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Linguistically precise general-purpose grammars of natural language enable a detailed
semantic analysis that is currently unavailable to corpus-based approaches. Unfortu-
nately, the engineering of such grammars is often tedious, time-consuming, error-prone,
and inaccessible to new developers. This work seeks to alleviate the engineering problem
by discovering, documenting, and exploiting structural patterns of current grammar sig-
natures. More specifically, it mines the English Resource Grammar (ERG) for evidence
of intended patterns of type usage and documents those patterns within the framework
of Alexandrian design patterns. The structural patterns are then exploited by way of
parametric types, special higher-order type constructors, and methods for automatic type
selection. The applicability of the patterns is illustrated by ICEBERG, a higher-order

refactoring of the ERG.
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Chapter 1

Introduction

The engineering of detailed grammars of natural language has been part of language
research from the very beginning, and over the years many attempts have been made
to construct linguistically-precise broad-coverage grammars in many different grammat-
ical frameworks. Unfortunately, although these attempts often begin with an elegant
design and consistent structure, inevitably, as Erbach and Uszkoreit [EU90] report, the
intricacies and inherent rule exceptions of natural languages threaten the original ele-
gance. As grammar writers attempt to extend coverage beyond standard examples, both
the grammar formalism and original design decisions are stretched in order to accom-
modate the exceptional cases that do not quite fit the existing grammar. Often these
stretches result in grammar patching, producing decreased modularity, loss of grammar
transparency, and increased time spent fixing unpredictable errors. The grammar source
becomes increasingly inaccessible to new developers and the undocumented knowledge
of a few principal developers becomes as important as the grammar source code itself.
The final result is reminiscent of what software engineers have labeled “spaghetti code”,

or, more affectionately “a big ball of mud” [FY97].

Over the years, much work has been done to alleviate the problems of grammar engi-

neering, focusing attention on a number of specific problems. There have been research
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contributions regarding:

e grammar development environments (LKB [CF00], PAGE [KS94a], ALE [CP96])

performance profiling and coverage evaluation ([OF98, ONK97]),

multi-lingual grammar resources ([BFO02, FB03]),

e grammar learning ([Abn97, KM01]), and

distributed development strategies. ([OBC*02]).

This work has been extremely successful. Though the focus of much computational
linguistics research has shifted toward more simple language models such as probabilis-
tic context-free grammars (PCFGs) estimated via corpus-based statistical approaches,
there do exist manually engineered grammars of natural language which, though un-
able to compete with the coverage of a statistically estimated PCFG, are capable of
much deeper semantic analysis while maintaining a high-level of coverage. Within the
logic of typed feature structures and the grammatical framework of Head-Driven Phrase
Structure Grammar (HPSG) [PS94], there exist broad-coverage grammars of English
(83% coverage of 10,000 transcribed utterances) [FCS00], German [MKO00], and Japanese
[Sie00], with projects begun for Norwegian [HH03] and Greek [KN03]. The ParGram
project [BKNS99] is using Lexical Functional Grammar (LFG) [KB82] to produce broad-
coverage grammars of English, French, German, Japanese, Malagasy, Norwegian, Urdu,
and Welsh, and there is a broad-coverage grammar of English being developed in lexi-
calized Tree Adjoining Grammar (XTAG) [DEH194].

The existence of these broad-coverage grammars is sufficient proof that manually-
constructed broad-coverage grammars are possible, but no one involved would argue
that the engineering problem is solved. Constructing detailed grammars is still tedious,
still time-consuming, still error-prone, and still accessible to only a few principal devel-

opers. The English Resource Grammar (ERG), the largest and broadest-coverage HPSG
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grammar of English, had, as of the year 2000, consumed 11 person-years of effort, and
although many people have made peripheral contributions to the grammar, the difficulty
of understanding the grammar well enough to make significant changes has meant that
the core grammar is the result of four developers [CF00].

This work addresses the problem of inaccessibility and unpredictability by way of
higher-order types motivated by the design pattern view of software engineering. Design
patterns are intended to draw on the collective experience of existing implementations to
provide a catalogue of design problems and design solutions that can be used as the basis
for new development and for refactoring existing implementations. More specifically,
we mine the ERG for evidence of intended patterns in the type signature topology, and
propose a series of evidenced structural patterns of type usage. These structural patterns
are then exploited by way of parametric types, special higher-order type constructors,
and methods for automatic type selection.

The goal is two-fold. First, patterns and higher-order typing can enable higher-
order re-factoring of HPSG signatures so as to explicitly state patterns that were already
implicitly present in the signature. This goal is illustrated by ICEBERG, our higher-
order re-implementation of the ERG type hierarchy. Secondly, and more importantly,
the patterns and higher-order typing techniques developed in this work can guide the

future development of more intuitive and usable typed feature structure grammars.

1.1 Statement of thesis and objectives

1.1.1 Thesis

Current typed feature structure grammars exhibit evidence of underlying structural pat-
terns that, if mined and documented, can facilitate the enumeration of higher-order
constructors which can in turn lead to more intuitive, readable, and extendable type

signatures.
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1.1.2 Objectives

This document supports this thesis by making the following specific contributions:

1. Design patterns for grammar engineering: it adapts the notion of design
pattern extraction, documentation, and utilization from software engineering to the
problem of grammar development, providing a framework within which to discover
and document the structural and linguistic patterns of typed feature structure

grammars.

2. Extension of parametric types for attribute-value logic: it presents a for-
mal extension of parametric types for attribute-value logic [Pen00] by introducing
parametric restrictions and constrained parametric induction. Existing attribute-
value grammars provide evidence that restrictions and constrained induction are
necessary, but parametric types previously had no formal methods for restricting

parameter values and no formal methods for automated type selection.

3. HOPS - a higher-order parametric signature description language: it
introduces, describes, and implements HOPS, a higher-order parametric signature
description language. A HOPS interpreter has been implemented as a front-end

extension to ALE.

4. ICEBERG - a higher-order ERG: it presents ICEBERG, a re-factoring of
the ERG type hierarchy using pattern-influenced higher-order type constructors.
ICEBERG is the first large-scale grammar implementation to consistently employ

higher-order typing.

1.2 Structure of the document

The remainder of this document is structured as follows:
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Chapter 2: Typed feature structures introduces the logic of typed feature struc-
tures (LTFS) [Car92], the feature logic assumed by most typed feature structure
grammar implementations. Type hierarchies, feature structures, appropriateness
specifications, feature structure subsumption and unification, and well-typing are

formally defined.

Chapter 3: Types in contemporary typed feature structure grammars examines
the effects of using hand-crafted subtyping-based type hierarchies in typed feature
structure grammars. By way of reference to the ERG, it sketches advantages to
using types in grammar and discusses the drawbacks of implementing large-scale

grammars with hand-crafted type hierarchies.

Chapter 4: Design patterns and grammar engineering introduces design patterns
for grammar engineering and describes a number of structural design patterns cur-
rently evidenced by the ERG. A review of the history of design patterns is included,
their application to software engineering is discussed, and sequence of grammar-

specific patterns is documented.

Chapter 5: Exploiting design patterns via parametric typing introduces
parametric polymorphism as an option for exploiting design patterns in typed fea-
ture structure grammars. Penn’s [Pen00] treatment of parametric types is extended
to include parametric restrictions, and a series of closure operations are introduced

for the purpose of constraining the induction of parametric type hierarchies.

Chapter 6: HOPS - higher-order parametric signature descriptions introduces
HOPS, a higher-order parametric signature specification language designed to fa-
cilitate intuitive, readable, and extendable grammars by implementing the patterns
of §4 as higher-order type constructors and providing operators for performing the

closure operations introduced in §5.
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Chapter 7: ICEBERG - a higher-order English Resource Grammar presents
ICEBERG, a higher-order re-implementation of ERG written in HOPS. Some im-
plementation issues are discussed, and some portions of [CEBERG are described
in detail. Finally, ICEBERG is compared to ERG both qualitatively and opera-
tionally, concluding that ICEBERG is operationally equivalent to ERG but more

terse, readable, intuitive, and extendable.

Chapter 8: Conclusions is an analysis of the main contributions, some suggestions
for further applications of design patterns and/or higher-order typing, and some

suggestions for further testing the usability of higher-order type signatures.



Chapter 2

Typed feature structures

This chapter formally introduces the logic of typed feature structures (LTFS) developed
by Carpenter [Car92], and assumed by standard HPSG. The chapter draws heavily from
[Car92|, with reference to Penn’s [Pen00] work on algebraic properties of attributed type
signatures and the work on order theory by Davey and Priestly [DP02]. Readers familiar
with feature logics and LTFS may skip directly to chapter 3. For those who choose to
stay, we note that this chapter will provide only the overview of typed feature structures
necessary to comprehend the work of this thesis; we will not delve into the history of typed
feature structures, other feature structure logics such as Rounds-Kasper logic [KR90] and
SRL[Kin89], or other aspects of LTFS such as satisfiability and signature equivalence.
For a more detailed discussion, the interested reader is referred to Carpenter’s seminal
work on typed feature structure logics [Car92], Penn’s dissertation work on the algebraic
properties of attributed type signatures [Pen00], Keller’s survey of feature logics [Kel93],
and Richter’s [Ric04] dissertation work on formalizing the HPSG grammar presented in

Pollard and Sag’s [PS94] introduction to HPSG.

For the purposes of our discussion, we will simply recognize that LTFS is constructed
on top of attributed type signatures which are themselves composed of three distinct

pieces:
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e a hierarchy of types,
e a set of features, and

e an appropriateness specification.

Such an attributed type signature provides the basic vocabulary for talking about
feature structures and describing relationships between them. We will proceed incremen-
tally, starting with type hierarchies, augmenting type hierarchies with features to form
feature structures, and adding appropriateness to feature structures to obtain totally

well-typed feature structures.

2.1 Type hierarchies

Typed feature structure grammars such as HPSGs assume the availability of a finite
set of types ordered according to their specificity. In such orders, also known as IS-A
networks, more specific types are seen to inherit information from more general types
via a relation known as subsumption. This is a departure from early unification-based
grammars such as Unification Grammar [Kay85], and earlier typed feature logics devel-
oped by Pollard and Moshier [PM90] and Smolka [Smo89], which, though typed, present
types as incomparable sorts. The motivation for ordering types draws from [AK84] which
introduced subtyping as a means of better capturing generalizations. Carpenter [Car92]
and Pollard and Sag [PS94] both employ type hierarchies in order to facilitate their in-
terpretation that types and feature structures do not represent objects themselves, but

represent partial information states about objects.

2.1.1 IS-A networks

Borrowing from a tradition in knowledge representation starting with Quillian’s semantic

networks [Qui68] and continued in Brachman’s KL-ONE system [Bra77], the specificity
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relationship is typically expressed by IS-A links between conceptual types. In the world
of linguistics, for example, noun IS-A substantive, and accusative IS-A case. The sub-
sumption relation is then taken as the transitive and reflexive closure over the set of IS-A
links, forming what is mathematically known as a partially ordered set, or, equivalently,

a partial order.

Definition 2.1.1. A partial order on a set, P, is a relation, < C P x P, such that, for

all z,y,z € P:
o (reflexivity) z < z,
e (anti-symmetry) if z < y and y < z, then z =y, and
e (transitivity) x <y and y < z, then z < 2.

Throughout mathematics, partially ordered sets are represented topologically as Hasse
diagrams. In a Hasse diagram, elements in the order appear topologically lower than the
elements they subsume. The diagram is a directed graph in which elements of the order
are represented as vertices and an edge exists from element = to element y iff there is an
IS-A link from x to y in the subsumption cover relation. Figure 2.1 is a Hasse diagram
of a partial order representing grammatical person, number, and gender information. In
this diagram 1-sing IS-A 1st, 3-s-fem IS-A 3-sing, and, because of transitivity, 3-s-neut
IS-A sing. Note that this notation is opposite of the notation typically used in HPSG type
hierarchies where more general types are drawn topologically higher than the elements
they subsume.

Carpenter specifically limits his type hierarchies to those in which the partial infor-
mation can be deterministically combined through unification. That is, the combination
of two consistent, partial information states (types) should result in a partial information
state that can be deterministically given a type. This unification is formalized in terms

of upper and lower bounds.
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3-s-masc 3-sfem 3-s-neut
1-sing 1-plu 3-sing 3-plu

IX X X1
\\//

Figure 2.1: A partially ordered set (excerpted from [Car92])

Definition 2.1.2. Given a subset S C P, the set S* = {z € P | Jy € S,y < z} is the

set of upper bounds of S. The set of lower bounds S* is defined dually.

Given sets of upper bounds (more specific types) and lower bounds (less specific
types), we can reason about greatest lower bounds (most specific of the less specific

types) and least upper bounds (least specific of the more specific types).

Definition 2.1.3. Given a subset S C P, if S* has a least element x, then x is called
the least upper bound or join of S. We denote the join of S as LS. If S' has a greatest

element x, then x is called the greatest lower bound or meet of S, denoted IM1S.

More colloquially, the join of a set of elements S is the least upper bound of S, if it
exists and is unique. The meet of a set of elements S is the greatest lower bound of S,
if it exists and is unique. If S has only two elements x and y, we may denote LIS by
x Uy and MS by x My. If joins and meets exist, they can be represented by (S*)™" and
(SHymaz respectively.

For example, in figure 2.1, the join of Ist and sing is 1-sing, the join of agr and
1-plu is 1-plu, and the meet of 3-s-masc and 3-s-fem is 3-sing. 1-plu and 3-plu have no

common upper bounds and are therefore declared semantically inconsistent. In a properly
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modelled world, all semantically consistent types will have a join and all semantically
inconsistent types will have no join (or join to a designated top element, T), and, in fact,
this is the condition Carpenter places on partial orders in order for the partial order to be
considered a type hierarchy. The construction that captures this intuition is a bounded

complete partial order or BCPO.

Definition 2.1.4. A bounded complete partial order (BCPO) is a partial order (P, <),

such that for every subset S C P, with S* # (), LUS |.

Definition 2.1.5. A type hierarchy is a non-empty, finite, bounded complete partial

order.

Figure 2.1 is a type hierarchy since it is finite and since all subsets of elements which
have a set of common upper bounds have a join. If we postulated an IS-A link between
3rd and 1-sing (bear with me!), figure 2.1 would cease be a type hierarchy (but remain
a partial order) since 3rd and sing would then have two least upper bounds (1-sing and
3-sing) and therefore no join.

Penn [Pen00] provides conditions based on path lengths and branching factors under
which we can relax our assumption that the underlying BCPO is finite. [Car92] gives no
such conditions, however, simply assuming type hierarchies are finite. Because typical
typed feature structure grammars assume finiteness, for the remainder of this thesis we

will follow Carpenter and simply assume type hierarchies are finite.

2.1.2 Meet-semilattice completions

It is overly restrictive to suggest that every domain’s concepts be modelled by a bounded
complete partial order and it is also difficult for a grammar writer (or any ontology devel-
oper) to ensure that their large partial order is, in fact, bounded complete. Fortunately,
there is a way to expand any given partial order to the smallest BCPO that contains

it. The expansion rests on the equivalence between finite BCPOs and finite meet semi-
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lattices and the fact that there exists a well-defined completion algorithm to restore any

finite partial order to a meet semi-lattice.

Definition 2.1.6. A partial order, (P,C), is a meet semi-lattice iff for any z,y € P,

x My .

A meet semi-lattice is a partial order such that every pair of elements has a meet, or
greatest lower bound. In the finite case, this is exactly the condition necessary to ensure

bounded completeness.
Proposition 2.1.1. A finite partial order is bounded complete iff it is a meet semi-lattice.

Meet semi-latticehood can be obtained by computing the Dedekind-MacNeille comple-
tion of any partial order, which embeds the partially ordered set into the least bounded-

complete subset of its set-inclusion-ordered powerset that includes it [DP02].

Definition 2.1.7. Given a partially ordered set, P, the Dedekind-MacNielle completion

of P, (DM(P),C), is given by:

DM(P)={AC P| A" = A}
Proposition 2.1.2. If P is a partial order, DM (P) is a meet semi-lattice.
Proposition 2.1.3. If P is a finite partial order, DM (P) is a BCPO.

Effectively, elements in the Dedekind-MacNeille completion are the subsets S of the
original partial order such that the set of least upper bounds of S is S itself. The
Dedekind-MacNeille completion can be obtained by incrementally adding completion

types as follows:

1. Find two elements, t;, t with minimal upper bounds, uq,...,u, such that their

join t1 Ut is undefined, i.e., £ > 1. If no such pair exists, then stop.

2. Add an element, v, such that:
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e foralll1 <: <k, vCu; and

e for all elements t, t C v iff forall 1 <i <k, t C uj;.

3. Go to (1)

This algorithm can be attributed to Penn [Pen00] with influence from Bertet et. al.
[BMN97], who were the first to notice that the incremental “where there is no meet, add

one” completion algorithms used by Fall [Fal96] and Ait-Kaci [AKBLN89] did not always

compute the minimal meet-semilattice.

2.2 Typed feature structures

In LTFS, every type is augmented with a (possibly empty) set of features organized in a
record-like structure. These features are essentially named value fields, and the resulting
structures are called feature structures. In LTFS, the feature values are also feature
structures and feature values within the same feature structure can be either identified
or inequated. Because of this, feature structures can be defined by directed acyclic graphs

whose nodes are types and whose edges are the features of that type.

Definition 2.2.1. A typed feature structure is a tuple, F' = (Q, q, ©, 0, +») where:

Q@ is a finite set of nodes,

q € @ is the root node,

O :Q — T is a total node typing function,

0 : Feat x Q) — (Q is a partial feature value function, and

+C @ X @ is an anti-reflexive and symmetric inequation relation.
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NUMBER

Figure 2.2: Feature structure: graph notation (excerpted from [Car92])

such that for every ¢ € @, there is a finite sequence of features Fq,...,F, € Feat such
that ¢ = §(Fp,0(Fp—1,...,0(F2,0(F1,7)))), i.e., a finite sequence that connects ¢ to ¢ with
J.

F denotes the set of all feature structures relative to the (implicit) set of types, T,

and features, Feat.

Figure 2.2 is a directed acyclic graph of a feature structure (excerpted from [Car92])
representing valence considerations for the verb sent. sent is encoded as the type of the
root node and the root feature structure has two features, SUBJ and PRED. SUBJ and PRED
lead to nodes labeled with types noun and wverb, respectively. These nodes each have an
AGR feature which leads to the same node (labeled with syn) indicating that the values
of the agreement features of the verb’s subject and predicate are structure shared.

Feature structure graphs can become frustrating and difficult to understand, hence the
linguistics community has become more accustomed to representing feature structures as
Attribute-Value Matrices or AVMs (figure 2.3). In AVM notation node labels are placed
at the top left corner of a bracketed structure whose contents represent edges leaving

that node. Structure sharing is indicated by co-indexed boxed numbers.
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sent

noun

syn

SUBJ
AGR |PERSON [&d}

NUMBER [singular}

verb

PRED
AGR []

Figure 2.3: Feature structure: AVM notation (excerpted from [Car92])

2.2.1 Feature structure subsumption

Because feature structures are constructed relative to an inheritance hierarchy of types,
feature structures themselves can be arranged in a subsumption relationship. This rela-
tionship is one of the key properties of typed feature structures since it extends the idea
of partial information from feature-less objects (types) to complex information states

(feature structures).

Structure sharing can cause subsumption to become quite complex and actually pre-
vents feature structure subsumption from forming a partial order since it is possible for
Fy C F, and F;, C F; where F; # F5 (see [Car92] and [Pen00] for more details). But,
for the most part, feature structure subsumption is as straightforward as the example
in figure 2.4 (extracted from [Car92]): a feature structure F' subsumes another feature
structure GG if G' contains all the information that F' contains.

The formal definition of feature structure subsumption makes use of feature paths
and feature path values to provide a way of reference to every feature structure node.

Subsumption is then defined over these paths and path values.
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_ ; phrase
sign i T
agr
agr C
ACR - AGR PERS [lst]
PERS [1st}
i i NUM [sing]

Figure 2.4: A subsumption example (assuming sign T phrase)

Definition 2.2.2. A feature path is a finite sequence of features m € Feat™.

Definition 2.2.3. Given a typed feature structure, F' = (Q, ¢, ©, 9, <»), its partial path

value function is the function, ¢’ : Feat* X Q — @ induced from F' such that:

e 0'(6,q) =g, and

e ' (Fm,q) = d'(m,0(F,q)).

Definition 2.2.4. Given a common signature, a typed feature structure,
F =1(Q,q,0,6,«) subsumes another typed feature structure, F' = (Q',7,0',d, '),

written F' T F', iff there is a total function, A : Q — @', called a morphism, such that:

° h() =7,

for every ¢ € Q, ©(q) C ©'(h(q)),

if 6(F, q) |, then h(S(F,q)) = ¢'(F, h(q)), and

if q1 <* @2, then h((h) ! h,((JQ)

If F C F', we can also say that F’ extends F.
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2.2.2 Feature structure unification

Feature structures also extend the idea of combining consistent information states. This
combination takes the form of feature structure unification. Though the mathematics of
unification are quite complex, the idea again is easy: the unification of two information
states (feature structures) results in the most general information state (feature structure)
consistent with both previous states.

The formal definition groups feature structures into equivalence classes called alpha-

betic variants and defines unification is terms of quotient sets of equivalence classes.

Definition 2.2.5. Given a set, S, an equivalence relation on S is a relation & C S x S

such that, for all s, s, s"” € S:
o (reflexivity) s =~ s,
e (symmetry) if s & ', then s’ & s, and
e (transitivity) if s ~ s’ and s’ ~ s, then s ~ s".

Definition 2.2.6. Typed feature structures F; and F, are alphabetic variants, written

F1 ~ FQ, iff F1 E F2 and F2 E Fl.
Proposition 2.2.1. ~ is an equivalence relation.

