
MERGESORT
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Sorting Recursively

Do you remember any iterative sorting methods? How fast are they?

Can we produce a good sorting method by thinking recursively?

We try to divide and conquer: break into subproblems and put their solutions
together.
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Divide and Conquer

Let’s try it on the following list of letters:

P E N G U I N S

Break it into two lists:

P E N G
U I N S

Sort them:

E G N P
I N S U

Is putting these two lists together easier than sorting the whole list?
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Merging

Combining two sorted lists into one sorted list is called merging.

E G N P
I N S U

Starting at the front of both lists, we keep picking the smallest letter:

*E* G N P
I N S U

G N P
*I* N S U

*G* N P
N S U

etc.
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Code for Mergesort

We’ll implement it for arrays. We only care about the order of elements so
we assume only that the elements are Comparable.

Also, we’ll try sorting the array ‘in place’, rather than creating a new array
to contain the result.

/** Sort list[s..e] in non-decreasing order. */
public static void mergeSort(Comparable[] list,

int s,
int e) {

if (s < e) { // More than one element

int mid = (s + e) / 2;
mergeSort(list, s, mid);
mergeSort(list, mid + 1, e);

...merge list[s..m] and list[m+1..e]
into list[s..e]...

} // else just 1 element, so already sorted.

}

5



Except possibly for the merge portion, this was very simple to write. What
can we do to understand how it works?

• if the recursive calls work, the method will clearly work

• trace it

Exercise: Write a requires clause for the method.

Exercise: Write a wrapper method for the common case of mergesorting an
entire array.

Exercise: Would mergeSort still work if the two recursive calls were:

mergeSort(list, s, mid-1);
mergeSort(list, mid, e);
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Generics?

Before proceeding, let’s note that the Java API’s sort() methods don’t expect
to be given parameters that are arrays of Comparable elements.

• In Arrays:

public static void sort(Object[] a)

• In Collections:

public static <T extends Comparable<? super T>> void sort(List<T>list)

(!)

Why are the two methods’ parameter types different? (Why doesn’t Arrays.sort()
require an array of Comparables as parameter?)

The descriptions of both methods explain — in English, not Java — that
the caller is responsible for making sure all the objects in the list or array are
mutually comparable.

A good exercise in programming with generics would be to take the array-
based code in these slides and redo them with ArrayLists.
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Header for Merge

Let’s make it a helper method.

What header should it have? Imagine calling it from mergeSort:

merge(list, s, mid, e);

This gets us started with the header.

/** Merge list[s..m] with list[m+1..e].
* Requires: the two sublists are sorted
* in non-decreasing order.
* Ensures: list[s..e] is sorted. */

private static void merge(Comparable[] list,
int s,
int m,
int e)
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Body of Merge

int p1 = s; // index of current candidate in list[s..m]
int p2 = m + 1; // index of current candidate

// in list[m+1..e]

// Temporary storage to accumulate the merged result.
Comparable[] merged = new Comparable[e - s + 1];
int p = 0; // index to put next element into merged

// merged[0..p] contains list[s..p1-1] merged
// with list[m+1..p2-1]
while (p1 != m + 1 && p2 != e + 1) {

if (list[p1].compareTo(list[p2]) < 0) {
merged[p] = list[p1];
++p1;

} else {
merged[p] = list[p2];
++p2;

}
++p;

}

... to be continued ...
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What’s true at the end of the while loop?

What’s left to do?



/*

*/
if (p1 != m + 1) {

System.arraycopy(list, p1,
list, s + p,
m + 1 - p1);

}
System.arraycopy(merged, 0, list, s, p);

Exercise: Finish the requires clause for the method.

Exercise: If we had copied the remainder of the unfinished sublist to merged
and then copied all of merged back to list, would that have changed the big-O
time complexity?
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Exercise: Rewrite mergeSort and merge to follow the Java convention for
ranges: passing s and e as the start and end of a sublist of list means
list[s..e) (i.e. list[s..e-1]).

Exercise: Write a recursive merge method.

Exercise: Write a mergesort for linked lists.

Exercise: Does the following approach to an in-place merge work: If the
next element is in the first list, then leave it there and move forward in the
first list, otherwise swap it with the next element in the second list and move
forward in both lists.
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Efficiency of Sorting Methods

What sorting methods other than mergesort do you know? How efficient are
they?

Let’s see how merge sort compares.

With loops, we know how to analyze efficiency. What to do with recursion?

Strategy: Determine (1) the total number of calls to mergeSort and (2) the
time per call. Multiply them together.
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Analysis of mergeSort

Suppose we call mergeSort with a list of 8 elements. What happens?

ms(8)

ms(2) ms(2) ms(2) ms(2)

ms(4) ms(4)

ms(1) ms(1) ms(1) ms(1) ms(1)ms(1) ms(1) ms(1)

Do you notice anything about the rows in the tree of calls?
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Analysis of mergeSort

How much time is required to merge two sorted lists into one list with total
size s?

So how much time in total is required for all the merging in any single row?
How many rows are there?

So what is the total amount of time required?

Exercise: What effect would it have on the time required for mergesort if
we split the list into 3 pieces instead of 2?

Exercise: How much time would a (good version of) mergesort take for
linked lists?
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Comparing with other sorts

Many familiar sorts are O(n2) in the worst case, including:
bubble sort, selection sort, insertion sort

Some other sorts are O(n logn) in the worst case (like mergesort), for example
heap sort.

But that’s only part of the story. We also care about

• the average case.
This is much harder to determine, because it requires arguing about the
probability of seeing various cases.

• special cases, such as a list that is only slightly out of sorted order, is
already sorted, or is sorted in the reverse order.

15


