iteration of the inner loop takes O(1) time.

• On every iteration of the outer loop, O(n2) iterations of the inner loop
are performed.

• Thus each iteration of the outer loop takes O(n2) time.

• The outer loop is performed bn/2c times and bn/2c is O(n).

• Therefore the loop takes O(n3) time.

• Therefore the program takes O(n3 + 1) time.
(1 is for the initialization.)

• Thus the entire program takes O(n3) time.

Write your analyses in this style. Annotating the code is not sufficient.
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Example

sum = 0;
for (int i=1; i<=n/2; i++) {

sum++;
}
for (int j=1; j<=n*n; j++) {

sum++;
}
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Example

if (n % 2 == 0)
for (int j=1; j<=n*n; j++) {

sum++;
}

} else {
for (int k=5; k<=n+1; k++) {

sum += k;
}

}
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Example

static boolean isSorted (int[] List) {
// Details omitted.
// Assume isSorted is implemented efficiently.

}

int[] myList = new int[size];
sum = 0;
if (isSorted(myList)) {

for (int j=1; j<=n*n; j++) {
sum++;

}
} else {

for (int k=5; k<=n+1; k++) {
sum += k;

}
}
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Example

static void blah (int n) {
int sum = 0;
for (int i=1; i<=n/2; i++) {

for (int j=1; j<=n*n; j++) {
sum++;

}
}
System.out.println (sum);

}

blah (p) blah (j*j)
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Example

sum = 0;
while (num > 1) {

num = num / 2;
sum++;

}
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Example

for (int k=1; k<=5000; k++) {
if (a[k] % 2 == 0) {

even++;
} else {

odd++;
}

}
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Example

for (int i=1; i<=n; i++) {
for (int j=1; j<=m; j++) {

sum++;
}

}
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Example

sum = 0;
for (int i=1; i<=n; i++) {

for (int j=1; j<=i; j++) {
sum++;

}
}

Analysis:

• Each iteration of the inner loop takes O(1) time.

• On the ith iteration of the outer loop, i ≤ n iterations of the inner
loop are performed.

• Thus each iteration of the outer loop takes O(n) time.

• The outer loop is performed n times.

• Thus the entire program takes O(n2) time.
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Overestimating

O(n2) seems to be an overestimate.

The first time we do the inner loop, it iterates only once. On subsequent
visits to the inner loop, it iterates more and and more times, until finally it
does n iterations.

The total number of iterations of the inner loop is 1+2+ · · ·+n = n(n+1)/2.

However, n(n + 1)/2 is O(n2), so we get the same final answer, in terms of
big-oh.

In some cases, the extra precision in the answer n(n+1)/2 may be important.
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Summary of Rules

Type of code Technique
no loops or recursion: O(1)
loop: multiply
sequence: add
selection: take the maximum
method call: apply method’s time

to size of arguments
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