Definition 2.2.7. Given a set, S, an equivalence relation, ~, and an element s € S, the

equivalence class of s under = is:
[s] ={s' € S|s=~ s}

Definition 2.2.8. Given a set, S, an equivalence relation, =, the quotient set of S
modulo = is:

S/~ = {[sle|s € 5}
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Definition 2.2.9. Given a common signature and F ~ (@, ¢, ©, J, +») and
F' ~ (@, 7,00, ") such that QU Q" = (, let > be the finest grained equivalence

relation on @ U @’ such that:
e <17, and
e if 6(F,q) }, ¢'(F,¢') | and ¢ > ¢, then 6(F, q) > ¢'(F, ¢).
The unification of F' and F” is then defined to be:
FUF ={(QUQ)/,[qlw, 07,87, )
where:

e 07([g]) = LI{O() L O'(¢) [ ¢ > g},

6(F, q)l ifgeQ,
[0'(F, @) i g €Qf

o 07(F, [gla) =

" mn

o [q] <™ [¢']w iff there exists ¢” and ¢" such that ¢" «» ¢, ¢" <1 ¢, and ¢" < ¢/,

provided that the joins in the definition of ©™ exist where needed and «+»™ is anti-reflexive.

F U F' is undefined otherwise.

Proposition 2.2.2. Given a common signature, and F, F' € F, if there exists an F"' € F

such that FF T F” and F' C F", then FUF' | and FUF' C F".

Proof. Proven by Moshier [Mos88] and extended to the typed case by Carpenter [Car92].
U

Carpenter furthermore shows that, in fact, the partial order induced by feature struc-
ture subsumption under alphabetic variants is a bounded complete partial order, thereby
ensuring that if two feature structures are unifiable there is only one result of the unifi-

cation.
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2.3 Appropriateness

To this point we have simply described feature structures as they appear: we have not
considered how to determine which features (if any) are taken by a given type, or how
to determine which feature structures appear as feature values. Conceptually, it makes
sense for types to know what their features are, and for features to know what their
values are, and a way to encode this knowledge is via appropriateness specifications.
The definition of appropriateness conditions given here is excerpted from [Pen00],

who attributes the theory to [Car92].

Definition 2.3.1. Given a type hierarchy (T, C), and a finite set of features, Feat, an
appropriateness specification is a partial function, Approp : Feat x T — T such that,

for every F' € Feat:

e (Feature Introduction) there is a type Intro(F') € T such that Approp(F, Intro(F)) |,

and for every t € T, if Approp(F,t) |, then Intro(F) C ¢, and

e (Upward Closure / Right Monotonicity) if Approp(F,s) | and s C ¢, then

Approp(F,t) | and Approp(F,s) T Approp(F,t).

Feature introduction ensures there is a minimal type at which each feature is intro-
duced, and upward closure / right monotonicity ensures that, if a feature A is appropriate
to a type s, A is appropriate to every subtype of s.

Appropriateness specifications are the final piece of the type signature puzzle - ap-
propriateness specifications, in combination with a type hierarchy and a set of features,

comprise an attributed type signature.

Definition 2.3.2. An attributed type signature is a structure (7,C, Feat, Approp),
where (T, C) is a type hierarchy, Feat is a finite set of features, and Approp is an appro-

priateness specification.
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2.3.1 Well-typing

One last issue must be discussed before we move on - the issue of existence of features.
Though appropriateness states which features are allowed to appear on each type, ap-
propriateness does not say if we can expect those features to be present on the type or
even whether those features are the only features the type can take. To enforce this

expectation, signatures must be interpreted under some form of well-typing.

Definition 2.3.3. A typed feature structure F = (Q, q, ©, 0, «») is totally well-typed iff

for every ¢ € Q and F € Feat:
e if 6(F,q) |, then Approp(F,0(q)) C ©(4(F,q)), and,

o if Approp(F,©(q)) |, then §(F, q) |.
TTF denotes the set of totally well-typed feature structures.

Totally well-typed feature structures carry computational significance since they allow
us to statically pre-determine the resulting feature structure of any feature structure
unification. This pre-determination allows a computational implementation to perform
some forms of pre-compilation and to strategically allocate memory, thus allowing for
more efficient feature structure operations.

The ability to assert all and only the appropriate attributes of modelled objects also
affords totally well-typed feature structures a sort of conceptual cleanliness by allowing
grammar writers to state what the attributes of certain object classes are before knowing
what those values are, thus properly capturing the original intuition of using typed feature
structures to model partial knowledge.

Totally well-typed feature structures were adopted by Pollard and Sag in the standard
HPSG reference [PS94|, and have been used as the logic of choice in the Linguistic
Knowledge Builder (LKB) [Cop02], the Attribute Logic Engine (ALE) [CP96], and HPSG
grammars of English (the ERG) [FCS00], German [MKO00], Japanese [Sie00], Norwegian
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[HHO03], and Greek [KN03]. Because this is a thesis on the usage of types in typed feature
structure grammars, and because we are referencing the English Resource Grammar as
our data set, the remainder of this thesis will also assume that feature structures are

totally well-typed.
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Chapter 3

Types in contemporary typed

feature structure grammars

The HPSG community seems to have converged on totally well-typed features structures
as the basis for grammar design. In such grammars, types are related by inclusional
polymorphism, otherwise known as the IS-A relation, and this relation is interpreted as
subset inclusion. The IS-A relation is, of course, not a random choice, but a relation
that has been exploited in knowledge representation systems such as KL-ONE [Bra77],
object-oriented programming languages such as Smalltalk, C++-, and Java, and recently

in linguistically motivated ontologies such as WordNet [Fel98].

This chapter examines, from the perspective of software engineering and by way of
reference to the English Resource Grammar,! the effects of using hand-built explicitly-
specified IS-A networks as a basis for broad-coverage HPSG grammars. The ERG is a
strategic choice since, as the largest and most established HPSG grammar and the basis
for the Grammar Matrix [BFO02] from which other HPSG grammars are currently being

developed, the ERG both represents and drives current HPSG grammar research.

'In particular, we refer to a near-ALE-compatible port of a May, 2000 version of the ERG generated
from the CSLI test suite using scripts written for the purpose by Stephan Oepen. Though the ERG has
changed since then, we feel these remarks still pertain to more recent versions.

23
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Much of this chapter has been previously published as [PH03a].

3.1 Advantages of types in grammar

There are undoubtedly many advantages to using types and IS-A networks in unification
grammars that justify their existence in grammar implementations such as the ERG.
Many of the justifications would be similar to arguments in favour of types in program-
ming languages and software engineering, and, indeed, these are the reasons types were
introduced into feature logics historically and why all large HPSG grammars employ type

hierarchies. We specifically suggest the following four advantages:

intuitive reflection of linguistic knowledge,

implicit grammar documentation,
e carly error detection, and

e efficiency gains through grammar compilation.

3.1.1 Intuitive reflection of linguistic knowledge

Types, most notably in the form of ordered type hierarchies, facilitate the division of
the world into conceptual classes which are themselves hierarchical. This is exactly how
we understand many linguistic constructions. Grammatical case and verb forms are in
different classes, and both are in different classes from kinds of phrases. These conceptual
classes can themselves be divided - nominative case is a kind of case, participles are kinds
of non-finite verb forms which are in turn kinds of verb forms, and phrases can be either
unary or binary, headed or nonheaded, or if a phrase is both binary and headed, either
head-final or head-initial. IS-A networks enable this world knowledge to be abstracted to

natural classes and their inclusional relationships captured. Then, through subsumption
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checking, greatest lower bound, and least upper bound operations, IS-A networks provide
efficient methods for inference among these natural classes.

Conversely, using IS-A networks to write grammars encourages grammar writers to
think about their grammar in terms of abstractions and categorization. In general,
thinking in terms of abstractions should lead to more abstract design, which, in turn,

should lead to more intuitive, readable, and extendable grammars.

3.1.2 Implicit grammar documentation

Type signatures are also useful for developers reading the grammar source because they
constitute an implicit form of documentation - documentation that describes both how
and why the grammar works the way it does (useful for debugging and for making
extensions), and the linguistic intuition behind the grammar.

The appropriateness specifications on features, for example, constitute a form of doc-
umentation by forming relationships between types which are not otherwise related by
subtyping. When appropriateness states that type cat has a HEAD feature and that the
appropriate values of HEAD features are feature structures rooted by subtypes of head,
the grammar has documented both one of the cornerstones of HPSG (that all syntactic
categories have a lexical head), and that the possible category head types are only those
which are subtypes of head.

Similarly, when the ERG combines person and number information in the same hi-
erarchy (figure 3.1) and arranges those types according to knowledge of English verbal

morphology, the grammar documents this linguistic intuition.

3.1.3 Early error detection

Not only do types form implicit grammar documentation, they also provide a way of en-
forcing that documentation through compile-time and run-time error detection. Because

a parsing system knows, for example, what types are appropriate for a feature value, the
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2per lor3pl 1sg
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non3sg lor3sg

\/

pernum

Figure 3.1: English verb morphology motivated pernum hierarchy

system can flag some inconsistencies before the grammar is actually executed.

This sort of error detection is absolutely critical for large typed feature structure
grammars. In the ERG, parsing a seven-word sentence produces a feature structure
containing approximately 400 features. If, for some reason, the grammar writer feels the
parse is incorrect, tracking down the source of error can be extremely difficult. Types
allow a grammar development environment to precompute greatest lower bounds and to
check certain kinds of signature integrity before run-time, hence drastically reducing the

amount of frustrating guess-and-test bug tracing.

3.1.4 Efficiency through grammar compilation

The first type systems in computer science, in languages such as FORTRAN [Bac81],
were designed to make numerical calculations more efficient by differentiating between
integral and floating point computations. By differentiating the computations, compilers

were able to make more appropriate memory allocations and generate different machine
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instructions for each type of expression [Pie02].

Compilation of typed feature structure grammars has also resulted in efficiency gains,
most notably in ALE [CP96], but even systems which do not compile grammars (such as
the LKB [CF00]) perform a number of well-formedness checks before grammar execution.
These pre-execution steps are enabled by IS-A networks, most notably as the backbone
of totally well-typed feature structures, which facilitate offline greatest lower bound com-
putation, partial offline computation of feature structure unification, and efficient type

encodings [AKBLNS89], all of which result in reduced parsing times.

3.2 Disadvantages of current type usage

The major disadvantage of simple IS-A type systems used in current HPSG implemen-
tations, however, is that they communicate only simple forms of information about their
types. In the case of IS-A networks there is only one form of information - subtyping.
Though limited, subtyping induces a precise semantics which enables automated infer-
ence via the well-defined operation of unification and is still more desirable than ad hoc
semantic networks.?

In practice, though, subtyping’s limited paths of communication have resulted in a
proliferation of types and unwieldy signatures. Depending on how one counts, the English
Resource Grammar has anywhere between 2000 and 10,000 types in its network, each one
specifically placed in the network by a grammar writer. Is it likely that this network still
accurately reflects the designers’ perspective? According to our analysis of the signature,
it does not. Specifically, upon inspection of the ERG, we note the following negative
side-effects that can arise in large scale grammar development on a foundation solely of

hand-crafted IS-A networks:

e lack of a uniform semantics,

2For a classic argument in favor of semantic primitives, see [Bra77]
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e erosion of dimensionality,

e inconsistent naming conventions, and

e structural inconsistencies.

3.2.1 Lack of a uniform semantics

Problems with semantic uniformity should be readily apparent to those who have at-
tempted to construct world models using subtyping-based hierarchies. The problem
centers around the following: Given that communication in IS-A networks is limited to
subtyping, how does one encode relationships between objects that are not really in a sub-
typing relationship? The solution is not clear. Object oriented programming languages
have attempted differing approaches, including aspect-oriented programming (AOP) and
Java’s interface implementation.

To observe the problem in grammar development, consider Sag’s [Sag97] treatment of
relative clauses to classify entities according to multiple dimensions of types (figure 3.2).
Sag achieves his classification by analyzing relative clauses on two separate dimensions:
clausality and headedness. The idea is that every subtype of phrase makes some claim
regarding whether or not it is a clause or has a head.

The problem with Sag’s treatment is that the signature in figure 3.2 is not really multi-
dimensional. It implicitly uses the typographical notation of capitalization and boxing to
indicate that, conceptually, type CLAUSALITY is not a kind of phrase but a dimension of
phrasal classification. In grammar development environments where capitalization and
boxing are not a part of the defined language, this simply looks like an IS-A link. Whether
the links from CLAUSALITY and HEADEDNESS to the row of types above are IS-A links
is furthermore somewhat unclear, and that the link from CLAUSALITY to clause is not
ordinary IS-A, but reifies a particular choice of CLAUSALITY is not indicated with even a

typographical convention. The semantics of CLAUSALITY and clause are not inclusionally
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related.

3.2.2 FErosion of dimensionality

The ERG, to its credit, has eliminated the types CLAUSALITY and HEADEDNESS, but
has retained the essential problem with this analysis. These types have been replaced by
types called clause, hd-ph, and non-hd-ph, which are three among the many immediate
subtypes of phrase (figure 3.3). In doing so, it is simply less apparent that phrases can

be analyzed along CLAUSALITY and HEADEDNESS dimensions.

3.2.3 Inconsistent naming conventions

Most HPSG linguists probably realize what a wh-subj-rel-cl is, and the name itself does
suggest that this phrasal type is a rel-cl and a hd-subj-ph (although headedness itself is
not indicated), but there are other cases in the ERG where the naming conventions are

far less transparent. For example:

e Order is sometimes used rather than a compound name. The difference between a
head_adj_ph and a adj_head_ph, for example, is that former is both head_initial and a

head_mod_phrase_simple, while the latter is head_final and a head_mod_phrase_simple.

e The type nonlsg does not actually refer to all non-1st-singular person-number
combinations, but only to those that are also non-3rd-singular. To know this, we

must observe that nonlsg is actually a subtype of non3g in the ERG.

e The syntactic head type a_or_p refers to all heads of type adjective or type preposi-
tion and v_or_p refers to all heads of type verb or type preposition, while the type
v_or_g does not refer to heads of type verb or type gerund, but to heads of type

verb, type comp or type gerund.
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e Several different kinds of connectives are employed in names, and, because these
names are simply strings, it is not always clear what their operator precedence is.
We thought we understood Ior3pl+2per+1per+nonlsg, for example, until we saw

that it is a subtype of 1sg*+2per+1per+nonlsg.

e Other connectives are simply not clear in their intended meaning. basic-cp-prop+ques-
verb, has only one supertype (verb-synsem) and is a supertype of both propositional

and question verbs. This is not the same + that denotes intersection elsewhere.

As for head_adj_ph and adj_head_ph, there are at least five independent dimensions on

which phrases are being classified:
1. initial vs. final,
2. binary vs. unary,
3. headed vs. non-headed,
4. intersective vs. scopal, and
5. ’h’ vs. 'n’ (we have not determined what these letters stand for).

These are in addition, although not unrelated, to the more familiar distinctions among
complement phrases, subject phrases, etc. of HPSG. It took us at least a day to determine
that these were the dimensions, but we can now say where a n_adj_redrel_ph stands with

respect to all of them. Can you?

3.2.4 Structural inconsistencies

Manual enforcement of design decisions over a large-scale software project is a recipe for
inconsistency, rendering design intentions unclear and introducing sources of error which
are difficult to trace. The ERG is no exception. There are many examples where types

and IS-A links seem to be either missing or misplaced, such as:
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e There is a most general strict tense type (strict_tense), a most general strict aspec-
tual type (strict_aspect), and a most general person-number strict type (strict_pernum),
but no most general strict gender type and no most general strict mood type, al-
though these types are added by meet-semilattice completion (appearing in the

signature as glbtype724 and glbtype723, respectively).

e Type intadj9- is a subtype of intadj9, intadj6- is a subtype of intadj6, and intadj3-
is a subtype of intad;3, but digit9- is not a subtype of digit9, digit6- is not a subtype

of digit6, and digit3- is not a subtype of digit3.

e Type non_affiz_bearing is a direct subtype of word_or_lexrule but the ability to bear
affixes is a dimension for classifying words, not lexical rules. Other word dimension

types, such as nonmsg and nonque, are subtypes of word.

e Every grammar rule type is a subtype of type phrase except the most general

grammar rule type, lingo_rule, which is a subtype of sign, but not phrase.

Inconsistencies like these are unavoidable in IS-A networks the size of the ERG net-
work. Errors will always creep in, either due to human error, poorly communicated design
decisions, or some other unforeseen reason - largely the same reasons error-free software

is so rarely encountered.
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Chapter 4

Design patterns and grammar

engineering

Many of the problems afflicting IS-A networks in HPSG grammars are very similar to
problems encountered in software engineering. Problems with semantic uniformity plague
all large object-oriented software systems, even the mostly tightly controlled code base
has naming inconsistencies, and software architectures are often ad-hoc, undocumented,

and inconsistently followed.

Software engineering research has attempted to stem such problems by adapting
Christopher Alexander’s ideas on what he terms patterns and pattern languages in ar-
chitectural form - recasting them into what are now known as design patterns and design
pattern languages. The design pattern contribution draws heavily from Notes on the
Synthesis of Form [Ale64], The Timeless Way of Building [Ale79], and A Pattern Lan-
guage [AISTT7], and focuses its efforts on the documentation and cataloguing of recurring
successful design principles in the hopes that this catalogue will help make software
more reusable, more accessible to new developers, and less error-prone. Design patterns
have received a great deal of attention in both academic and industrial circles, arguably

more-so than Alexander’s original work has among architects.
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This chapter presents an overview of design patterns and their use in software engi-
neering, gives an argument for their applicability to grammar engineering, and presents
four recurring patterns of type relationships we have mined from the English Resource

Grammar. The patterns presented in §4.3 are drawn from work previously published as

[PHO3a).

4.1 Design patterns

In The Timeless Way of Building [Ale79, page 147], patterns are defined as follows:
“Each pattern is a generic solution to some system of forces in the world.”

Alexander claims that the natural state of the world can be interpreted as a system
of patterns, each existing because of collective experience within its context, combining
to form what we understand as events and spaces. To further develop his argument,
Alexander suggests that patterns are in fact relations between contexts, problems, and
solutions [Ale79, page 247]. His central claim is that architects, as creators of forms,
must be aware of these patterns and the way they interact. In so doing, architects will be
able to combine the patterns which “create life,” thereby creating spaces which increase
the quality of life of those inhabiting them.

In a move that should be of interest to linguists, Alexander furthermore proposes that
his patterns come in two forms, base patterns and patterns which connect patterns, and
that those patterns relate in finite combinatory systems to form pattern languages in a
generative and principled manner, thereby allowing for infinite and creative expressions
of form. The relationship is summed up in table 4.1 (excerpted from [Ale79, page 187]):

Alexander’s ideas of patterns and pattern languages were adopted by the software
engineering community in the early to mid 1990’s as an approach for tackling problems
of engineering large-scale software projects. The seminal work in this area continues to be

Design Patterns by Gamma, Helm, Johnson, and Vlissides [GHJV95], now affectionately
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Table 4.1: Christopher Alexander: natural languages vs. pattern languages

Natural Language Pattern Language

Words Patterns

Rules of grammar and Patterns which specify connections
meaning which give connections between patterns

Sentences Buildings and places

called the “Gang of Four,” which, giving direct credit to Alexander’s work, documents
twenty-three patterns for object-oriented software design. Gamma et al. take a program-
mer’s perspective, providing patterns for the creation, structure, and behaviour of classes

and objects in a object-oriented program.

A similarly very popular work, A System of Patterns by Buschmann, Meunier, Rohn-
ert, Sommerlad, and Stal [BMR"96] notes that patterns can come in flavours of differ-
ing granularity, proposing three levels of patterns: system-level architectural patterns,

L Patterns of different layers combine

component-level design patterns, and idioms.
patterns in what Buschmann et al. term, not pattern languages, but pattern systems.
Buschmann et al. replace the term language with system to stress the notion that, in

the field of software engineering, a collection of patterns may not completely describe the

problem domain.

By far the most significant point that patterns adherents will stress is that, in order

to be of any further use, patterns must be documented and collected into packages that

!'Buschmann et al.’s use of the term idiom is misleading at best. Buschmann et al. are not referring
to non-compositionality, but are using the term idiom to refer to translation rules from design languages
to specific programming languages.
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can be referenced for future design decisions. Buschmann et al. suggest documenting

patterns by four descriptions: a name, context, problem, and solution. For example:

Name Model-View-Controller
Context User interface design

Problem How do we manage the interaction of user actions, data display, and (possible)

data changes?

Solution Build three independent agents - a data model (Model), a presentation agent
that takes the model as a parameter (View), and an intermediary (Controller) that
both accepts input from the View to update the Model and updates the View if

the Model changes.

Numerous other patterns and pattern languages have been proposed, facilitated by
a consortium called the Hillside Group [Hil] which maintains the definitive web portal
for patterns and exists to facilitate the creation of a body of literature that documents
design solutions in the form of patterns and pattern languages. Already this body of
literature is large and encompasses all conceivable sorts of patterns, from pedagogical
patterns [Ped] to patterns for source code management [Dev| to patterns for avionics
control systems [Des]. There is even a pattern to describe design gone awry - the aptly
named “Big Ball of Mud” [FY97].

No matter what the problem domain, however, all patterns center around the maxim
that not only is it pointless to reinvent wheels, it is also costly. To avoid reinvention,
a pattern will attempt to capture the essence of a solution to a recurring problem. A
proper pattern will rely on the collective experience of previous solutions to provide a
design solution that is broadly applicable and customizable. Patterns should not be re-
strictive: there could be many valid problem solutions. Patterns simply seek to provide
a customizable framework which can function as the building blocks of a specific imple-

mentation. As an example, the Model-View-Controller pattern mentioned above specifies
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that for the context of customizable user interface design, a valid and useful solution in-
volves three independent agents: the data model (Model), the presentation (View), and
an intermediary (Controller) which accepts input from the View and updates the Model.

Used properly, patterns add many benefits to the software engineering process. By
utilizing the best recurring solutions to solve design decisions, software becomes easier
to interface with other components, hence making the software more reusable. By cat-
aloguing patterns and providing them with names, communication is increased across
possibly distributed development teams. By the same token, pattern-based software fa-
cilitates accessibility to new developers by increasing system predictability. A proper
pattern-influenced implementation should also be less error-prone because components
have regularized behaviour. Finally, patterns can be used to guide the implementation
of further abstractions such as higher-level programming languages and abstract class

libraries.

4.2 A role for patterns in grammar development

Grammar engineering and software engineering bear a striking resemblance. Each re-
quires the construction of a large interlocking system of components whose predictable
and correct function is critical; each requires the management of a large source code base;
and each involves development teams attempting to disseminate knowledge while work-
ing in parallel. Even the evolution of broad coverage grammars is remarkably similar to
software production. There is a test-edit-debug cycle, there are stages of requirements
gathering and evaluation, there is a release cycle, and the source code base must allow
new extensions while maintaining previous functionality.

This similarity, though, should be expected: grammar engineering and software en-
gineering appear to be very similar problems precisely because grammars are software

programs. More specifically, grammars are special kinds of programs which are compiled
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(or interpreted) into parsers and generators, for example, whose function is determined
by the grammar source code and the logic of the underlying formalism. The logics them-
selves are not simply frameworks within which to explain linguistic constructs, but are
actually first-class programming languages for which compilers and interpreters can be
written and which can be given a declarative semantics [PS84]. Fundamentally, grammar

engineering is just a special case of software engineering.

It would seem, then, that if design patterns have been successful in software engi-
neering, one should expect patterns also to inform grammar engineering. The question
is simply where the patterns are and how they can be leveraged. Unfortunately, while
there has been plenty of work on grammar profiling [OF98, ONK97], development envi-
ronments [Cop02, KS94a, CP96], and formalisms [Car92, Pen00, Ric04, KR90, KB82],
grammar implementations are generally evaluated more for linguistic insight than for
engineering quality.

One notable exception is the Grammar Matrix [BFO02, FB03] which provides a com-
mon platform for multilingual HPSG grammar development by contributing a basic type
signature which includes types for list manipulation, minimal recursion semantics (MRS)
[CFSP99], lexical and phrase structure rules, and semantic selection. This signature is
intended to be cross-linguistically applicable - any new grammar implementation, in any
language, should be able to simply make extensions to the Matrix signature. Accord-
ingly, the Matrix signature is quite broad (many kinds of inconsistent types) and quite
flat (not many subtypes), as introduced subtypes quickly cease to be cross-linguistically

applicable and become language specific.

However, while the Matrix undoubtedly facilitates rapid commencement of new gram-
mar development by using previous experience to develop a basic set of types and feature
structures, its relative flatness makes it unclear how the Matrix will facilitate better
engineered grammars and how Matrix-based grammars will avoid the engineering pit-

falls that have plagued broad-coverage grammars such as the ERG. HPSG grammars
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with explicitly-specified IS-A networks are not flat (the ERG has a maximum subtyping
depth of 21 types), but the Matrix provides no tools or suggestions for arranging sub-
types as signatures are extended - one would presume there are also ways of arranging
types which are cross-linguistically applicable. A library of types and features can be
cross-linguistically “modular” and yet still unable to inform efficient, well-documented,
easily adapted, and intuitively encapsulated (in a sense, well-written) grammars. De-
sign patterns have provided a forum for discussing what constitutes good object-oriented

design, and, we believe, can provide similar feedback to HPSG type signatures.

4.3 Mining the ERG for patterns

There are undoubtedly many patterns to be found in current grammar implementations.
Indeed, every design decision that covers multiple portions of a grammar could be con-
sidered a pattern. The standard HPSG reference [PS94] could even be considered a set of
high-level architectural patterns for grammar development using typed feature structures
- sketching patterns for subcategorization, agreement, raising, and other grammatical
principles. In this section we examine the English Resource Grammar in search of differ-
ent sorts of patterns, namely, recurring patterns of type relationships in broad-coverage
HPSG signatures. These patterns, which become apparent as HPSG grammars extend
the breadth and depth of their signatures, form a set of structural primitives which we be-
lieve can succinctly express many of the linguistic principles and generalizations encoded

in HPSG grammars.

4.3.1 Disjunctive types

The ERG encodes feature value disjunction by way of disjunctive types. This typed
encoding is used as an alternative to what has historically been considered more compu-

tationally expensive - requiring grammar development environments to handle disjunctive
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+ - na
bool na or_+ na or -

NS

luk

Figure 4.1: Disjunctive types in the ERG [uk filter

feature values in descriptions [F1i00]. Hence, for each feature that requires disjunction,
there is a type which subsumes the types which would otherwise appear in the disjunc-
tion, typically named using the names of non-disjunctive types and the connective ‘_or_ .
The disjunctive types are ordered by set inclusion - a disjunctive type A subsumes type
B iff B represents the disjunction of a subset of the types represented by A.

Types that appear with disjunctive subtypes are typically subtypes of the ERG type
*sort* - types with no features and which are intended to represent indecomposable
linguistic entities. A classic example is the *sort* subtype, luk (according to the ERG
source, named [uk in reference to Polish logician Jan Lukasiewicz), which implements a
three-valued boolean logic (figure 4.1). For basic values not applicable, plus, and minus,
luk has disjunctive types not applicable or plus (na_or_+), not applicable or minus (na_or_-
), and plus or minus (bool). Besides luk, disjunctive types also appear as subtypes of
pernum (person-number), aspect, mood, vform (verb form), zmod, conj (conjunction), cat
(category), and head (syntactic head).

We can thus catalogue the following pattern:
Name Disjunctive types
Context Underspecification

Problem How do we represent underspecified feature values?
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Solution Augment the type signature with disjunctive types representing underspecified

feature values. Order these disjunctive types according to set inclusion.

4.3.2 Conjunctive types

While disjunctive types serve the purpose of underspecification, HPSG analyses of phe-
nomena such as German case neutralization require that case features be overspecified -
both nominative and accusative, both dative and accusative, or perhaps both dative and
genitive. Similar problems arise in the coordination of unlike categories, in which many
HPSG analyses require overspecification of category head, tense, and person-number
feature values.

The ERG is consistent with proposals discussed recently by a large number of re-
searchers ([Sag03], [LP02], [Dan02], [LHCO01]) who have proposed augmenting HPSG
signatures with conjunctive types drawn from a Smyth powerlattice - if a feature value
needs to be both nominative and accusative at the same time, add a new type that is
a subtype of both nominative and accusative. In the ERG, conjunctive types are typi-
cally named by joining the type names with either the connective ‘+’ or the connective
‘_and_ (the latter usually being reserved for maximally specific conjunctive types). These
conjunctive types are ordered by set inclusion in a dual way to disjunctive types - a con-
junctive type A is subsumed by a conjunctive type B iff B represents a subset of the sort
values represented by A.

A classic example is tense (figure 4.2) which, for basic values past, present, and
future, has conjunctive types past+fut (past and future), pres+fut (present and future),
and pres+past (present and past). In addition to tense, conjunctive types also appear as
subtypes of luk, pernum, gender, aspect, mood, vform, voice, and head.

The conjunctive types pattern is thus recorded:

Name Conjunctive types
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past+fut pres+fut pres+past

X X

future past present
tense

Figure 4.2: Conjunctive types in the ERG tense filter

Context Neutralization / Coordination of unlikes

Problem How do we represent feature values when that value must serve as multiple

otherwise inconsistent values at one time?

Solution Augment the type signature with conjunctive types representing the neutral-
ization / coordination of feature values. Order these conjunctive types according

to set inclusion.

4.3.3 Strict variants

According to the logic of typed feature structures, linguistic objects must correspond
to maximally specific feature structures - any feature structure that can subsume other
feature structures is interpreted as an underspecification of some set of linguistic objects.
Such maximally specific feature structures are called sort resolved, and every feature value
of a sort resolved feature structure must be a leaf in the type hierarchy. Unfortunately,
augmenting a signature with conjunctive types adds subtypes to many previously max-
imally specific types, thereby rendering feature structures taking those types non-sort
resolved. This is clearly problematic, as the original intention of the types was that they
could appear as feature values in linguistic objects. To counter the problem, Levine et

al. [LHCO1] and Daniels [Dan02] have proposed a solution in which the type hierarchy
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past+fut pres+fut future pres+past present
future* present* strict_tense

\\ /S

Figure 4.3: Strict variant types in ERG tense types

contains two copies of each conceptual type - an impure type (which has conjunctive
subtypes), and a pure type (which is a subtype of the impure type and has no conjunc-
tive subtypes). The ERG uses a variant of this solution, terming pure types strict types,
indicating impure types with a “*’ suffix, and, to provide a common supertype for pure
types, usually introduces a pure disjunctive type that subsumes all the pure (but not the
impure!) types. Figure 4.3 is an example of strict variants as exhibited by tense types
— types past*, present*, and future* are impure types, past, present, and future are the

pure copies, and strict_tense is the pure disjunctive supertype. Strict variants also occur

in luk, pernum, gender, aspect, mood, vform, and head types.

Name Strict Variant
Context Pure - impure distinctions
Problem How do we deal with sort-resolvedness in the presence of conjunctive types?

Solution Posit an ordinary ordered type hierarchy A. Then, produce a copy B of this

hierarchy and create a subtyping link between each type in A and its copy in B.
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binary headed binary_nonheaded unary_headed unary_nonheaded

NS X/

binary nonheaded unary
phrase

Figure 4.4: Dimensional classification

4.3.4 Dimensional encoding

Many HPSG analyses classify types along multiple dimensions. As mentioned in §3.2.1,
these dimensions are often represented with boxes around the type names. The most
well-known of such analyses is Sag’s [Sag97] analysis of English relative clauses although
the boxed notation for dimensionality is also found in Ginzburg and Sag’s [GS01] analysis
of English interrogatives, Malouf’s [Mal00] work on verbal gerunds and mixed categories,
and even in Pollard and Sag’s first description of HPSG [PS87].

In all cases a most general type is introduced, subtyped by several “dimension types”,
after which a number of types are introduced as combinations of dimension types. Figure
4.4, for example, is a classification of phrases according to dimension types, binary, unary,
headed, and nonheaded. Though it is not explicitly stated, because there are no common
subtypes of binary and unary (and because of their names), we can guess that these are
values of an arity dimension. Similarly, headed and nonheaded are values of a headedness
dimension.

Use of dimensional classification is rampant in the ERG, especially within phrase,
word, and synsem types. Phrases are classified according to (among others) head position,
clausality, and argument type, in addition to headedness and arity. Word types use at
least nine dimensions including affixation and participation in coordination, and synsem

types are classified according to argument number, head type, and transitivity.



4.3. MINING THE ERG FOR PATTERNS 47

Name Dimensional encoding

Context Multidimensional classification

Problem How do we cross-classify types according to multiple dimensions?

Solution Posit a most general type P. Then, add subtypes to P for each dimension
type. Finally, each multi-dimensionally classified type inherits from its necessary

dimension types.
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Chapter 5

Exploiting design patterns via

parametric typing

One of the most significant advantages furnished by design patterns is the ability to guide
development of higher-level abstractions. In the realm of object-oriented programming
these abstractions generally take the form of abstract classes and libraries, and, in the
realm of typed feature structure grammars, we suggest these abstractions can take the
form of parametric typing. This chapter presents that suggestion by introducing para-
metric types for attribute-value logic and formalizing a number of extensions that make

them usable for typed feature structure grammar engineering.

In particular, §5.1 sketches previous work in parametric typing and formally extends
Penn’s [Pen00] parametric types to include parametric restrictions. §5.2 then provides an
alternative to induced parametric type hierarchies by motivating and formalizing several
useful constrained induction operations and proving certain conditions under which such
constrained induction operations can be properly computed. Previously, parametric types
had no formal methods for declaring appropriate parameter values and no usable methods
for determining which ground instances of parametric types are required for unification-

based processing.

49
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5.1 Parametric types for attribute-value logic

Parametric types are an adaptation of the more familiar parametric polymorphism found
in many programming languages, forms of which have appeared numerous times in the
feature structure literature. Smolka [Smo89] used parametric polymorphism in his typed
constraint resolution languages, Klein used parametric types to encode hierarchical struc-
tures in phonology [Kle91], Pollard [Pol90], and later Pollard and Sag [PS94] used para-
metric types for the description of HPSG lists, and Penn [Pen98, Pen00] has provided an
account of parametric types for the logic of typed feature structures. More recently, Pol-
lard [PHO3b, Pol04] has advocated Higher-Order Grammar, a formalism which obtains
parametric polymorphism via indexed products drawn from category theory.

This author is currently unaware of any typed feature structure grammars consistently
employing parametric typing, perhaps because their appearance in the literature has ei-
ther been informal or not general enough to facilitate their use in large-scale grammar
development. Penn’s account appears to hold the most promise, providing a way give pa-
rameters to types, a way to think of subtyping and parameter sharing among parametric
types, and a way of unfolding parametric signatures into non-parametric ones, but, as
we shall see, lacks a number formal devices necessary for their application to grammar
implementations.

The central problem with Penn’s account is its unrestricted parameters: each param-
eter of each parametric type is allowed to take any type as a parameter value. Unfortu-
nately, though these unrestricted parameters allow for a significant amount of conceptual
and mathematical simplicity, we intuitively know that some types will not make sense as
values for certain parameters. For a simple example, consider an agreement type with
parameters for person, number, and gender. Type masculine should be a valid value for
the gender parameter, but not for person or number, and type 3rd should be a valid value
for person, but not for number or gender.

One could simply put the onus on the grammar writer to use parameter values that
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make sense and, as [Pen00] described in §5.5, require grammar development environments
to infer which parameter values are necessary for computation. This approach, of course,
is extremely susceptible to human error and has no way of providing meaningful error re-
porting. A better approach, and the one taken here, is to enforce appropriate parameter
values at the level of type descriptions by introducing parametric restrictions. Analogous
to appropriateness specifications for typed feature structures, parametric restrictions as-
sign an appropriate type ¢ to each parameter p, thereby restricting the allowed values of
p to types subsumed by t.

The rest of this section is organized as follows. §5.1.1 introduces parametric type hi-
erarchies without restrictions, §5.1.2 describes how to induce non-parametric hierarchies
from parametric ones, §5.1.3 adds restrictions to parametric type hierarchies and consid-
ers the effects of restrictions on induced non-parametric hierarchies, §5.1.4 discusses a few
sensible conditions for well-behaved parametric type hierarchies, §5.1.5 shows that, un-
der the right conditions, restricted parametric type hierarchies induce meet-semilattices,
§5.1.6 considers the conditions under which restricted parametric type hierarchies in-
duce finite non-parametric ones, and, finally, §5.1.7 considers parametric appropriateness
specifications for restricted parametric type hierarchies. §5.1.1, §5.1.2, and §5.1.7 re-
main unchanged from [Pen00]; the remaining sections, though making reference to and

adapting [Pen00] at various points, can be considered novel contributions.

5.1.1 Parametric type hierarchies

Parametric types are not types in the sense we understand types in IS-A networks.
Instead, parametric types are functions that provide reference to a set of types (their
ground instances) by way of a set of argument types (their parameters). For example, in
figure 5.1, list is a parametric type whose ground instances include list(bot), list(sign),
and list(list(word)). In a similar fashion, parametric type hierarchies are not simple

inheritance hierarchies, but are sets of functions ordered over a subsumption relation,
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word phrase e.list ne_list(X)
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_ TAIL: list(X)
sign list(

L
Figure 5.1: Parametric type hierarchy

Cp, augmented with specifications stipulating which and how many parameters each
parametric type takes. To compute with parametric types, Cp is interpreted as a relation
between image sets, thus providing a method for computing meets and joins between
ground instances of parametric types.

We will refer to all such functions from sets of parameters to sets of ground instances
as parametric types. 0-ary functions will be alternatively labelled simple types, with the
understanding that simple types are really parametric types whose image is a singleton
set. The terms type and ground instance type will be reserved for types appearing in
the image of some parametric type. We will reserve the term parameter to indicate a
specific argument of a parametric type, and the term parameter value for the type a
parameter takes in a ground instance. Following [Pen00], we will assume that parametric
type hierarchies are finite bounded complete partial orders and we will also assume the
presence of a most general simple type, L.

In the parametrically typed lists of figure 5.1, for example, list and ne_list are unary
functions from types to types, and L, sign, word, phrase, and e_list are 0-ary functions

(simple types).

Definition 5.1.1. A parametric (type) hierarchy is a finite BCPO, (P,Cp), plus an
arity function, arity : P — Nat U {0}, and a partial argument assignment function,

ap : P x P x Nat — Nat U {0}, in which:

e P consists of (simple and) parametric types, and includes the most general type,
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L, which is simple, i.e., arity(L) =0,

e For p,q € P, ap(p, q,1), written al(i), is defined iff p Ep ¢ and 1 <7 < arity(p),

e 0 < al(i) < arity(q), when it exists,
e if af(i) # 0 and al(i) = af(j), then i = j,

The argument assignment function, a, tells us which parameters are shared among
parametric types. The effects of shared parameters will be made clear in the next sections,
but for now it suffices to note that in figure 5.1, a2%/**(1) = 1 and a{:%**(1) = 0, indicating

that X is a parameter of both list and ne_list, but not a parameter of e_list.

5.1.2 Induced non-parametric hierarchies

As noted previously, Cp has two interpretations. In one sense Cp is a relationship
between functions, but we can just as easily view Cp as a relationship between the images
of those functions. This duality makes it possible to induce non-parametric hierarchies
from parametric ones by ordering the images such that they preserve the subtyping

relationships of their domains.

Definition 5.1.2. Given a parametric type hierarchy, (P, Cp, arity, a), the unrestricted

induced (type) hierarchy, (U(P),Cy), is defined such that:
e U(P) =U,<, Un, where the sequence {Up,},«. is defined such that:

— Uy ={p|p € P,arity(p) =0},

— Unt1 = Uy U{p(t1,- .. s tariy) | P € Pyti € Uy, 1 <0 < arity(p)}, and

b p(tla < 7tarity(p)) Ly Q(ula SR 7uarity(q)) lﬁp Cpyq, and: for all

1<i<arity(p), either af(i) =0 or t; Ep ug).-
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list(word) i list(nedist(L)). . .

Figure 5.2: Induced non-parametric type hierarchy

In an induced hierarchy, ground instance types are formed by inductively “filling”
parameter slots with other ground instances. Subtyping in the induced hierarchy is
then defined such that the ground instances obey the subtyping relationships of their
parameter values. As a visual example, figure 5.2 is a portion of the corresponding

non-parametric unrestricted hierarchy induced by figure 5.1.

Because parametric types can take ground instances of themselves (or of their super-
types) as parameters, induction could proceed to an unbounded depth, even to include
types with infinitely embedded parameters. The meanings of such types are rather un-
clear. For this reason U(P) only considers finite sequences {Up, }n<w, thereby excluding

all would-be types with infinitely embedded parameters.

Throughout the rest of the chapter we will distinguish such types by parametric depth.

Definition 5.1.3. Given a parametric type hierarchy, (P, Cp, arity, ap), the parametric

depth of a type g = p(ti,...,t,) € U(P), m(g), is defined such that:

0 if n=0,
m(9) =
1+ maxlSiSnﬂ(ti) if n>0.
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5.1.3 Parametric restrictions

Parametric restrictions can be viewed as appropriateness conditions on parameters, de-
noting the subset of U(P) which contains allowable parameter values. We formalize

parametric restrictions by associating a ground instance type with each parameter:

Definition 5.1.4. Given a parametric type hierarchy, (P, Cp,arity,a), a parametric

restriction function Restrict : P x Nat — U(P) is a function such that:

e for p € P, Restrict(p,i) is defined iff 1 < i < arity(p), and

e (parametric right monotonicity) for p,q € P, if af(i) # 0, then Restrict(p,i) Cy

Restrict(q, al(i))-
Restrict(p, 1) is called the i* parametric restriction of p.

Definition 5.1.5. A restricted parametric type hierarchy, (P, Cp, arity, a, Restrict) is
a parametric type hierarchy, (P,Cp, arity,a), plus a parametric restriction function,

Restrict.

Notice that parametric restrictions allow two parametric types p and ¢ to enforce
different restrictions r; and r, on a shared parameter X. Parametric right monotonicity
states that, in this case, if p Cp ¢, then r; Ty r9. In our running example, figure 5.3 is
a parametric type hierarchy in which Restrict(list,1) = sign and Restrict(ne_list,1) =
Stgn.

Restricted parametric type hierarchies induce non-parametric hierarchies in the same
way unrestricted hierarchies do, but with an important difference — restricted induced
non-parametric hierarchies include only the ground instances whose parameter values are

subtypes of their corresponding parameter restrictions.

Definition 5.1.6. Given a restricted parametric type hierarchy, (P, Cp, arity, a, Restrict),

the restricted induced (type) hierarchy, I(P) is defined such that:
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word phrase e.list ne_list(sign:X)
\ / \ HEAD:X
_ TAIL: list(X)
sign list (sign:X)

N\

Figure 5.3: Parametric type hierarchy with restrictions

ne_list(word) ne_list(phrase)

ne _list(sign) e list

word  phrase list(word) list(phrase)
S1g1 list (sign

\J_/

Figure 5.4: A restricted induced non-parametric type hierarchy

e I(P) =, In, where the sequence {I,},«, is defined such that:

— Iy ={p|pe€ P, arity(p) = 0},

— Ipy1 = In U {p(tla---atarity(p)) | p € P, t; € In,RBStT'?;Ct(p, Z) Ly t;,1 <1<

arity(p) }, and
e T =Ly |np)
Proposition 5.1.1. For any parametric type hierarchy P, I(P) C U(P).

Proof. Restrict only eliminates types from U(P). O

Figure 5.4 is the restricted induced hierarchy of figure 5.3. Because the restriction
of both list and ne_list’s parameter was sign, there are only lists of signs, words, and

phrases.
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Figure 5.5: A parametric type hierarchy for which I(P) is not a partial order.

5.1.4 Conditions on restricted parametric type hierarchies

There are a few outstanding issues that can cause parametric type hierarchies to behave
strangely. The first involves the restriction function. Because Restrict must be defined
before the restricted non-parametric hierarchy it induces, Restrict must be a function from
P to U(P), not from P to I(P), and it is therefore quite possible to assign a restriction
g(a) to p where ¢(a) does not obey the parametric restrictions on ¢. By definition, the
construction I(P) allows p to take only those parameters which obey the restrictions on
q, but, for the sake of conceptual clarity, we simply avoid this situation by deliberately

forcing restrictions to those types which will appear in I(P).

Definition 5.1.7. A parametric type hierarchy, (P, Cp, arity, a, Restrict), is appropri-

ately restricted iff for all p, i such that Restrict(p,i) |, Restrict(p,i) € I(P).

There are also ways to propagate parameters which prohibit I(P) from being a par-
tial order. For a simple example, consider the parametric type hierarchy in figure 5.5
(excerpted from [Pen00]). In this case, p(b) C; ¢ and ¢ C; r(c), but p(b) Zr r(c), and
so transitivity is violated. The problem is that different paths from p to r disagree on
whether the parameter should be propagated. To solve this problem, a notion of semi-
coherence is required (adapted from [Pen00]) to force all subtyping paths to agree on

how parameters are propagated.

Definition 5.1.8. (P, Cp, arity, ap, Restrict) is semi-coherent iff, for all p,q € P such
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that p Cp ¢, all 1 <17 < arity(p), 1 < 5 < arity(q):
. a2(i) =4,

e cither af(i) = 0 or for every chain p = py Cp po Cp ... Ep py = ¢, al(i) =

abr (aﬁz:;(. ..ab? (7)...)), and

e if plip g |, then for all i and j for which there is a £ > 1 such that ab-7(i) =
ab-'P4(j) = k, the set, {s[pUp g Cp s and (a}(i) = 0 or a}(j) = 0)} is empty or

has a least element (with respect to Cp).

Proposition 5.1.2. If (P, Cp, arity, ap, Restrict) is semi-coherent, then (I(P),C;) is a

partial order.

Proof. ([Pen00]) Transitivity can be proven by induction on the greatest parametric
depth, k, of three types g1 = p(t1,...,tn), go = q(u1,...,un), and g3 = 7(vq,...,v;) in
I(P) such that g; Ty go and go Ty g3. It must then be that p Cp g and ¢ Cp 7.

If £k = 0, then p, ¢, and r are simple, and transitivity follows from the transitivity
of Cp. Suppose k£ > 0 and transitivity holds for £k — 1. Then, we know that, for all
1 <4 < m, either al(i) = 0 or not. If a(i) = 0, then if a (i) # 0, the chain pCp ¢ Cp 7
would violate semi-coherence, so ay(i) = 0. If af(i) # 0, then either aj(af(i)) = 0 or
not. If aj(al(i)) = 0, then aj(i) = 0 or the chain p Cp ¢ Ep r would again violate
semi-coherence. If aj(al(i)) # 0, then aj(ai(i)) = aj (i) by semi-coherence, and hence
ti C1 ugg and ugay Er Vag (ad (i) = Vag(i)- The greatest parametric depth of ¢;, u,g;), and
Vgr (i) 1S at most k — 1, and thus, by induction, t; C; Vas (i) - This applies to all 1 < < n,
so g1 L1 gs.

Reflexivity and anti-symmetry follow from a similar inductive proof. O

5.1.5 Induced semi-lattices and parametric well-formedness

Fortunately, a nice result arises if P is semi-coherent and appropriately restricted, namely,

that the induced non-parametric hierarchy I(P) is a meet semi-lattice.
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Theorem 5.1. If (P, Cp, arity, ap, Restrict) is semi-coherent then (I(P),Cy) is a meet

semilattice. In particular, given g1 = p(t1,...tn), g2 = q(u1, ... uy) € I(P), g1 U g2 |
e plpql, and

e there exists an s Jp p Up q such that for all i,j and all k > 0, if a}"7(i) =

ab-79(j) = k, then t; Up u; Ur Restrict(s, k) |, or aj(i) =0 or a;(j) = 0.

and, when it exists, g1 Ur go = r(v1,...v;), where r is the least such s as described above,

and for all 1 < h <l:

( t; Ur uj Ur Restrict(r,h) if there exist i,j such that aj (i) = aj(j) = h
) t; Ur Restrict(r, h) if such an 7, but no such j
"o u; Ur Restrict(r, h) if such a j, but no such i
| Restrict(r, h) if no such 7 or j

Proof. (Adapted from [Pen00])

(=): By contraposition using types g1 = p(t1,...,t,) and go = q(u1, ..., Up). If
pUp g 1, then by the bounded completeness of P, {g1,¢2}* = {p,q}* = 0. If pUp q |,
we use induction on the greatest parametric depth d of types g1, g2, and g3 = (p Up
q)(Restrict(p Up q,1), ..., Restrict(p Up q, arity(p Up q))).

First, notice that if p Lip ¢ |, then {g1, g2}* = 0 iff {g1,92,93}* = 0. Now, if d = 0,
then g; LI go = g3, which is the least ground instance of p Llp q. Suppose d > 0 and
for all s Jp p Up g, there exist 4, j and a k > 0 such that a)™(i) = ab"9(j) = k
and ¢; Uy u; U Restrict(p Up g,k) 1 and a;(i) # 0 and aj(j) # 0. Now consider some
g+ = s(vi,...,v) such that ¢ T; gs. So p Cp s. Either ¢ C, s or not. If not,
then go Z; g4 and g4 & {g1,92}*. Consider the 7,j, and k of s as specified above.
t;Uru;Us Restrict(pUpg, k) T, so, by induction, {¢;, u;, Restrict(pUpgq, k)}* = 0. p Cp pUp
qCp s and ¢ Ep pUp g Ep s are chains, so, by semi-coherence, a3 (i) = a3, (a5"(i)) =

ay (k) = a5, (aB"9(5)) = a3(j) = h # 0. Therefore, a;

p pUq pUgq

(k) = h, and by parametric



60 CHAPTER 5. EXPLOITING DESIGN PATTERNS VIA PARAMETRIC TYPING

right monotonicity, Restrict(p Up q,k) Cr vn. Also, since g1 Er g4 and a;(7) = h # 0,
ti C; vp. Therefore, since {t;, u;, Restrict(p Up ¢, k)}* = 0, u; Z; Vas(j) = Un, and since
ag(j) # 0, g Zr g4. Thus, in either case, {g1, g2, 93}" = ) and so {g1, go}" = 0.

(«<): It is sufficient to show that when such an s exists, there is a least s, r. Given
that claim, the choice of vy, ..., v; above is clearly the unique least choice of parameters.

Given some not necessarily least s, consider all triples (7, j, k) for which aﬁuq(i) =
ab(j) = k > 0, t;Uru; Uz Restrict(pUpg, k) T, and either a;(i) = 0 or a;(j) = 0. If there
are no such (4, 5, k) then ¢;Liu;U Restrict(pUpg, k) | whenever a5™(i) = a?"%(j) = k > 0
and so 7 = pUp q. Otherwise, for each such triple, let: Ry ;x = {r |pUpq Cp 1, (a5(i) =
0 or a(j) = 0)}

Clearly, for all such triples, s € Ry; j, so by semi-coherence, all Ry; ;) have least
elements, 7(; j ry. Furthermore, s € {r(i,jyk)}?i,j,k)’ so, by the bounded completeness of P,
there exists an r = [_](Z.,j,@ (k- Lhere are chains p Cp plUp q Cp 74k Ep r and
¢qCppUpqCprujn Cpr, soif ay"" () = 0, then by semi-coherence, ay (i) = 0;
and likewise for g. Thus r satisfies the same conditions as s, and, by its construction, is

clearly least. O

Definition 5.1.9. Parametric type hierarchy (P, Cp, arity, a, Restrict) is parametrically

well-formed iff it is semi-coherent and appropriately restricted.

From now on we will assume parametric type hierarchies are parametrically well-

formed.

5.1.6 Finite induced hierarchies

Assuming the existence of a most general non-parametric type L, finite unrestricted
parametric type hierarchies with at least one parametric type always generate infinite
induced hierarchies (figure 5.6). Restrictions, by disallowing certain parameter values,

can disallow infinite parametric depths and therefore generate finite induced hierarchies



5.1. PARAMETRIC TYPES FOR ATTRIBUTE-VALUE LOGIC 61

a(a(a(...)))

a(X)
induces

L

(

L

af.
}

}
a(a(L))
}
a(Ll)

}

Figure 5.6: A small unrestricted type hierarchy and its non-finite induced hierarchy

b(list(a)) e list ne_list(L:X)
N
L

Figure 5.7: A restricted parametric type hierarchy for which I(P) is not finite

as in figure 5.4, but, even in the presence of restrictions, infinite induced hierarchies are
possible. Consider the parametric type hierarchy in figure 5.7. Restrict(list,1) = L,
and so for each subtype p of L in I(P), I(P) must include a ground instance list(p).
These ground instances include, among others, list(L), list(list(L)), list(list(list(L))),
and list(list(list(list(L)))). In fact, if I(P) had not explicitly imposed a parametric
depth limit w, I(P) would have included both an infinite number of types and types with
infinite parametric depth. Parametric type b is also problematic. Ground instances of b
include b(list(a)), b(list(b(list(a)))), b(list(b(list(b(list(a)))))), and so on — their number
and parametric depth is limited only by the imposed parametric depth w.

This section investigates the necessary and sufficient conditions for the finiteness of
induced hierarchies. We will show that finiteness can be guaranteed by the absence of
parametric restrictions Restrict(p,i) = r where r subsumes the least ground instance

of p or where 7 or any of its subtypes contains a (possibly embedded) parameter value
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which subsumes the least ground instance of p. The proofs of such conditions adapt the
subtype-appropriateness graphs used in [Pen00] to prove finiteness conditions on typed
feature structure signatures. Accordingly, many of the proofs and definitions included in

this section closely resemble those in [Pen00, §4.2].

Definition 5.1.10. Given a parametric type hierarchy, (P,Cp, arity, a, Restrict), the

least ground instance of a type p € P, min : P — I(P), is defined such that:

. p if arity(p) =0,
min(p) =
p(Restrict(p,1),. .., Restrict(p, arity(p))) if arity(p) > 0.

Definition 5.1.11. Given a parametric type hierarchy (P, Cp, arity, a, Restrict), let

MIN (P) = {min(p) | p € P}, the set of minimal ground instances of P.

Definition 5.1.12. Given a parametric type hierarchy (P, Cp, arity, a, Restrict), its par-

tial parameter path value function is a function ¢ : Nat™ x I(P) — I(P) such that for

g=p(ti ..., tn):
* d(e,9) =g, and
o §(im,g) = 6(m,t;).

Definition 5.1.13. Given ground instance type g, let V*(g) = {p| 3, (7, g) = p}, the

set of parameter path values of g.

Parameter path values are designed to provide reference to embedded parameter
values. As an example, V*(p(t(a), u(b(c))) = {p(t(a), u(b(c))), t(a), u(b(c)), b(c), a,c}.
Notice that, in all cases, if P is appropriately restricted, V*(g) C I(P). Furthermore,

due to the construction of I(P), V*(g) is always finite.

Definition 5.1.14. Given a parametric type hierarchy (P, Cp, arity, a, Restrict), the
subtype-restriction graph of P, SR(P), is a labelled directed graph (U, vy V" (P);

{{p1, pa, 1) | Imd(im,p1) = pa} U {{p1,p2,S) | p1 C1 p2}), whose vertices are the parameter
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path values of minimal ground instances of P and whose edges consist of edges with
integer labels that map from types to parameter path values plus edges with label S that
close SR(P) under ;.

Given p € SR(P), let SR(p) be the subgraph of SR(P) consisting of all and only those

nodes p', for which there is a path from p to p’ in SR(P).

We can now characterize the conditions on a finite filter of types in I(P) based solely

on properties observable from P and Restrict.

Definition 5.1.15. Given a parametric type hierarchy (P, Cp, arity, a, Restrict), let A :
P — Pow(I(P)) be such that:

A(p) ={a € I(P) | min(p) C; a}
Definition 5.1.16. Parametric type, p is finite iff |A(p)| is finite.

Definition 5.1.17. Given SR(P) = (V, E), p € V is SR-recursive iff there is a path

from p to p in SR(P).
Definition 5.1.18. Parametric type p, is provably finite iff SR(min(p)) is acyclic.

Definition 5.1.19. Given a parametric type hierarchy (P, Cp, arity, a, Restrict), let 0 :

P* x Nat* — I(P) be be a partial function such that 0(¢; ...tx, 41 ...7) = a1 where
a; = ty(Restrict(ti,1),. .., Restrict(t1,i1 — 1), as, .. .),

ay = ty(Restrict(ta, 1), ..., Restrict(ta,ia — 1), a3, .. .),

.y

ag—1 = tg—1(Restrict(ty—1,1),..., Restrict(tg—1,ik—1 — 1), ag,...), and

ar = tg(Restrict(ty, 1), ..., Restrict(ty, arity(t))

Lemma 5.1. If g = p(u1, - . -, Yarity(p)) 5 SR-recursive, then p is not finite.
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Proof. Choose a cycle of length n from g to itself in SR(P) : g = g2 3 ... 901 3 g,
where the x; are either the subtype label S, or integral parameter labels. Let j = j; ... j
be the sequence of indices for which x; is a parameter label and let a = a;...a; be
the sequence of parent nodes for which x; is a parameter label. k£ > 1 because C;
is anti-symmetric. Let ¢ : P* x Nat* — Pow(I(P)) be a partial function such that
¥(¢,8) = 0(ao ¢,jod)iff len(¢p) = len(d). Then for all i > 1, ¢(a, j) € A(p) and p is

not finite. O
Lemma 5.2. If P is finite and p is not provably finite, then p is not finite.

Proof. Without loss of generality, let us assume that arity(p) = 1. The proof proceeds
by induction on the length A\ of the shortest path from min(p) to an SR-recursive type
g. Such a path must exist because p is not provably finite and P is finite. If A = 0, then
min(p) is SR-recursive and p is not finite. If A > 1 and min(p) - g is on the shortest
path, then ¢ is a parameter path value of min(p) and for each subtype g¢¢ of g, there
exists ¢* such that p(t') € A(p) and ¢° € V*(¢*) and p is therefore not finite. If A > 1 and

min(p) < g, then for each subtype ¢’ of g, g' € A(p) and p is not finite. O
Lemma 5.3. If P s finite and p is provably finite, then p is finite.

Proof. Suppose SR(P) = (G,V), p is provably finite and p is not finite. Without loss
of generality, assume also that for all ¢ € P, arity(¢g) = 1. Choose any infinite set
S C A(p). It must be the case that for any n > 0, there exists at € S and r € P
such that V*(t) contains n ground instances of r (if not, then there is an N > 0 which
bounds the maximum parametric depth of any type in S and hence because P is finite
then S must be finite). Let g1, gs, ..., g, be the set of n ground instances of 7, ordered by
decreasing parametric depth. Consider ¢g; and g,. Both are ground instances of r, and
because arity(p) = 1, g» must be a parameter path value of g;. Therefore, there must be
some parameter path value x1 of min(r) such that z; C; g and hence a path in SR(P)

from min(r) to ;. Because g» is an embedded parameter of g, this path must contain
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the edge min(r) - Restrict(r,1) and so min(r) # z1 or SR(P) is cyclic. Consider g,
and g3. Because g3 is a parameter path value of g5, there must be some parameter path
value x5 of z; such that o C; g3. Again, 21 # x5 or SR(P) is cyclic. Furthermore, since
there is a path in SR(P) from min(r) to z1 to zo, min(r) # x1 # x5 or SR(P) is cyclic.
This holds for all n > 0, and hence z; # x5 # ... # z, for all n > 0 and SR(P) is not

finite, a contradiction. O

Theorem 5.2. If (P,Cp, arity, a, Restrict) is finite, then I(P) is finite iff SR(P) is

acyclic.

Proof. Notice that SR(P) = SR(min(L)) and I(P) = A(L). The theorem follows by
lemmas 5.2 and 5.3. U

If I(P) is finite, we classify (P, Cp, arity, a, Restrict) as finitely parametrically well-

formed.

Definition 5.1.20. Parametric type hierarchy (P, Cp, arity, a, Restrict) is finitely para-

metrically well-formed iff it is parametrically well-formed and I(P) is finite.

5.1.7 Parametric appropriateness

Currently we have only considered parametric type hierarchies, but, to make use of
parametric type hierarchies in attributed type signatures, we need methods of introducing
appropriateness specifications to parametric types. As noted by [Pen00], appropriateness
forms an integral part of a parametric type signature because the scope of the parameter
variables can be extended to include it. [Pen00] defines appropriateness for unrestricted
parametric type hierarchies, and, because the induced hierarchy of a restricted parametric
type hierarchy is a subset of the unrestricted case, we can simply apply the definitions

to the restricted case.
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Definition 5.1.21. Given a parametric type, p, for all i > 0, the i"* parametric projection

is a partial function, m; : I(P) — I(P) such that for any g = p(t1, ... tarty(p)) With

arity(p) > 1, mi(g) = t;.

Definition 5.1.22. Given a parametric type hierarchy (P, Cp, arity, a, Restrict), the

ground instance function, T : P — Pow(I(P)) is defined such that:

T(p) ={pQt1,-- - s tarity@) | P(t1s - - - Larity(w)) € I(P)}
Definition 5.1.23. A function f : I(P) — I(P) is parametrically determined iff it is:
e a constant function,
e a parametric projection function, or

e a function for which there exist a p € P and functions fi, ..., farity(p) such that for

all g € I(P), f(g) = p(fi1(9),---, farity)(9)) and fi1, ..., farity(p) are parametrically

determined.

Definition 5.1.24. A parametric (type) signature is a parametrically well-formed para-
metric type hierarchy, (P, Cp, arity, ap, Restrict), along with a set of features, Featp, and
a partial (parametric) appropriateness specification, Appropp : Featp x P — (I(P) —

I(P)), such that:

e (Parametric Determination) If Appropp(F,p) |, then Appropp(F,p) | is a paramet-

rically determined total function from 7'(p) to I(P),

e (Feature Introduction) For every feature F € Featp, there is a most general para-

metric type Intro(F) € P such that Appropp(F, Intro(F)) |, and

e (Parametric Upward Closure / Parametric Right Monotonicity) For any p,q € P,
any F € Featp, any g1 € T(p), and any g» € T'(p), if Appropp(F,p) | and p Cp g,

then:
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— Appropp(F,q) J, and

— if g1 C1 go, then Appropp(F, p)(91) T Appropp(F,p)(g2).

The parametric appropriateness function, Approp,, maps a feature and parametric
type p to a function that defines appropriateness conditions on 7'(p). Parametric deter-
mination defines what sort of sharing exists between parameters and appropriateness.
The first kind of parametric determination states that parameters need not be shared
with any appropriate value restriction, such as ne_list(sign) intro hd:index. The
second states that parameters with unspecified values can be shared with an appropriate
value restriction, such as ne_1ist(X) intro hd:X. The third kind of parametric deter-
mination states that a parameter can be shared with a parameter of an appropriate value

restriction, such as ne_1ist(X) intro tl:1list(X).

Definition 5.1.25. The induced appropriateness function, Appropp : Featp X I(P) —
I(P) is a partial function defined such that, for every feature F € Featp, every ground
instance g = p(t1, - - - tariy(p)) € 1(P), Approppy(F,g) | iff Appropp(F,p) |, and, when

defined, AppropI(P) (F,g) = Appropp(F,p)(g).

Proposition 5.1.3. If (P, Cp, arity, ap, Restrict) is a parametric type signature, then

Approp (P is an appropriateness specification.

5.2 Constrained parametric unfolding

Restrictions define the domain of a parametric type, but there are many cases in which the
image still contains types which should not exist in the grammar. Consider, for example,
Sag’s [Sag97] classification of English relative clauses (figure 3.2). Sag classifies phrases
by two dimension types, CLAUSALITY and HEADEDNESS, furnishing CLAUSALITY with
immediate subtypes clause and non-clause, and HEADEDNESS with immediate subtypes

hd-ph (headed phrase) and non-hd-ph (non-headed phrase). All other phrasal types are
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classified by clausality and headedness by subtyping either clause or non-clause and either

hd-ph or non-hd-ph.

It is easy to see that Sag is parameterizing phrases by two Boolean parameters: a
parameter for clausality, and a parameter for headedness. It therefore seems reason-
able to re-analyze Sag’s classification with a parametric type phrase(bool,bool) whose
first parameter (referring to clausality) is restricted to some Boolean type bool, and
whose second parameter (referring to headedness) is also restricted to bool. Ground
instances of phrase would include phrase(bool,bool) (phrase), phrase(plus,bool) (clause),
phrase(minus,bool) (non-clause), phrase(bool,plus) (hd-ph), and phrase(bool,minus), (non-
hd-ph). There would also be also four “cross-classified” ground instances of phrase,
phrase(plus,plus) (headed clauses), phrase(plus,minus) (non-headed clauses), phrase(minus,

plus) (headed non-clauses), and phrase(minus,minus), (non-headed non-clauses).

However, referring again to Sag’s classification, we find Sag’s analysis posits no joins
between classifiers non-clause and hd-ph, non-clause and non-hd-ph, or clause and non-
hd-ph — the analysis contains no non-headed clauses, headed non-clauses, or non-headed
non-clauses. The absence of such joins is of course important to the analysis, as the
absence of joins is critical for eliminating ungrammatical constructions. Should we wish
to re-analyze Sag’s phrases with a parametric type, we cannot posit ground instances

phrase(plus,minus), phrase(minus,plus), and phrase(minus,minus).

Unfortunately, the current formalization of parametric types insists all joins be-
tween appropriate parameter values must necessarily exist in I(P) — there are no for-
mal method for eliminating types such as phrase(plus,minus), phrase(minus,plus), and
phrase(minus,minus). Fortunately, such types may be eliminated via closure specifica-
tions. Effectively, closure specifications constrain the induction of I(P) by determining
that a certain set of ground instances (a generator set) must exist in the induced hierarchy

and by closing this set of ground instances under some set of conditions on I(P).

The closure specifications formalized in this section extend the notion of sub-algebras
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and generator sets mentioned in [Pen00] by associating generator sets and structural

closures with each parametric type.

Definition 5.2.1. The join closure of p generated by G C T'(p), J(p,G) C T(p), is the

smallest subset of T'(p) such that:
e GC J(p,G), and
o if g € J(p,G), g2 € J(p, G), 11 g2 |, and g1 Urgo € T(p), then g1 Urgs € J(p, G).

J(p,G) is only defined if G C T(p) and contains the minimal set of ground in-
stances of T'(p) required so that all joins between elements of G in T'(p) appear in
J(p,G). We can similarly enforce closure under meets, supertypes, subtypes, enforce

meet-semilatticehood, or perform no structural closures.

Definition 5.2.2. The meet closure of p generated by G C T'(p), M (p,G) C T(p), is the

smallest subset of T'(p) such that:
e GC M(p,G), and

o if g € M(p,G), g0 € M(p,G), 91 M1 g2 |, and g1 My g2 € T(p), then g, My g2 €
M(p, Q).

Definition 5.2.3. The supertype (subtype) closure of p generated by G C T'(p), S(p, G) C

T(p), is the smallest subset of T'(p) such that:
e GCS(pG), and
o if g1 € S(p,G), 92 E1 91 (91 E1 92), and g5 € T(p), then g € S(p, G).

Definition 5.2.4. The Dedekind-MacNeille closure of p generated by G C T'(p), DM (p, G) C

T(p), is the smallest subset of T'(p) such that:

e GC DM(p,@G), and
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e DM(p,G) is a meet-semilattice.

Definition 5.2.5. The trivial closure of p generated by G C T'(p), TC(p,G) C T(p), is
G.

Definition 5.2.6. The unconstrained closure of p is T'(p).

Given a set of closure operations and a number of generator sets, we can create para-
metric signature closures by associating a closure operation (and, if necessary, a generator
set) with each parametric type. Note that because our closures restrict themselves to
the set of ground instances T'(p) of a single parametric type p, the parametric signature
closures we compute will simply be the union of individual type closures. Hence it is
possible to encounter signatures in which there are parametric types p, ¢, and r such
that p(a) U ¢(a) = r(a), p(a) € J(p,G,), q(a) € J(q,Gy), but r(a) & J(r,G,) and so,
even though p, ¢, and r all underwent join closure, p(a) Us ¢(a) 1 does not exist in the
closed induced signature. One could imagine an alternative formalization in which clo-
sures are associated with sets of parametric types, or, perhaps, sets of ground instances,
but we have found the current formalization is sufficient for parameterizing the English

Resource Grammar (§7).

Definition 5.2.7. Given a parametric type hierarchy (P, Cp, arity, a, Restrict), a para-
metric closure specification is a function Close : P — ClosureSpec such that either
Close(p) = (A,G) where G C T'(p) and A € { trivial, dedekind-macneille, supertype,

subtype, join, meet } or Close(p) = unconstrained.

The combination of a closure specification Close and a parametric type hierarchy
(P, Cp, arity, a, Restrict) allows the closure of an induced type hierarchy to be computed
from the closure of each of its parametric types (figure 5.8). The only concern is, because
ground instances of parametric types are parameter values, care must be taken to ensure

each parametric type is closed before any other parametric type in which its ground



5.2. CONSTRAINED PARAMETRIC UNFOLDING 71

1. Counstruct PSR(P), the parametric subtype-restriction graph of P.
2. Let V = inverse of topologically sorted vertices of PSR(P).
3. Fori=1to |V|do

e compute T7(V (7)) = the closure of V(i)

4. Let C(P) = Up<icv)) T1(V (2)) closed under ;.

5. Return C(P).

Figure 5.8: Inducing I(P) with closure specifications

instances appear as parameter path values. Luckily, a variant of the subtype-restriction

graph allows us to easily calculate the proper closure order.

Definition 5.2.8. Given ground instance type g, let V™(g9) = V*(g) — g, the set of

embedded parameter path values of g.

Definition 5.2.9. Given a parametric type hierarchy (P, Cp, arity, a, Restrict), the para-
metric subtype-restriction graph of P, PSR(P), is a labelled directed graph (P, {(t1, t2,P) |
ta(Ut, - - - Yarity(ts)) € VT (min(ty))} U {(t1,t2,S) | t1 Cp t2}), whose vertices are the para-
metric types of P and whose edges consist of edges with integer labels that map from
parametric types to parametric types of restrictions plus edges with label S that close

PSR(P) under Cp.

Proposition 5.2.1. If P is finite and PSR(P) is acyclic, then the closure algorithm
ensures every parametric type ¢ is closed before any parametric type p allowing a ground

instance of ¢ as a parameter path value.

Proof. The proposition holds if for all p, ¢ € P where p allows ground instances of ¢ as

a parameter path value, PSR(P) contains a path from p to ¢. Now, if p allows ground
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q&q(r(p)))) r(q(r(p)))
N

1

Figure 5.9: Co-referent restrictions

phrase(plus,plus)

/" \

phrase(minus,bool) phrase(plus,bool) phrase(bool ,plus) phrase(bool,minus)

N\

phrase(bool ,bool)

Figure 5.10: A constrained parametric unfolding of parametric type phrase

instances of ¢ as a parameter path value, then either a ground instance of ¢ is a parameter
path value of min(p), or a ground instance of ¢ is a subtype of a parameter path value
7(t1, - - -, tarity(ry) of min(p). In the first case there must be an edge p % ¢in PSR(P). In
the second case, PSR(P) must contain an edge p 5 7 and an edge r 5, q, which means

there is a path in PSR(P) from p to q. O

Calculating closure order from SR(P), if it is possible, is more difficult because para-
metric types may take restrictions that are ground instances of each other while still
inducing finite non-parametric hierarchies (figure 5.9), and, in this case, it is unclear how
to order the closure operations. PSR(P) is constructed so that such situations result in a
cyclic parametric subtype-restriction graph and we have simply shown that closure order
is well-defined for hierarchies with acyclic PSR(P). Ordering closures for hierarchies such
as those in figure 5.9 remains an open question.

As an quick example of closure specifications in operation, consider again our para-
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metric type phrase. Supposing the translation from ground instances of phrase to [Sag97]
types sketched at the beginning of this section, closure specification Close(phrase) =
(meet, G, and generator set G = {phrase(bool, bool), phrase(plus, bool), phrase(minus, bool),
phrase(bool, plus), phrase(bool, minus), phrase(plus, plus)}, the closure of phrase (meet

closure) is the hierarchy in figure 5.10.
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Chapter 6

HOPS - higher-order parametric

signature descriptions

HOPS (Higher-Order Parametric Signatures) is a pattern-inspired grammar specifica-
tion language we have developed based on the patterns mined in §4 and employing the
parametric typing formalized in §5. Implemented on top of Prolog and intended as an
extension to ALE [CP96] (which is also implemented on top of Prolog), HOPS extends
ALE syntax by adding additional operators for the specification of higher-order types
and closure specifications. We have implemented a HOPS interpreter which is capable
of compiling HOPS specifications into valid ALE programs; HOPS can thus be under-
stood as an add-on or plug-in to ALE. Currently, HOPS assumes finite parametrically
well-founded type hierarchies and supports the specification of parametric type hierar-
chies plus any number of extra subtyping links between ground instances. Because extra
ground instance subtyping links and certain closure specifications can break the meet-
semilattice status of induced hierarchies, HOPS also provides an algorithm for restoring

partial orders to meet-semilattices.
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6.1 Simple type signatures

HOPS programs with no higher-order types are identical to ALE programs. For this
reason, only a very brief introduction to simple type signatures will be sketched here -

the interested reader is directed to the ALE user’s manual [CP01].

6.1.1 Inheritance hierarchies

Inheritance hierarchies allow multiple inheritance and are declared using the sub (sub-
sumes) operator. Each type must be a prolog atom. List notation is optional if the sub

declaration includes only one RHS type.

bot sub [list, atom].
list sub [e_list, ne_list].

ne_list sub ’1_list’.

6.1.2 Appropriateness

Appropriateness specifications are declared using the intro (feature introduction) oper-
ator. Each LHS must be a type and each RHS must be a list of feature:type pairs. Each

feature must also be a prolog atom.

ne_list intro [hd:atom,tl:list].

6.1.3 Type-antecedent constraints

Type antecedent constraints are specified using the cons (constraint) operator. Each

LHS must be a type, and each RHS must be a description.!

’1_1ist’ cons tl:e_list,hd:list.

1See [CP01] for more a complete discussion of ALE descriptions.
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6.2 Higher-order type constructors

HOPS augments ALE with several kinds of higher-order type constructors. First and
foremost are parametric products, which represent the parametric types described in §5
and implement the dimensional classification pattern discussed in §4.3.4. Other higher-

order constructors encapsulate the remaining structural patterns identified in §4.

6.2.1 Parametric products

Parametric product types are declared using the param operator, which takes a parametric
type name on the LHS and a list of parameters on the RHS. HOPS supports both
positionally-indexed and named parameters - in the case of named parameters, each
parameter must be provided with a name (which must be a prolog atom), and a restriction
(which must be a ground instance type). For positionally indexed parameters, only the
restriction is required. HOPS automatically assigns the names 1, 2, 3, etc. to positionally
indexed parameters. Named parameters are provided as an alternative to positionally
indexed parameters in order to furnish parameters with conceptual labels and to enable
resolving of ground instances without explicitly stating parameter values which are equal

to the parameter restriction.

bool sub [plus,minus] .

per sub  [perl,per2,per3].

num sub [sg,pll.

gen sub [masc,fem] .

phrase param [finite:bool,clausal:bool].

agr param [per,num,gen].

Ground instances of parametric product types are expressed as logical terms in which
the parametric type name is the functor and parameter values are name:value arguments.

For example, some ground instances of phrase are phrase(finite:minus,clausal:bool) and
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phrase(finite:plus, clausal:plus). Named parameter order is unimportant: HOPS consid-
ers phrase(finite:minus, clausal:bool) to be equivalent to phrase(clausal:bool, finite:minus).
Additionally, as previously mentioned, named parameters with values equal to the restric-
tion are optional: phrase(finite:minus) is the same ground instance as phrase(finite:minus,
clausal:bool). Because agr has positionally indexed parameters, its ground instances can
be referenced with or without parameter names: agr(perl,sg,fem)and agr(1:per1,2:sg,3:fem)
are the same ground instance. Parameters with values equal to the restriction are
still optional if parameter names are used: agr(1:per!) is the same ground instance as

agr(1:perl,2:num,3:gen) and agr(perl,num,gen).

6.2.2 Finite domains

Finite domain types are an implementation of the disjunctive types pattern (§4.3.1).
Algebraically, a finite domain is a powerset of a finite set formed by enumerating all
combinations of a discretely ordered set and ordering the combinations by set-inclusion.
In HOPS, finite domains are declared using the findom operator which takes as argument

a list of discretely ordered types.

ftense findom [past,present,future].

Ground instances of finite domains are expressed using the finite domain type name
(in this case, ftense) as functor and domain types as arguments separated by the standard
Prolog disjunctive operator (;). For example, ftense(past;present;future), ftense(past;future),
and ftense(past) are ground instances of ftense. Additionally, “singleton” ground in-
stances of finite domains subsume their corresponding argument type (in this case

ftense(future) Ty future, ftense(past) Ty past, and ftense(present) Ty present).
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6.2.3 Smyth powerlattices

Smyth powerlattices are an implementation of the conjunctive types pattern (§4.3.2).
Algebraically, the smyth powerlattice of a partial order is the set of all sets of mutually
incomparable elements, ordered by inverse set-inclusion. In HOPS, smyth lattices are
formed using the smyth operator which takes as arguments a type ¢ and an optional
integer argument k. The image of smyth is the smyth powerlattice of the set of all ground
instances of ¢ and ground instances of ¢’s subtypes minus those powerlattice members
with cardinality > k. If the argument type is a finite domain type, finite domain “pure”

types are also included in the argument poset.

tense sub [past,present,future] .
sm smyth tense.

sm2  smyth tense,2.

Ground instances of smyth powerlattices are expressed using the smyth type name
(in this case, sm or sm2) as functor, with domain types appearing as arguments sep-
arated by the standard Prolog conjunctive operator (,). For example, three ground
instances of sm are sm(past,present,future), sm(past,present), and sm(tense). Type
sm2(past,present, future) represents a set with cardinality 3 and therefore does not exist.
“Singleton” ground instances of smyth powerlattices are subsumed by their correspond-
ing argument types (in sm, for example, future C; sm(future), past C; sm(past), and

present Ty sm(present)).

6.2.4 Strict variants

Strict variant types implement the strict variant pattern (§4.3.3) and are declared using
the strictx operator which takes as argument a type t. The image of a strict variant
is a copy of the set of all ground instances of ¢ and ground instances of t’s subtypes

wherein which each “copy” type is subsumed by its original type. Similar to smyth, if
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the argument type is a finite domain type, finite domain “pure” types are also included

in the argument poset.

tense sub [past,present,future].

st strictx tense.

Ground instances of strict variant types are expressed using the strict variant type
name (in this case, st), with domain types appearing as arguments. In our example,
st(present), st(past), and st(tense) are ground instances of st. Type future C; st(future),

past Ty st(past), and present Ty st(present).

6.2.5 Synonyms

Synonyms may be declared for any type and may be used at any time in place of their
referent. HOPS implements synonyms in a “call-by-macro” style, meaning whenever
HOPS sees a synonym, it simply replaces the synonym with its referent. Synonyms can
be used as higher-order objects in their own right; if a is a synonym of b and b has

parameters, then a can take the same parameters as b.

phrase param [finite:bool,clausal:bool].
fin_phr syn phrase(finite:plus).

fin_clause syn phrase(finite:plus,clausal:plus).

In this example, fin_clause is a synonym for the ground instance phrase(finite:plus,
clausal:plus). fin_phr is a higher-order synonym and can take parameters:
fin_phr(clausal:minus) is a synonym for the ground instance phrase(finite:plus,clausal:minus),

and fin_phr(clausal:bool) is a synonym for the ground instance phrase(finite:plus,clausal:bool).
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6.3 Higher-order inheritance hierarchies

The sub operator is used for subtyping of both higher-order types and simple types, and
subtyping declarations may be made both between types that are explicitly declared to be
parametric and between those that are not defined in a higher-order typing declaration.
The semantics of higher-order subtyping declarations will be described by example, but

the rules of thumb are these:
1. Any kind of higher-order type may participate in subtyping declarations.

2. Only parametric product types can be defined in subtyping declarations, and only

if they it appear on the RHS of some sub declaration.

3. If a type t is defined with a param declaration, its parameters and parameter re-

strictions are not affected by any subtyping declaration.
4. Only parametric product types may share parameters.

5. If the LHS type is a ground instance of a higher-order type, all RHS types are

simple types.
The example subtyping declarations below will assume the following type declarations:

bool sub [plus,minus].

f findom [i,j,k].

sm smyth Dbool.

a param [x:bool,y:bool].
b param [x:bool,z:bool].

C param [t:bool,z:f(i;j)].

a sub b. Because a and b are defined with param declarations, a is a parametric product
type with parameters [x:bool,y:bool] and b is a parametric product subtype of

a with parameters [x:bool,z:bool]. Parameter x is shared.
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a sub sm. Types a and sm are defined with higher-order constructors. Since sm is not a
parametric product type, a and sm do not share parameters and all ground instances

of a subsume all ground instances of sm.

a(x,y) sub d. Because d is not defined by a higher-order constructor, d is a parametric
product type whose parameters must be inferred from a. Because a shows param-
eters x and y on the LHS which do not appear on the RHS, it is assumed x and y

are dropped and d is a simple type.

a sub e. Because e is not defined by a higher-order constructor, e is a parametric
product type whose parameters must be inferred. Because a does not show any
parameters that do not appear on e, it is assumed that all parameters of a are
parameters of e: e has parameters [x:bool,y:bool] and parameters x and y are

shared.

a(x) sub g(w:bool). Because g is not defined by a higher-order constructor, g is a
parametric product type whose parameters must be inferred. Parameter x appears
only on the LHS and is therefore dropped. Parameter w is not a parameter of a
and so is a new parameter of g. Therefore, g is a parametric subtype of a with

parameters [y:bool,w:bool] and parameter y is shared.

a sub h(x:plus). Because h is not defined by a higher-order constructor, h is a para-
metric product type whose parameters must be inferred. Parameter x appears on
the RHS only, but because x is also defined as a parameter of a, it is shared.
Parametric type h, however, restricts x to plus so that the parameters of h are

[x:plus,y:bool]. Parameter y is also shared.

s sub c. Type s is not defined by a higher-order constructor, but appears on the LHS
and is therefore simple. c is defined by a param declaration and so is a parametric

subtype of s with parameters [t:bool,z:f(i;j)].
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a(x:bool,y:plus) sub h. Because ais defined by a higher-order constructor and shows
values for some of its parameters, a(x:bool,y:plus) is taken to be a ground
instance of a and so h is a simple type and a(x:bool,y:plus) sub hisasubtyping

link added to I(P).

6.4 Constraining induction

Finally, HOPS provides methods for constraining induced hierarchies by way of the para-

metric closure specifications defined in §5.2.

6.4.1 Generator sets

Generator sets are declared using the gen operator, which takes a generator set identifier
on the LHS and a list of generator set types on the RHS. The elements of the RHS
list may be either ground instances of parametric types, the bracketed name of a file
containing a list of ground instances, or the special keyword {grammar} which implicitly
contains all ground instances attested in subtyping declarations, feature introductions,
constraints, grammar rules, lexical rules, and lexical entries. There is a special reserved

generator set grammar which is defined as grammar gen [{grammar}].

ph_gen gen [phrase(arity:binary,head:plus), phrase(arity:unary)].
word_gen gen [[’word_gen_file’], word(affixed:plus)].

head_gen gen [{grammar}, subst(noun,verb)].

6.4.2 Closure specifications

There are currently three kinds of closure implemented: trivial, supertype and uncon-
strained, all of which are declared using the close operator. The close operator takes a

type on the LHS and on the RHS a closure specification of the form trivial (generator
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set), supertype(generator set) or unconstrained. Closure specifications may ap-
pear anywhere in a grammar specification, but are applied after all type specifications
have been processed. Types without closure specifications are assumed to be uncon-
strained, and the order of closure operations follows the algorithm in §5.2. Due to
internal processing concerns, HOPS-generated induced hierarchies include the minimal
ground instance of every higher-order type. Contrary to §5.2, closures may be generated
by generator sets containing types which are not ground instances of the type undergoing

the closure. In such cases, HOPS simply filters out the erroneous types.

phrase close trivial(grammar) .
word close supertype(word_gen) .

tense close unconstrained.



Chapter 7

ICEBERG - a higher-order English

Resource Grammar

This chapter presents ICEBERG, a re-factoring of the English Resource Grammar (ERG)
written in HOPS, which has replaced a significant portion of the ERG type hierarchy
with higher-order types. We approach this presentation from two angles: first, §7.1
describes the topology of the ERG type signature, explores issues we have encountered
in constructing a broad coverage grammar using parametric types, and describes our re-
factoring of several indicative portions of the grammar; then, §7.2 compares ICEBERG to
the ERG both extensionally and qualitatively. Several quantitative measures of grammar
usability are reported and some engineering advantages of ICEBERG are discussed. This
section further shows that ICEBERG and the ERG achieve equivalent analyses of a
large development corpus (~2000 sentences), suggesting that ICEBERG and ERG are

extensionally equivalent.

7.1 Building a higher-order ERG

Broad-coverage HPSG grammars are generally large pieces of software, and the ERG is no

exception. The version used in this study, an ALE-compatible port of a May 2000 release
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phrases words  lexical rules

keys con] tam wnsem cat png valence sgn head local non_loca content thing list context

prontype tense aspect mood pernum gender luk vform case voice xmod stemhead

\\

sort

bot

Figure 7.1: ERG IS-A topology

generated from the FUSE corpus, contains 4305 types (916 of which are GLB completion
types), 155 feature introductions, 848 type-antecedent constraints, 45 grammar rules,

and a 10623 word lexicon.

The topology of the ERG IS-A network (type hierarchy) is described pictorally in

*sort* and *avm* partition the

figure 7.1. The most general ERG type is bot, and types
hierarchy into featureless types and feature-bearing types, respectively.! Each subtype of
*sort* and *avm* in figure 7.1 represents a most-general type which subsumes a filter of
subtypes, all of which are incomparable with types in any other filter. Figure 7.2 sketches
the HAS-A (appropriateness) relation among these filters - there is an edge A-B in figure
7.2 iff A “has a” B, that is, some type in the filter subsumed by B is appropriate to some
feature of some type in the filter subsumed by A. Throughout this chapter we will follow

figures 7.1 and 7.2 in referencing ERG filters by their most general type. For example,

L *sort* is a misnomer - subtypes of *sort* are not mutually incomparable as one might expect given

the standard interpretation of the term sort. Types *sort* and *avm* are legacy types imported from
the PAGE system, which had, in fact, assumed sorts were incomparable. PAGE used *sort* and *avm*
to direct the parser to separate handling routines for type operations and feature structure operations.
More information can be found in the PAGE user manuals ([KS94b, KS94c]).
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Figure 7.2: ERG HAS-A topology

when we say ’luk types’ we will be referring to type luk and all its subtypes.

We have limited our parametric re-implementation to the type hierarchy (as opposed
to appropriateness, constraints, and the grammar rules), producing a parameterized ver-
sion of the ERG IS-A network. Specifically, we have produced higher-order versions of
ERG three-valued boolean (luk), person-number (pernum), gender, tense, aspect, mood,
external modifier (zmod), stemhead, voice, verb form, semantic index (thing), head, cate-
gory, local, word, phrase, and list subtypes. Because case, pronoun type (prontype), keys,
tense-aspect-mood (tam), person-number-gender (png), valence, non-local, context, and
lexical rule types contain little if any parametricity, they have been left unchanged. Due
to time constraints, synsem types and content have not been re-implemented, although
they undoubtedly exhibit parametricity. Again due to time constraints, we have not
parameterized the ERG HAS-A relation, although there are certainly many ERG con-
straints which could be intuitively captured by parametric appropriateness specifications.

The following sections will highlight the ERG’s parametricity by way of examples
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past+fut  prestfut  future  prest+past past present
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future* past* present*  strict_tense
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Figure 7.3: ERG tense types

from ICEBERG. These examples will be indicative of standard techniques we have em-
ployed throughout ICEBERG - strict variants and smyth powerlattices of finite domain
types, parametric products for multidimensional classification, and the trivial closure
over generator sets composed of grammar-attested ground instances. Not every instance
of re-factoring will be described here, however-the interested reader is referred to the

appendix for a comprehensive tour of ICEBERG.

7.1.1 Finite domains, smyth powerlattices, and strict variants

A number of ERG type filters contain disjunctive types, conjunctive types, and strict
variants as in figure 7.3 (tense types) and figure 7.5 (luk types). In such filters, one
generally finds a set of basic conceptual types (in the case of tense, past, present, and
future; in the case of luk, +, —, and not-applicable), and these conceptual types appear
as the components of disjunctive types, conjunctive types, and strict variant types.

A standard example is ERG tense, which contains strict variants of past, present,
future, and tense, as well as conjunctive types of each pair of past, present, and future
(which subsume the non-strict versions of their component types). To re-factor tense
types, ICEBERG posits a type tense with subtypes past, present, and future. Higher-
order tense is constructed with a smyth powerlattice of tense and a strict variant of

tense.
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Figure 7.4: ICEBERG tense types

sub [future, past, present].
smyth tense.
strictx tense.

The induced non-parametric hierarchy of tense types is depicted in figure 7.4 and

the mapping between ERG and ICEBERG names is recorded in table 7.1. ICEBERG

contains four types not present in the ERG: smt(past), smt(present), and smt(future)

(corresponding to singleton smyth powerlattice elements), and smt(future,past,present)

(corresponding to a conjunction of all three conceptual types). For the corpus used in

our experiments, these extra types admit no parses not admitted by the ERG.

A slightly more complicated example involves luk (three-valued boolean) types, which

include disjunctive types in addition to both conjunctive types and strict variants (figure

7.5). To re-factor luk types, ICEBERG constructs a finite domain, fl over +, -, and na,

a smyth powerlattice of fl, and a strict variant of fi.

fl

sml
stl
1luk

findom [’+>, ’-’, na].
smyth f1.
strictx fl.
sub fl.
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ERG name ERG attested | ICEBERG name
tense v tense
past™® v past
present* v present
future* v future
strict_tense v stt(tense)
past v stt(past)
present v stt(present)
future v stt(future)
smt(tense)
smt (future)
smt (past)
smt (present)
past+fut v smt (future,past)
pres—+fut v smt (future,present)
pres—+past v smt (past,present)
smt (future,past,present)

Table 7.1: Tense translation table
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plus + and - minus

NSNS
P X X

bool na or_+ na or_-
luk

Figure 7.5: ERG luk types

stl(+) sml(+,-) sti(-) stl(na)
X XEN /N
+ stl(fl(+;-)) - stl(fl(-;na)) na
NN
fl(+;-) fl(-;na)

NS

Figure 7.6: ICEBERG luk types

fl close trivial (luk_set).

sml close trivial (luk_set).

stl close unconstrained.

luk_set gen [{grammar}, sml(’+’,’-’)].

Types fl and sml are constrained by the trivial closure over a generator set composed
of ground instances attested by the ERG outside the type hierarchy (ground instance
types found in feature introductions, constraints, lexical rules, grammar rules, and the
lexicon), and the closure of stl is unconstrained. Because ground instance type sml(+,-)

is not attested outside the hierarchy, it was added manually to the generator set.
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ERG name ERG attested | ICEBERG name
luk v luk
fi(+;-;na)

bool v fl(+:-)
na_or_+ fi(+;na)
na_or_- v fi(-;na)

v na
+* v +
_k v -

plus v stl

(

(

(
na stl(na)
(
minus v stl(-)

+_and_- sml(+,-)

Table 7.2: Luk translation table

The induced luk hierarchy is depicted in figure 7.6 and the translation table in table
7.2. The induced hierarchy is equivalent to ERG [uk except for the absence of disjunctive
type na_or_+ (fl(+;na)), and the presence of several strict variant types. It turns out that
the ERG does not attest na_or_+ outside the type hierarchy (no feature requires na_or_+
as value), and since na_or_+ is join-irreducible, it is extensionally redundant.? Each of
the extra types is also join-irreducible and therefore make no extensional difference.

Manually adding conjunctive types to grammar-attested generator sets turns out to

2 A short proof of this claim follows from the definition of join-irreducibility: type z is join-irreducible
iff for all z,y such that x Uy = z, 2 = x or z = y. Hence since na_or_+ is join-irreducible and is not
attested by the grammar, it cannot be the join of grammar-attested types.
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be ICEBERG’s standard technique for closing types such as [uk since the ERG attests
very few conjunctive types in places other than the type hierarchy. This makes intuitive
sense. Conjunctive types are intended to capture phenomena such as coordination and
case neutralization—constructions built by the unification of feature structures labeled
with non-conjunctive types. As such, conjunctive types tend not to appear as feature
values in the grammar itself, and, there is therefore no way to infer from the grammar
which conjunctive types should be present. In most cases (as in luk), we have manually
added ERG conjunctive types to the generator set on the assumption that the ERG has
good linguistic reasons for the existence of certain conjunctive types but not others. The
only other alternative would mean including all conjunctive types in the induced hierarchy
(as in tense), but, of course, including all conjunctive types will license sentences the ERG
currently considers ungrammatical.

In addition to tense and luk, the combination of finite domains, smyth powerlattices,
and strict variants is used in the re-implementation of pernum, gender, aspect, mood,

zmod, voice, verb form, and head subtypes.

7.1.2 Parametric products

The most oft-stated reason for employing multiple inheritance in typed feature structure
grammars is to facilitate multi-dimensional classification, and, as already noted in §4.3.4,
the ERG makes use of this technique frequently. In ICEBERG, this classification is
captured by parametric product types.

A standard example of multi-dimensional classification is HPSG phrase types, which
were multi-dimensionally classified in [Sag97]’s analysis of English relative clauses. Con-
tinuing in that spirit, this section describes a higher-order re-factoring of a portion of
the ERG phrases using parametric products. We will only give detailed descriptions of

several basic phrase types—the entire phrase hierarchy re-implementation is presented in

§A.T.
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top_coord_prop_rule  top_coord_nonprop_rule mid_coord_prop_rule  mid_coord_nonprop_rule head_valence_phrase
top_coord_rule mid_coord_rule head_fina  head_initia head_nexus_phrase

S =y VL N

binary_rule_right_to_left  binary_rule_left_to_right coord_phr  binary_headed_phrase  head_nexus que phrase  head_nexus rel_phrase head_only

~ PN T~ —

lingo_rule non_headed_phrase  binary_phrase headed_phrase unary_phrase
\ phrase /

Figure 7.7: ERG phrase types (portion)

Figure 7.7 depicts basic ERG phrases, head-nexus phrases,® and coordinate phrases.
There are five immediate subtypes of the most general type, phrase. By examining the
type names (and by noticing they have no common subtypes), we can infer that types
headed_phrase and non_headed_phrase constitute a headedness dimension, and, by the
same token, types binary_phrase and unary_phrase constitute an arity dimension. Type
lingo_rule is the most general grammar rule type (every ERG grammar rule is a subtype
of phrase), and has two subtypes, binary_rule_left_to_right and binary_rule_right_to_left

which bifurcate rules by direction from the modifier to the head.

The join of non_headed_phrase and binary_phraseis a type coord_phr which is the most
general coordinate phrase. Coordinate phrases and rules are further classified by propo-
sitionality and “rule height” (whether the resulting coordinate structure is a member of
another coordinate structure). Phrases which are both binary and headed are further
classified by head position (head_final and head_initial), and unary headed phrases are
called head_only. There is no join for types unary and non_headed, presumably because

English does not contain any unary non-headed phrases.

Type headed_phrase has four other subtypes (the nexus phrases) which are type an-

3Use of the term nexus extends at least to 1924 in Otto Jespersen’s The Philosophy of Grammar
[Jes24], who used the term to describe phrases with subjects and predicates. In the ERG, all such
phrases are subsumed by the head-nexus phrases.
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tecedents to constraints pertaining to [Sag97]’s Slash-Inheritance Principle (SLIP) and
Wh-Inheritance Principle (WHIP). Type head_nezus_que_phrase enforces an empty QUE
list, head_nexus_rel_phrase enforces an empty REL list, and type head_valence_phrase en-
forces an empty SLASH list. head_nezxus_phrase, the join of head_nexus_que_phrase and
head_nexus_rel_phrase, implements WHIP, and its subtype head_valence_phrase imple-
ments SLIP.

ICEBERG parameterizes the phrases first by a parametric product type phrase with
five parameters: headedness, arity, head position, ruleness, and rule direction. Then, we
add a parametric subtype coord_phr which inherits all parameters from phrase, restricts
arity and headedness to binary and non-headed, respectively, and adds parameters for
propositionality and coordination height. There is another parametric subtype of phrase
nexus_phr which also inherits all parameters from phrase, restricts headedness to headed,
and adds three boolean parameters for the WHIP and SLIP principles - que, rel, and
slash. The induced hierarchy of all three parametric types is constrained by the trivial

closure over grammar-attested ground instances.

bool sub [plus,minus].
head_pos sub [initial, final].
arity_type sub [unary, binary].
rule_dir sub [r_1, 1_r].

coord_height sub [top, mid].

lexroot sub phrase(head:bool,arity:arity_type,hp:head_pos,
rule:bool,rdir:rule_dir).

phrase sub nexus_phr (head:plus,que:bool,rel:bool,slash:bool).

phrase sub coord_phr (head:minus,arity:binary,
prop:bool,ht:coord_height) .

phrase close trivial(grammar).
nexus_phr close trivial(grammar).
coord_phr close trivial(grammar).

Figure 7.8 is the induced hierarchy of ICEBERG parametric phrase types, and table

7.3 is the corresponding translation table. All ERG types are attested outside the type
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ERG name ERG attested | ICEBERG name

<\

phrase phrase(rule:bool)

lingo_rule phrase(rule:plus)

binary_rule_left_to_right phrase(rule:plus,rdir:] r)

binary_rule_right _to_left phrase(rule:plus,rdir:r_1)

headed_phrase phrase(head:plus)

phrase(head:minus)

(
(
(
(
(
(
(
(
(
(
(
(

non_headed_phrase
binary_phrase e(arity:binary)
unary_phrase phrase(arity:unary)
binary_headed_phrase phrase(head:plus,arity:binary)
head_only phrase(head:plus,arity:unary)

head_initial phrase(head:plus,arity:binary,hp:initial)

SN N N N N N N SN
e}
=
%

head_final phrase(head:plus,arity:binary,hp:final)

nexus_phr(rule:bool)

head_nexus_que_phrase v nexus_phr(que:plus)

head_nexus_rel_phrase v nexus_phr(rel:plus)

head_nexus_phrase nexus_phr(rel:plus,que:plus)
head_valence_phrase v nexus_phr(rel:plus,que:plus,slash:plus)
coord_phr v coord_phr(rule:bool)

top_coord_rule v coord_phr(rule:plus,rdir:r 1 ht:top)
mid_coord_rule v coord_phr(rule:plus,rdir:r_1,ht:mid)
top_coord_prop_rule v coord_phr(rule:plus,rdir:r_1,prop:plus,ht:top)
top_coord_nonprop_rule v coord_phr(rule:plus,rdir:r 1, prop:minus,ht:top)
mid_coord_prop_rule v coord_phr(rule:plus,rdir:r 1,prop:plus,ht:mid)
mid_coord_nonprop_rule v coord_phr(rule:plus,rdir:r 1, prop:minus,ht:mid)

Table 7.3: Phrase translation table



98 CHAPTER 7. ICEBERG - A HIGHER-ORDER ENGLISH RESOURCE GRAMMAR

hierarchy but one - head_nexus_phrase. Due to HOPS’s convention of including the min-
imal ground instance of every parametric type, there is one extra type in the induced
hierarchy, nezus_phr(rule:bool).* Our experiments have shown that the missing type and

extra type make no difference to the analyses licensed by the grammar.

With the exception of ERG thing types, ICEBERG has used trivial closures over
grammar-attested ground instances for all parametric product types, finding that by
constraining induced hierarchies to include only those types attested by the rest of the
grammar, [CEBERG licenses the same sentences and produces the same analyses as
the ERG. Because the ERG’s hierarchy of thing types includes both conjunctive types
and dimensional classification, and because conjunctive thing types are not attested by
the grammar, ICEBERG’s parametric thing types are closed by the trivial closure over

grammar-attested ground instances augmented with explicitly added conjunctive types.

7.2 Comparing ICEBERG and ERG

This section reports some experiments and measurements undertaken to compare ICE-
BERG and the ERG at both the source code and extensional levels. §7.2.1 reports
experiments parsing the ERG and ICEBERG over two development corpora, showing
that the grammars achieve identical analyses for over 2000 sentences with length up to
50 words. §7.2.2 attempts to analyze the grammars qualitatively, looking at measures

such as source code length, number of types, and number of type declarations.

4By definition, parameter values of minimal ground instances are equal to their parameter restriction
and therefore do not need to be displayed (§6.2.1). We choose to always display one parameter value
for the sake of avoiding confusion between nexus_phr (the minimal ground instance) and nezus_phr (the
parametric type).
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7.2.1 Extensional comparison

In an effort to determine the correctness of ICEBERG, ICEBERG was compared to the
ALE-ported ERG by parsing sets of identical sentences. Because ICEBERG only re-
factors the type hierarchy, and because of incompatible naming conventions, all ERG
feature introductions, type-antecedent constraints, grammar rules, and lexical entries
were translated to ICEBERG names (where a corresponding ICEBERG type exists) via
a manually encoded translation table. These translated specifications were merged with
ICEBERG’s induced type hierarchy to form the new grammar (henceforth referred to as
simply ICEBERG). The untouched ERG type hierarchy was also translated to [ICEBERG
names and merged with the rest of the translated grammar to form a translated (but not
re-factored!) ERG (henceforth referred to as simply ERG).

ICEBERG and ERG were then each compiled by ALE and instructed to parse two
corpora: a small test set of 40 sentences drawn from the CSLI corpus®, and all 2363
sentences from the FUSE corpus®. As a preliminary test, for each sentence we compared
the number of spanning edges and chart edges produced by each grammar. Once the edge
counts were found to be equivalent, the feature structures associated with each spanning
edge were examined. For both corpora, the ERG feature structures and ICEBERG
feature structures were identical, leading us to conclude that ICEBERG and ERG are

extensionally equivalent.

7.2.2 Usability measures

Because ICEBERG is intended to be a more readable, intuitive, accessible, and extend-

able (in a word, usable) grammar than the ERG, we are obliged to show this is actually

5The CSLI corpus was the standard test corpus used during the development of the ERG, and contains
over 1000 sentences. We use only 40 sentences since only a small subset of the CSLI lexicon has been
ported to ALE.

6The FUSE corpus is a set of sentences collected for the VERBMOBIL project by staging mock
appointment scheduling conversations.
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Grammar # Declarations # Tokens Mean RHS arguments
ICEBERG* 349 2898 2.3
ERG* 514 4176 6.1
ICEBERG 755 6386 4.6
ERG 924 7669 6.3

Table 7.4: Source code comparison

the case. This section argues for the usability of ICEBERG over the ERG by taking
some quantitative usability measures (tables 7.4 and 7.5). We will consider four “gram-
mars:” ERG, ICEBERG, ERG*, and ICEBERG*. ERG refers to the original ALE-ported
grammar, ERG* (C ERG) refers to the portion of ERG that was re-implemented with
higher-order types, ICEBERG* refers to the higher-order re-implementation of ERG*,
and, finally, ICEBERG is the union of ICEBERG* and the non-re-implemented portion
of ERG (i.e. ICEBERG = ICEBERG* U (ERG — ERG¥)).

Table 7.4 examines the grammar source code. We have reported three measures:
number of type-related declarations, number of tokens in the grammar source, and the
mean number of arguments appearing on the right-hand-side (RHS) of a type-related dec-
laration (that is, feature introductions, constraints, lexical entries, and grammar rules are
excluded). The number of type-related declarations and number of tokens are intended
to give a sense of grammar terseness. The mean number of arguments on the RHS of
declarations also provides a measure of terseness, but provides an additional measure of
complexity: grammars with more RHS arguments have longer and more complex type
declarations. The most significant difference in the results, as one would expect, is be-
tween ERG* and its higher-order re-implementation in ICEBERG* - ERG* requires 514
declarations, 4176 tokens, and an average RHS length of 6.1 to describe extensionally
the same hierarchy that ICEBERG* describes with only 349 declarations, 2898 tokens,

and an average RHS argument length of 2.3 arguments.
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Grammar Number of types

P C(P) DM(C(P)) JR(P) JR(C(P))

ICEBERG* | 564 1177 1825 21 304
ERG* 1140 1140 1686 297 297
ICEBERG | 2813 3426 4444 252 935
ERG 3389 3389 4305 928 928

Table 7.5: Type hierarchy comparison

Table 7.5 examines the ICEBERG and ERG type hierarchies. For this purpose we
have taken five measurements: number of types in the user-defined (higher-order) type
hierarchy (P), number of types in the induced hierarchy before GLB completion (C(P)),’
number of types in the induced hierarchy after GLB completion (DM (C(P))), and num-
ber of join-reducible types in both the parametric and induced hierarchies (JR(P) and
JR(C(P))).

Again, we see the most significant difference between ICEBERG* and ERG*. By
employing higher-order typing, ICEBERG* has reduced the number of types a grammar
writer must define from 1140 to 564, a savings of just over 50%. The number of types
in ICEBERG* and ERG* induced hierarchies (both before and after GLB completion)
are very similar, reflecting the fact that ICEBERG™’s higher-order types and closure

specifications really do re-implement ERG*.

The most telling difference between ICEBERG* and ERG*, however, is the join-
reducible types. Although ICEBERG* and ERG* induced hierarchies include a nearly
identical number of join-reducible types, there are only 21 join-reducible types in ICE-
BERG™*’s parametric type hierarchy compared to 297 in ERG*, a difference of nearly 93%.

In ERG*, join-reducible types account for 26% of all types in P, but account for less than

"Because the ERG does not have parametric types, the ERG “higher-order” and “induced” type
hierarchies are simply the ERG’s explicit IS-A network with GLB completion types excluded.
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4% of types in ICEBERG*. This is a strong argument for modularity: partial orders with
few join-reducible types are tree-like, and those with many join-reducible types are more
tightly connected networks. Tree-like structures offer many advantages that come with
locality: they facilite better encapsulation, looser coupling between modules, and more
intuitive extensions and modifications. ICEBERG* effectively allows grammar writers
to work with trees of higher-order types, deferring the complexity of managing crossing
links to the constructors and closure specifications.

There is one final comment that needs to be made regarding DM (C(P)). As we have
seen previously in §5.1.5, for unconstrained semi-coherent parametric type hierarchies,
I(P) is always a meet-semilattice. Now, because of HOPS’s extra higher-order construc-
tors, ground instance subtyping links, and closure operations, the proof in §5.1.5 does
not hold for all type hierarchies written in HOPS, but it does hold for HOPS hierarchies
consisting only of parametric product types and no extra ground instance subtyping
links. In the case that I(P) is a meet-semilattice, since C(P) C I(P), it must also be
the case that DM (C(P)) C I(P), i.e., the types added by GLB completion are members
of I(P). HOPS does not currently attempt to locate GLB types in I(P) due to the
same complexities that prevent many HOPS induced type hierarchies from being meet-
semilattices, but one should expect that a large number of GLB types in ICEBERG* are

actually well-defined ground instances.



Chapter 8

Conclusions

Though explicitly-specified IS-A networks provide a simple and intutive form of inclu-
sional semantics, their use in contemporary typed feature structure grammars has led
to a proliferation of types and unwieldly signatures that remain inaccessible to most
would-be grammar developers. This thesis has attempted to provide some relief by min-
ing signatures for evidence of intended structural patterns, encapsulating those patterns
with a collection of higher-order type constructors, using the constructors as the basis
of a higher-order signature specification language, and using the signature specification
language to implement a higher-order version of the English Resource Grammar type
hierarchy. The result is a more readable, intuitive, acessible, and extendable ERG and

the first typed feature structure grammar to consistently employ higher-order typing.

In the process, a review of the effects of explicitly-specified IS-A networks in gram-
mar design was conducted, design patterns were introduced as a framework for grammar
documentation and design cataloguing, parametric types were provided with formal ex-
tensions which make them more appropriate for grammar engineering, and a higher-order
description language and interpreter have been developed to facilitate the construction

of other higher-order typed feature structure grammars.

103



104 CHAPTER 8. CONCLUSIONS

8.1 Summary of contributions

Design patterns for grammar engineering

We have traced the history of design patterns, from Christopher Alexander’s Notes on the
Synthesis of Form, A Pattern Language, and The Timeless Way of Building to their adap-
tation for software engineering in the Gang of Four’s Design Patterns and Buschmann et.
al.’s A System of Patterns. We have sketched the key concepts of pattern documentation
and reuse, introduced design patterns as a framework for discussing and documenting
recurring patterns of design in typed feature structure grammars, and catalogued several

structural patterns of type usage.

Extension of parametric types for attribute-value logic

To facilitate their use in grammar development, Penn’s parametric types for attribute-
value logic have been augmented with parametric restrictions and closure specifications.
Previous formalizations of parametric types had no methods for stating appropriate val-
ues of parameters (restrictions) or for determining which of the appropriate values are
necessary for processing (closure). Conditions for finiteness and well-formedness have
been also been proved, and an algorithm for closing different parts of a type signature

under different closure specifications has been developed.

HOPS - a higher-order signature description language

HOPS, a higher-order parametric signature description language has been presented,
complete with several kinds of higher-order constructors and closure specifications. Futher-
more, a HOPS compiler has been developed for the purposes of expanding parametric
type signatures into non-parametric ones. HOPS can be used as a description language
for higher-order type hierarchies and the HOPS compiler can be used in combination

with ALE to compute with higher-order types.
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ICEBERG - a higher-order ERG

We have presented ICEBERG, a higher-order re-implementation of a significant portion
of the ERG type hierarchy. Intended as a proof of concept, ICEBERG shows that higher-
order typed feature structure grammars are possible and illustrates many issues involved
in designing grammars with higher-order types. In the process, ICEBERG, through ex-
plicit reference to structural patterns and parametricity, provides a sort of documentation
of ERG design intentions and linguistic intuitions, illustrating how those intentions and

intuitions might be carried over to future grammars.

8.2 Future directions

Investigation of cross-linguistic applicability

Our investigation of evidenced structural patterns has been limited to the English Re-
source Grammar type hierarchy, and we have only attempted to re-implement ERG types.
One would expect other HPSG grammars, especially grammars of languages other than
English, to contain their own structural patterns - patterns which may or may not be the
same patterns as those encountered in the ERG. It would be interesting to discover, for
example, to what extent finite domains, smyth powerlattices, and strict variants can be
adapted cross-linguistically to express linguistic universals such as tense, gender, mood,

and agreement.

Extending higher-order appropriateness in ICEBERG

Because variables can be shared between parameters and appropriateness specifications,
appropriateness is one of the most powerful devices devices afforded by parametric types.
Unfortunately, ICEBERG currently makes no use of that power, although there are
plenty of places where one could imagine parametric appropriateness. The most obvious

example is list types (indeed, [PS94] suggested parametrically typed lists), but one could
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also imagine a head parameter on an HPSG cat type which is shared with its HEAD feature.
Similarily, one could imagine a synsem parameter on ERG word and phrase types which
is shared with the SYNSEM feature, or, for auxillary verbs, tense parameter shared with the
CAT:HEAD:TAM feature. Our reluctance to use appropriateness parameters is in large part
due to time considerations, but we suspect many ERG constraints could be intuitively

captured with shared parameters in appropriateness specifications.

User Study

Currently our arguments for the usability of ICEBERG over ERG are limited to a few
rough numerical estimations and an argument that ICEBERG exploits patterns already
implicitly at work in the ERG. A more effective test, of course, would be to conduct a
usability study with human subjects.

Such a usability study, we believe, would involve test subjects at least semi-familiar
with linguistic theory, requiring them to extend the grammar to obtain new analyses, re-
factor the grammar to fix incorrect analyses, or perhaps explain why certain analyses are
licensed or not licensed by the grammar. The usability study could take such measures
such as quality of task completion, time for task completion, and general user preference
of one grammar over the other.

We have not conducted such a study, partially due to time considerations, and par-
tially due to a general lack of formally trained linguists with whom to conduct the study.

This remains, however, an interesting avenue of further exploration.



Appendix A

ICEBERG

This appendix presents a detailed tour of ICEBERG. The tour roughly follows figure 7.1
by splitting the ERG signature into filters of incomparable types, describing, for each
filter, the role of the types within the grammar, the ERG organization of types, and, if
necessary, the ICEBERG re-implementation. ICEBERG has made slight modifications
to the ERG topology (figure A.1) by removing types *sort* and *avm* and replacing
them with more descriptive classifiers: featureless, syntaz, semantics, container, and sign
structure. The tour proceeds in order of featureless types, containers, syntax, seman-
tics, sign structures, phrases, and finally, words. Due to the number of types in some
of the filters, any types appearing in the ERG hierarchy but not appearing in a corre-
sponding ICEBERG ground instance translation table should be assumed to be present
in ICEBERG as simple types by the same name their definition can be found in the

corresponding ICEBERG description.

A.1 Featureless types

ICEBERG featureless types include all the indecomposable linguistic properties encoded

as subtypes of ERG type *sort*.
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Figure A.1: ICEBERG IS-A topology

A.1.1 Aspect

Aspect is a grammatical category expressing temporal properties of verbs. The ERG
attests two kinds of aspect, progressive and perfective, as well as a type no_aspect which
is used to explicitly state aspect does not apply. The most general aspectual type, aspect

is the appropriate value of the ASPECT feature of tense-aspect-mood feature structures.

Besides types for progressive and perfective, and no aspect, the ERG aspect types also
include disjunctive types for progressive or no aspect (named non-perfect), and perfect or
no aspect (named non-progressive). A strict variant of both basic and disjunctive types
is present, as well as a number of conjunctive types. There seems to be a structural
anomaly in the conjunctive types, however, as both non-progressive and progressive have

a join and non-perfect and perfect have a join.

ICEBERG implements aspect with a finite domain over types perf, progr, and none
(fa), a smyth powerlattice of fa (sma), and a strict variant of fa (sta). Types fa and

sma undergo the trivial closure over grammar-attested ground instances augmented with
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Figure A.2: ERG aspect types

conjunctive types, and the closure of smt is unconstrained. Although ICEBERG does

not have a join between fa(none;perf) and progr or between fa(none;progr) and perf, we

have found the presence of such joins makes no difference to analyses obtained by parsing

our test corpora.

ICEBERG description

fa findom [perf, progr, none].

sma smyth  fa.

sta strictx fa.

aspect sub fa.

fa close trivial(aspect_gen).

sma close trivial(aspect_gen).
aspect_gen gen [{grammar}, sma(none,perf),

sma (none, progr) ,
sma (perf,progr)].
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ICEBERG

ICEBERG ground instances

ERG name ICEBERG name

aspect aspect

no_aspect™* none

perf* perf

progr* progr

nonprg fa(none;perf)

nonprf fa(none;progr)
fa(none;perf;progr)

no_aspect sta(none)

perf sta(perf)

progr sta(progr)

strict_nonprg sta(fa(none;perf))

strict_nonprf sta(fa(none;progr))
sta(fa(none;perf;progr))

noasp-+perf sma(none,perf)

noasp-+progr sma(none,progr)

progr+perf sma(perf,progr)

A.1.2 Case

Grammatical case is a linguistic category used to overtly mark nominal items for gram-
matical and /or semantic function. World languages include many kinds of case, including,
but not limited to, accusative, dative, ergative, genitive, and nominal cases. In the ERG,
the most general case type, case, is the appropriate value of the CASE feature of nominal

head-type feature structures.
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acc nom

\ /

case

Figure A.3: ERG case types

The ERG posits only two kinds of case: accusative (acc) and nominative (nom),
which are the only subtypes of case. There are no higher-order constructors which apply

to ERG cases.

ICEBERG description

case sub [acc, nom].

A.1.3 Gender

Gender types are used to denote grammatical gender in situations such as nominals,
adjectives, verb morphology, and agreement. In the ERG, the most general gender type,
gender, appears as the appropriate value of the GENDER feature in person-number-gender
feature structures.

The ERG posits five basic genders-masculine, feminine, neuter, androgynous, and
androgynousl. There are strict variants of all five genders, as well as two-member con-
junctive types of all pairs of masculine, feminine, neuter, and androgynous.

ICEBERG implements gender with a smyth powerlattice of basic gender types and a
strict variant of those same basic gender types. The smyth powerlattice undergoes the
trivial closure over a generator set composed of grammar-attested ground instances plus
manually added conjunctive types, and the closure of the strict variant is unconstrained.
One greatest lower bound type (glbtype724) appears in the most general satisfier of several

lexical items and turns out to be equivalent to stg(gender).



112 AprPPENDIX A. ICEBERG

androl andro fem_and_andro masc_and_andro fem neut_and_andro masc_and_fem fem_and_neut masc masc_and_neut neut

androl* andro* fem masc neut’
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gender

Figure A.4: ERG gender types

ICEBERG description

gender sub [masc, fem, neut, andro, androl].
smg smyth  gender.

stg strictx gender.

smg close trivial(gender_set).

gender_set gen [{grammar}, smg(andro,fem),

smg (andro,masc) ,
smg (andro,neut) ,
smg(fem,masc),
smg(fem,neut),
smg (masc,neut)] .

ICEBERG ground instances

ERG name ICEBERG name

gender gender

androl* androl

andro* andro

fem* fem

masc™® masc

neut™ neut

glbtype724 stg(gender)

androl stg(androl)

andro stg(andro)
continued on next page
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continued from previous page

ERG name ICEBERG name
fem stg(fem)
masc stg(masc)
neut stg(neut)
fem_and_andro smg(andro,fem)
masc_and_andro smg(andro,masc)
neut_and_andro smg(andro,neut)
masc_and_fem smg(fem,masc)
fem_and neut smg(fem,neut)
masc_and_neut smg(masc,neut)
A.1.4 Luk

Luk types implement a three-valued boolean logic over values + (true), - (false), and
na (not-applicable). Luk types appear as appropriate values in many feature structure
descriptions, always to denote the truth or falsity of some property. The most general
boolean type, luk, is a supertype of +, -, and na, although most appropriate values are
restricted to bool, which is a supertype of only + and -.

The ERG luk sort includes types for all disjunctions of +, -, and na. There is also a
strict variant on the filter induced by bool and a conjunctive type for + and -.

ICEBERG has implemented luk with a finite domain over +, -, and na (f]), a smyth
powerlattice of fl (sml), and a strict variant of fI (stl). The induced hierarchies of fI and
sml are constrained by the trivial closure over a generator set composed of grammar-
attested ground instances plus one conjunctive type (sml(‘+’,*’)). The closure of stl is

unconstrained.
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plus + and - minus

NSNS
P X X

bool na or_+ na or_-
[uk

Figure A.5: ERG luk types

ICEBERG description

fl findom [’+’, ’-’, na].

sml smyth fl.

stl strictx f1l.

luk sub fl.

fl close trivial(luk_set).

sml close trivial(luk_set).

luk_set gen [{grammar}, sml1(’+’,’-’)].

ICEBERG ground instances
ERG name ICEBERG name
luk luk

fl(+;-ina)
bool fi(+;-)
na_or_+ fl(+;na)
na_or.- fl(-;na)
na na
+* +

continued on next page
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continued from previous page
ERG name ICEBERG name
_* -
stl(fi(+;-;na))
stl(fl(-;na))
stl(fl(+:-))
stl(na)
plus stl(+)
minus stl(-)
+_and_- sml(+,-)
A.1.5 Mood

Mood types encode verbal modality. In the ERG, three types of mood are attested:
indicative, subjunctive, and a subjunctive mood for modal verbs. The most general
mood type, mood, is the appropriate value of the MOOD feature of tense-aspect-mood
feature structures.

The ERG encodes three basic kinds of mood, subjunctive, indicative, and modal sub-
junctive. There are strict variants of all three mood types, as well as one disjunctive
type (indicative or modal subjunctive) and one conjunctive type (indicative or modal
subjunctive).

ICEBERG has implemented mood types with a finite domain over types subjunctive,
modal_subj, and ind (fm), a smyth powerlattice of fm (smm), and a strict variant of fm
(stm). Types fm and smm are closed by the trivial closure over grammar-attested ground
instances plus explicitly added conjunctive types, and the closure of stm is unconstrained.

One greatest lower bound type (glbtype723) appears in the most general satisfier of certain



116 APPENDIX A.

indicative ind+modsubj modal_subj
NSNS
subjunctive indicative* modal_subj*
T V7
subjunctive* ind_or_mod_subj
NS
mood

Figure A.6: ERG mood types

ICEBERG

lexical items and has been given a place in ICEBERG as stm(fm(ind;modal_subj)).

ICEBERG description

fm findom [subjunctive, modal_subj, ind].
smm smyth  fm.

stm strictx fm.

mood sub fm.

sf close trivial(mood_set).

smm close trivial(mood_set).

mood_set gen [{grammar}, smm(ind,modal_subj)].

ICEBERG ground instances
ERG name ICEBERG name
mood mood
subjunctive* subjunctive
indicative* ind
modal_subj* modal_subj
ind_or_mod_subj fm (ind;modal _subj)
continued on next page
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continued from previous page

ERG name ICEBERG name

fm (ind;modal subj;subjunctive)
subjunctive stm(subjunctive)
indicative stm(ind)
modal subj stm(modal subj)
glbtype723 stm (fm(ind;modal subj))
strict_mood stm(fm (ind;modal subj;subjunctive))
ind+modsubj smm (ind,modal subj)

A.1.6 Pernum

Pernum types encode person and number values for use in various forms of agreement.
The ERG combines person and number types into one filter in order to capture properties
of English verb morphology. The most general person-number type, pernum, is the
appropriate value of the PERNUM feature of person-number-gender feature structures.

The ERG first classifies pernum types as non-third-singular versus one-singular or
third-singular, after which non-third-singular is further classified into first-singular versus
non-first-singular, and, finally, non-first-singular is classified into second-person versus
first-plural or third plural. There are strict variants of all these types, as well as a
number of conjunctive types.

ICEBERG has explicitly stated the ERG’s hierarchy of verb-morphology-influenced
basic pernum types, constructing a smyth powerlattice and a strict variant of the base
hierarchy. The smyth powerlattice undergoes the trivial closure over grammar-attested
ground instances plus explicitly stated conjunctive types, and the strict variant closure

is unconstrained. One extra pernum type (threeper) has been added to the signature to
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facilitate the parameterization of pronominal types in §A.1.7.

ICEBERG description

pernum sub [oneor3sg, non3sg, threeper].
non3sg sub [nonisg, onesg].

nonlsg sub [twoper, oneor3pl].

oneor3sg  sub [onesg, threesg].

oneor3pl  sub [onepl, threepl].

twoper sub [twosg, twopl].

threeper  sub [threesg, threepl].

stp strictx pernum.

smp smyth  pernum.

smp close trivial(pernum_set).
pernum_set gen [{grammar}, smp(onepl,onesg),

smp (onepl,twopl),
smp (onepl,twosg) ,
smp (onepl,threepl),
smp (onepl,threesg),
smp (onesg,twopl),
smp (onesg,twosg) ,
smp (onesg,threepl),
smp (onesg,threesg),
smp (twopl,twosg) ,
smp (twopl,threepl),
smp (twopl,threesg),
smp (twosg,threepl),
smp (twosg,threesg),
smp (threepl,threesg) 1J.

ICEBERG ground instances
ERG name ICEBERG name
pernum pernum
lor3pl oneor3pl
lor3sg oneor3sg
nonlsg nonlsg
continued on next page
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continued from previous page

ERG name ICEBERG name
non3sg nona3sg
1per
2per twoper
threeper
1pl* onepl
1sg* onesg
2pl* twopl
2sg* twosg
3pl* threepl
3sg* threesg

strict_pernum
strict_lor3pl
strict_lor3sg
strict_nonlsg
strict_non3sg

strict_2per

1pl
1sg
2pl
2sg
3pl
3sg

1sg_and_1pl

stp(pernum)
stp(oneor3pl)
stp(oneor3sg)
stp(nonlsg)
stp(non3sg)

stp(twoper)

(

(

(

(

(

(
stp(threeper)
stp(onepl)
stp(onesg
stp(twopl
stp(twosg)
stp(threepl)
stp(threesg)

smp(onepl,onesg)

continued on next page
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continued from previous page

ERG name ICEBERG name
1pl_and_2pl smp(onepl,twopl)
1pl_and_2sg smp(onepl,twosg)
1pl_and_3pl smp(onepl,threepl)
1pl_and_3sg smp(onepl,threesg)
1sg_and_2pl smp(onesg,twopl)
1sg_and_2sg smp(onesg,twosg)
1sg_and_3pl smp(onesg,threepl)
1sg_and_3sg smp(onesg,threesg)
2sg_and _2pl smp(twopl,twosg)
2pl_and_3pl smp(twopl,threepl)
2pl_and_3sg smp(twopl,threesg)
2sg_and _3pl smp(twosg,threepl)
2sg_and_3sg smp(twosg,threesg)
3pl_and_3sg smp(threepl,threesg)
lor3pl+1per+nonlsg

1sg*+1per+nonlsg

3sg*+1per+nonlsg

2per+1per+nonlsg

2sg*+2per+1per+nonlsg
2pl*+2per+1per+nonlsg
2per+3sg*+1per+nonlsg
lor3pl+3sg*+1per+nonlsg
1sg*+1or3pl+1per+nonlsg

1pl*+1or3pl+1per+nonlsg

continued on next page
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continued from previous page

ERG name ICEBERG name

3pl*+1lor3pl+1per+nonlsg
2per+1lor3pl
lor3pl+2per+1per+nonlsg
1sg*+2per+1per+nonlsg
1sg*+2per+1per+lor2pl+nonlsg
1pl*+1lor3pl

2sg*+1or3pl

2pl*+1or3pl

3pl*+1lor3pl

A.1.7 Pronouns

Featureless pronoun types are used in combination with person-number (pernum) and
gender types to label semantic indices for the purpose of agreement. The featureless
pronoun types are not the type labels of pronominal lexical entries-there is another set
of pronoun types which are subtypes of word.

The ERG attests six basic types of pronouns, demonstrative, reciprocative, reflex-
ive, impersonal, personal, and “zero” pronouns (for constructions with no extensional
subject). Personal pronouns are further classified as first-plural, first-singular, second
person, and third person.

ICEBERG has implemented pronoun types with five simple types plus a parametric
type (ppro) for personal pronouns. The restriction of ppro is pernum and ppro undergoes

the trivial closure over grammar-attested ground instances.
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Figure A.7: ERG pernum types

std 1pl std 1sg  std 2 std_3

N

demon  impers recip refl std_pron  zero_pron
prontype

Figure A.8: ERG pronoun types

ICEBERG description

prontype sub  [demon, impers, recip, refl, zero_pron, ppro(pn:pernum)].

ppro close trivial(grammar).

ICEBERG ground instances
ERG name ICEBERG name
prontype prontype
demon demon
impers impers
recip recip
refl refl
continued on next page
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continued from previous page

ERG name ICEBERG name
Zero_pron Zero_pron
std_pron ppro(pn:pernum)
std_1pl ppro(pn:onepl)
std_1sg ppro(pn:onesg)
std_2 ppro(pn:twoper)
std_3 ppro(pn:threeper)

A.1.8 Stemhead

Stemhead types mark inflectional affixes, denoting the head constituent types of allowable
stems. The ERG has separate incomparable sets of stemhead types (to mark lexemes)
and ordinary head types (to mark words—§A.3.2) because the grammar does not currently
distinguish between lexemes and words.!

The ERG classifies three basic types of stemheads: adjectival, nominal, and verbal.
Nominal stemheads are further classified as count nouns and mass nouns.

ICEBERG implements stemheads as a parametric type stemhead with one parameter
restricted to a stemhead category type for adj, noun, and verb. There is a parametric
subtype, nstemhead, of stemhead which restricts the stemhead category to noun and adds
a parameter for nominal stemheads. All ground instances are included in the induced

signature.

ICEBERG description

stemhead_cat sub [adj, noun, verb].

'ERG source code
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countnstem massnstem
nstem astem vstem
stemhead

Figure A.9: ERG stemhead types

n_type sub  [count, mass].

stemhead param [cat:stemhead_cat].
nstemhead param [cat:noun,ntype:n_type].
stemhead sub  [nstemhead].

ICEBERG ground instances

ERG name ICEBERG name

stemhead stemhead(cat:stemhead cat)

stemhead(cat:moun)

(
(
(
(

astem stemhead(cat:ad})

vstem stemhead(cat:verb)

nstem nstemhead(cat:noun, ntype:mn_type)
countnstem nstemhead(cat:noun, ntype:count)
massnstem nstemhead(cat:noun, ntype:mass)

A.1.9 Tense

ERG tense types denote grammatical tense. The ERG acknowledges three kinds of

tense: past, present, and future. The most general type, tense, is appropriate to the
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Figure A.10: ERG tense types

TENSE feature of tense-aspect-mood feature structures.
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present

N~ AT

future* past* present*  strict_tense

ERG tense types encode a basic hierarchy of three tenses, past, present, and future.

There is a strict variant of this base hierarchy, as well as two-element conjunctions of

non-strict past, present, and future.

ICEBERG encodes a basic tense hierarchy of three tenses, tense, and constructs both

a smyth powerlattice of tense and a strict variant of tense. The closures of both the

smyth powerlattice and strict variant are unconstrained.

ICEBERG description

tense sub [future, past, present].
smt smyth  temnse.
stt strictx tense.

ICEBERG ground instances

ERG name ICEBERG name
tense tense

future* future

past* past

present™ present
strict_tense stt(tense)

continued on next page
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continued from previous page

ERG name ICEBERG name
future stt(future)
past stt(past)
present stt(present)
past+fut smt (future,past)
pres—+fut smt (future,present)
pres—+past smt (past,present)
smt (future,past,present)

A.1.10 Verb form

Verb-inflectional-form (vform) types encode English verb forms. The ERG contains,
among others, verb form types for finite forms, non-finite forms, base forms, and par-
ticiples. Verb form types appear as appropriate values the VFORM of verbal head types,
which in turn appear as appropriate values for features specifying the constituent head
types of HPSG words and phrases.

The ERG hierarchy of verb forms contains a number of disjunctive types of finite,
infinitive, base, and imperative forms, and a conjunctive type for finite and imperative
forms. There is also a type non_fin which subsumes a mostly incomparable hierarchy of
non-finite verb forms (including gerunds, past participles, and present participles).

ICEBERG implements yform with five higher-order types and a number of explicitly-
added ground-instance subtyping links. The first higher-order type, fv, is a finite domain
over inf, fin, bse, and imp. Type smuv is declared a smyth powerlattice of fv, and stv is
declared a strict variant of fv. Both fv and smv undergo the trivial closure over grammar-
attested ground instances plus an explicitly-added conjunctive type. The closure of stv

is unconstrained. ICEBERG also implements two parametric product types, vpresent
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Figure A.11: ERG verb form types

and pastpart, in order to capture present and past participles. wvpresent undergoes the

trivial closure over grammar-attested ground instances, and the closure of pastpart is

unconstrained. The remaining verb form types have been added by ground-instance

subtyping links.

ICEBERG Description

fv findom
smv smyth
stv strictx
vform sub
prptype sub
non_fin sub

bse sub
non_fin sub

fv(inf;prp) sub

fv close
smv close
vpresent close

vform_set gen

[inf, fin, bse, imp].
fv.

fv.

[fv, non_fin].

[ger, pas].
[vpresent (prp:bool,type:prptype),
pastpart (irreg:bool)].

imp.
[fv(inf;prp), stv(bse)].
[vpresent (prp:plus), inf].

trivial (vform_set).
trivial (vform_set).
trivial(vform_set) .
[{grammar}, smv(fin,imp)].
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ICEBERG ground instances

ERG name ICEBERG name

viorm viorm
fv(bse;fin;imp;inf)

fin_or_bse

bse_or_inf

fin_or imp fv(fin;imp)

fin_or_ inf fv(fin;inf)

inf inf

bse bse

fin* fin

imp_vform* imp
stv(fv(bse;fin;imp;inf))

strict_vform

bse_only
fin

imp_vform

fin+imp

non_fin
inf_or_prp
pSp-or_psp-irreg
psp-irreg

psp

smv (fin,imp)
non_fin

fv(inf;prp)

pastpart (irreg:bool)
pastpart (irreg:plus)

pastpart(irreg:minus)

continued on next page
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Figure A.12: ERG voice types

continued from previous page

ERG name ICEBERG name

vpresent(prp:bool)

prp vpresent (prp:plus)

non_prp vpresent (prp:minus)

ger

pas vpresent (prp:minus,type:pas)

A.1.11 Voice

Grammatical voice is a property of sentential arguments which expresses semantic roles.
World languages contain many kinds of voice, including active, middle, passive, and
antipassive voice. The ERG posits only two kinds of voice: active and passive, which are
subtypes of the most general voice type, voice. There is also a conjunctive type, act+pass.

ICEBERG recognizes that act+pass is actually a member of the smyth powerlattice.

ICEBERG description

voice sub [active, passive].
smvoice smyth voice.
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ICEBERG ground instances

ERG name ICEBERG name

active active

passive passive

voice voice

act+pass smvoice(active,passive)
smvoice(active)
smvoice(passive)
smvoice(voice)

A.1.12 Xmod

Xmod (external modifier) types denote presence and directionality of modifiers external
to a constituent. Xmod types are appropriate to the MODIFIED feature of synsem types.
The ERG encodes three basic xmod types, (Imod, rmod, and notmod), two disjunctive
types, and strict variants of Imod and rmod.

ICEBERG has implemented xmod with a finite domain over rmod, Imod, and notmod
(fr) and a strict variant of fr (smz). Type fr undergoes trivial closure over grammar-

attested ground instances and the closure of smz is unconstrained.

ICEBERG description

fx findom [1mod, rmod, notmod].
smx strictx fx.
xmod sub fx.

fx close trivial(grammar).



A.1. FEATURELESS TYPES

Imod rmod
b
Imod* rmoa* notmod
\VON
hasmod notmod_or_rmod
N/
xmod

Figure A.13: ERG external modifier types
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ICEBERG ground instances

ERG name ICEBERG name

xmod xmod
fx(lmod;notmod;rmod)

hasmod fx(Imod;rmod)

notmod_or_rmod fx(notmod;rmod)

Imod* fx(Imod)

notmod* fx(notmod)

rmod* fx(rmod)

stx(fx(Ilmod;notmod;rmod))
stx(fx(lmod;rmod))
stx(fx(notmod;rmod))
Imod stx(lmod)
(
(

notmod stx(notmod)

rmod stx(rmod)
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A.2 Container types

ICEBERG container types are those types which are not directly related to any linguistically-
motivated component of the grammar, but whose purpose is to provide wrappers for

collections of features. In ICEBERG, types png, tam, and list are classified as containers.

A.2.1 List

HPSG list types implement lists of feature structures, most notably for specifying and
managing subcategorization frames and semantic arguments. HPSG lists have long been
described parametrically,? but, in practice, have been implemented with simple types.

The ERG contains two kinds of lists, difference lists (*diff-list*) and linked-list-style
lists (list). Type list has a number of subtypes which restrict the element types of lists
to different subtypes of synsem.

Because difference lists contain very few subtypes, ICEBERG has focused its paramet-
ric re-implementation on linked-list-style lists. Type list has been re-cast as a parametric
product type with a parameter for element type and a parameter for the value of the
synsem OPT feature. ICEBERG has also introduced three parametric subtypes of list:
e_list, ne_list, and zero_one_list. A number of simple types and ground instances subtyp-
ing links have been explicitly added, and all parametric types are closed by trivial closure
over grammar-attested ground instances.

A number of ERG list types introduce constraints on feature values of their elements—
constraints which greatly contribute to a rather unintuitive and cumbersome hierarchy
of list types and which make succinct parameterization difficult. In the opinion of this
author, constraints on feature values of list elements are more appropriately introduced
by the element types themselves, and by eliminating those constraints from list types,

one should expect to find a more intuitive parameterization. Because lists are so tightly

Zsee, for instance, [Pol90] and [PS94].
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*substocons* *unexpnulI* *pronulI*

* procons>

*prolist*

1-plus-list *onull* *ocons* *unexpcons*

ne list *unexplist*

Figure A.14: ERG list types

woven into the ERG principles and constraints, we have not yet attempted such a re-

factoring, but it remains an obvious candidate for further investigation.

ICEBERG description

’¥diff-list*’ sub
’0-1-dlist’ sub
list param
list sub
zero_one_list sub
ne_list sub
ne_list(x,op) sub
list(x,op) sub
ne_list(x,op) sub
subst_list sub
e_list(x:unexpressed,op:plus) sub
zero_one_list(x:handle) sub
ne_subst_list sub
ne_list(x:unexpressed,op:plus) sub
list close
e_list close
ne_list close
zero_one_list close
one_list close

[’*letter-diff-list*’, ’0-1-dlist’].

[’0-dlist’, ’1-dlist’].
[x:syn_sign,op:bool].

[e_list, ne_list, zero_one_list].
[one_list].
[one_list].

[’1-plus-list’].

[subst_list].

[ne_subst_list].

[ne_subst_list, e_subst_list].
[e_subst_list, e_list(x:handle),
e_list(x:unexpressed,op:minus),
e_list(x:pro_ss)].
[e_list(x:handle)].
[’*substocons*’].
[’*substocons*’] .

trivial (grammar) .
trivial (grammar) .
trivial (grammar) .
trivial(grammar) .
trivial(grammar) .
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ICEBERG ground instances

ERG name ICEBERG name

e list e_list(x:syn_sign)

ne _list ne_list(x:syn_sign)

1-list one_list(x:syn_sign)

0-1-list zero_one_list (x:syn_sign)
1-plus-list 1-plus-list

*gaplist™ list(x:gap)

*gapcons™ ne_list(x:gap)

*gapnull* e_list(x:gap)

*prolist™ list(x:pro_ss)

*procons™ ne_list(x:pro.ss)

*pronull* e_list(x:pro_ss)

*olist* list (x:unexpressed,op:plus)
*ocons™* ne_list(x:unexpressed,op:plus)
*onull* e_list(x:unexpressed,op:plus)
*unexplist™* list (x:unexpressed,op:minus)
*unexpcons* ne_list(x:unexpressed,op:minus)
*unexpnull* e_list(x:unexpressed,op:minus)
*handlelist™* list(x:handle)

*handlecons™ one_list(x:handle)
*handlenull* e_list(x:handle)

*substlist* subst _list

*substcons™ ne_subst_list

*substnull* e_subst _list

continued on next page
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continued from previous page

ERG name ICEBERG name

glbtype882 zero_one_list (x:handle)

A.2.2 Person-Number-Gender

Person-number-gender types express the relationship of grammatical categories person,
number, and gender and are implemented as a container for pernum and gender types.
There is only one person-number-gender type, png, which introduces two features, PERNUM

and GENDER, and png is appropriate to the PNG feature of index types.

ICEBERG description

container sub png.

A.2.3 Tense-Aspect-Mood

Tense-aspect-mood types express the relationship of grammatical categories tense, aspect,
and mood and are implemented as a container for tense, aspect, and mood types. The
most general tense-aspect-mood type, tam, introduces three features, TENSE, ASPECT, and
MOQD, and tam is appropriate to the TAM feature of head types and event types. More
recent versions of the ERG introduce subtypes of tam, but the ported version used as

the basis for ICEBERG has only one tense-aspect-mood type.

ICEBERG description

container sub tam.
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A.3 Syntax

ICEBERG syntax types include the ERG types related to the syntactic component of

the grammar: category, head, and valence types.

A.3.1 Category

According to [PS94], HPSG category types should encode both the syntactic category of
a word and the arguments is requires. The ERG fulfills these requirements by positing a
HEAD feature and a valency list feature VAL, while also positing three boolean indicator
features and a number of subtypes which classify categories by constituent head. The
most general ERG category type, cat_min, is appropriate to the CAT feature of ERG local
types.

ICEBERG implements category types with a parametric product type, caf, which
classifies categories by category head, minimality, and whether a specifier is required.
We posit two parametric subtypes of cat, a parametric product for verbal categories,
cat_v, which introduces both a verb form parameter and a parameter indicating main-
clausness, and a parametric product for nominal categories, cat_n, which introduces a
parameter for case. One simple type, prd_cat, is posited as a subtype of cat(min:minus).
All three parametric product types undergo the trivial closure over grammar-attested

ground instances.

ICEBERG description

cat param [head:head,min:bool,spec:bool].

syntax sub  [cat].
cat(min:minus) sub  [prd_cat].

cat sub cat_v( head : fh(comp;verb),
min : minus,
mc ¢ luk,

vform : vform ).
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s cat_fin_or_imp s cat_fin
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s cat s _cat_fin_unspec
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Figure A.15: ERG category types

cat sub cat_n( head : sth(fh(comp;gerund;modnp;noun)),
case : case ).

cat close trivial(grammar).

cat_n close trivial(grammar).

cat_v close trivial(grammar).

ICEBERG ground instances

nomp_cat_min
nomp-_cat
nomp_cat_acc

nomp_cat_acc_min

ERG name ICEBERG name

cat cat(min:minus)

cat_min cat(min:bool)

nbar_cat cat(head:noun,min:minus,spec:plus)
pp-cat cat(head:prep,min:minus)

cat_n(min:bool)

cat_n(min:minus)

cat_n(min:minus,case:acc)
(

cat_n(case:acc)

continued on next page




138

AprPPENDIX A. ICEBERG

continued from previous page

ERG name

ICEBERG name

nomp-cat_nom
nomp_cat_nom_min
np_cat_acc
np_cat_acc_min
np_cat_nom

np_cat_nom_min

cat_n(head:mobile,min:minus,case:nom)
cat_n(head:mobile,case:nom)
cat_n(head:noun,min:minus,case:acc)
cat_n(head:noun,case:acc)
cat_n(head:noun,min:minus,case:nom)

(
(
(
(
(
cat_n(head:noun,case:nom)
(
(
(
(
(

vp_cat cat_v(spec:plus)

vp_bse_cat cat_v(head:verb,vform:stv(bse),spec:plus)

vp-inf_cat cat_v(vform:stv(inf),spec:plus)

s_cat cat_v(head:verb,mc:plus)

s-cat_fin cat_v(head:verb,mc:plus,vform:stv(fin))
A.3.2 Head

Head types encode the kinds of constituent heads supported by the ERG. The most

general ERG head type, head_min is the appropriate value for the HEAD feature of category

types.

The ERG head types filter contains 90 types, and, after greatest lower bound com-

pletion, contains 247. The central portion of the hierarchy is a number of disjunctive,

conjunctive, and strict variant types of basic head types for verbs, nouns, adjectives,

gerunds, complementizers, prepositions, and modifier noun phrases.

There are other

mostly independent types for specifiers, punctuation, adverbs, and numbers.

ICEBERG has implemented head types with a finite domain type, fh, over types adj,

comp, gerund, modnp, noun, prep, and verb, a smyth powerlattice (smh) of fh, and a

strict variant (sth)of fh. Both fh and smh are closed by trivial closure over grammar-




A.3. SYNTAX 139

Figure A.16: ERG head types

attested ground instances plus explicitly added conjunctive types, and the closure sth is
unconstrained. The remaining head types have been recorded with simple types and two

parametric types which classify nouns and gerunds by case.

ICEBERG description

subst_gen gen [{grammar},
smh(adj,gerund) ,
smh (adj ,modnp) ,
smh (adj,noun),
smh(adj,prep),
smh(adj,verb),
smh (gerund,verb) ,
smh (modnp,noun) ,
smh (modnp, prep) ,
smh (noun, prep) ,
smh (noun,verb) ,
smh (prep,verb) ,
smh(adj, fh(comp;gerund;verb)),
smh(adj, fh(prep;verb))].

fh close  trivial(subst_gen).

smh close  trivial(subst_gen).

sth close unconstrained.

fh findom [adj, comp, gerund, modnp, noun, prep, verb] .

smh smyth  fh.
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smt strictx fh.

subst sub th.

adv_type sub [deg, lex, norm].

adv_lex_type sub [normlex, neg].

adv sub [lex_adv(type:lex,ltype:adv_lex_type)].
adverbee sub [st_adverbee, gerund, fh(comp;verb)].
st_adverbee sub [adv(type:lex), adv(type:norm),

sth(gerund), sth(fh(comp;verb))].

sth(noun) sub [pnoun(case:case)].

sth(gerund) sub [pgerund(case:case)].

mobile sub [mobile_nom, adj, prep, adv(type:norm)].
mobile_nom  sub [pnoun(case:acc), pgerund(case:acc)].
func sub [adv(type:adv_type), det, detspec].
’poss-able’ sub [det, fh(comp;gerund;modnp,noun)].

det sub [intdet] .

punct sub [left_edge, right_edge].

intsort sub [intadj, intdet].

intadj sub [intadjn, ’intadj9-’].

digitn sub [intadjn, digit9, ’digit9-’].

digit9 sub [intadj9, digit6].

digit6 sub [intadj6, digit3].

digit3 sub [intadj3, digit2].

digit?2 sub [intadj2, digiti].

digitl sub [intadji].

’digit9-’ sub [’digit6-"].

'digit6-’  sub [’digit3-’].

'digit3-’  sub [*digit2-’].

’digit2-’ sub [’digit1-"].

’intadj9-’  sub [intadj9, ’intadj6-’].

’intadj6-’>  sub [intadj6, ’intadj3-’].

’intadj3-’  sub [intadj3, ’intadj2-’].

’intadj2-’  sub [intadj2, intadji].

real_head sub [subst, intsort, disc_adverbee, digitn, mobile].
head sub [real_head, ’poss-able’, strict_head].
strict_head sub [sth(fh(adj;comp;gerund;modnp;noun;prep;verb)),

no_head, ’root-marker’, func, punct, intadjl.
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fh(comp;gerund;modnp;noun) sub [mobile_nom].

fh(comp;gerund;verb)

sub [’root-marker’].

141

ICEBERG ground instances

verb_or_comp

ERG name ICEBERG name

head real_head

head_min head

subst real_subst

glbtype737 strict_head

adj* ad]

comp* comp

gerund* gerund

modnp* modnp

noun* noun

prep* prep

verb* verb

adj sth(adj)

comp sth(comp)

gerund sth(gerund)

modnp sth(modnp)

prep sth(prep)

verb sth(prep)
th(adj;comp;gerund;modnp;noun;prep;verb)

V_or.g fh(comp;gerund;verb)

n.or.v fh(gerund;noun;verb)

(

continued on next page




142

AprPPENDIX A. ICEBERG

continued from previous page

ERG name ICEBERG name

a_orp fh(adj;prep)

n_0r_p fh(noun;prep)

V_Or_p th(prep;verb)
sth(fh(adj;comp;gerund;modnp;noun;prep;verb))
sth(fh(comp;gerund;verb))
sth(fh(gerund;noun;verb))
sth(fh(comp;verb))
sth(fh(adj;prep))
sth(fh(noun;prep))
sth(fh(prep;verb))

a_and_g smh (adj,gerund)

a_and_p smh (adj,prep)

mod_and_a smh(adj,modnp)

mod_and_n
mod_and_p
v_and_a
v_and_g
v_and_n
v_and_p
n.and-a
n_and_p
glbtype740
glbtype777

adv

smh(modnp,noun)
smh(modnp,prep)

smh(adj,verb)

smh(noun,verb)
smh (prep,verb)
smh (adj,noun)

smh(noun,prep)

smh (fh(comp;gerund;verb),adj)

(
(
(
(
(
(
smh(gerund,verb)
(
(
(
(
(fh
(

smh (adj,th(prep;verb))

adv(type:norm)

continued on next page
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ERG name

ICEBERG name

basic_adv

basic_lexadv

adv

adv(type:lex)

deg_adv adv(type:adeg)

lexadv lex_adv(ltype:normlex)
negadv lex_adv(ltype:neg)
glbtype742 st_adverbee

gerund _acc pgerund (case:acc)

gerund_nom

pgerund(case:nom)

noun_acc pnoun(case:acc)

noun_nom pnoun(case:nom)

A.3.3 Valence

ERG walence types manage subcategorization requirements and are appropriate to the
VALENCE feature of category types. In [PS94], valence types did not exist; category
types simply took a subcategorization list feature. The ERG has since decomposed
subcategorization lists into four lists: COMP, SUBJ, SPR, and SPEC, introducing wvalence
types as a holder for these subcategorization lists.

There are only two wvalence types in the ERG, one of which is simply used for de-
layed feature introduction. Because of this, there is no opportunity for parametric re-

factorization of valence subtypes.

ICEBERG description

valence_min sub [valence].
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valence

T

valence_min

Figure A.17: ERG valence types

A.4 Semantics

ICEBERG semantics types include all ERG types which contribute to the minimal re-
cursion semantics (MRS) [CFSP99] component of the grammar: conjunction, content,

context, keys, and thing types.

A.4.1 Conjunction

Conjunction types collect semantic indices and handles of conjuncts for the purposes
of building larger coordinate structures. The most general conjunction type, conyj, is

appropriate to the CONJ feature of local types.

The ERG contains five basic conjunction types: atomic, complex, phrasal, numeric,
and nil. Atomic conjunctions are further classified as both, either, neither, and nor. There
are a number of disjunctive types, and a type named strict-conj which, at first glance,
appears to denote a strict variant. Further inspection shows, however, that strict-conj is
a misnomer; strict-conj is effectively denoting the disjunctive type atomic or complex or

num.

ICEBERG implements conjunction types as a finite domain over atomic, complez,
phrasal, numeric, and nil conjunctions. Type atomic is further classified into lexically
specific type, both, either, neither, and nor. The finite domain undergoes trivial closure

over grammar-attested ground instances.
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atomic-conj complex-conj num-conj cnil
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strict-conj phr-conj cnil_or_numconj
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real-conj
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conj

Figure A.18: ERG conjunction types

ICEBERG description

conj findom [atomic, complex, phr, num, nil].
atomic sub [both, either, neither, nor].

conj close trivial(grammar).

ICEBERG ground instances

ERG name ICEBERG name

conj conj(atomic;cnil;complex;num;phr)
real-conj conj(atomic;complex;num;phr)
strict-conj conj(atomic;complex;num)
cnil_or_numconj conj(cnil;num)

phr-conj phr

cnil cnil

num-conj num

complex-conj complex

continued on next page
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ERG name

ICEBERG name

atomic-conj
nor

neither
either

both

atomic
nor
neither
either

both

A.4.2 Content

Content types include the relations and rules required for minimal-recursion semantics,

all of which are implemented as subtypes of type cont. Our ported version of the ERG

included numerous semantic relation types and several MRS rule types, however, because

the ERG has since eliminated many relation types (the ERG now uses lexical item or-

thography to mark relations [FB04]), and because of time constraints, ICEBERG has

not performed any re-factoring of content types.

A.4.3 Context

Context types encode contextual information via a list of presuppositions. These pre-

suppositions are used as prerequisites for the satisfaction of semantic relations.

The context filter contains two types, one of which is used for delayed feature intro-

duction. ICEBERG has simply kept both types.

ICEBERG description

ctxt_min sub ctxt.




A 4.

SEMANTICS

ctxt
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ctxt_min

Figure A.19: ERG context types

keys
keys km

keys k

keys min

Figure A.20: ERG keys types

A.4.4 Keys

147

ERG keys types store MRS “key” relations and are appropriate to the KEYS feature of

local types. The ERG contains a chain of four keys types, introducing features at each

type. ICEBERG has simply adopted the four ERG types.

ICEBERG description

keys_min sub keys_k.
keys_k  sub keys_km.
keys_km sub keys.
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A.4.5 Thing

Feature structures of ERG type mod-thing are the structures to which thematic roles
are assigned, as sketched in [PS94]. In addition, subtype individual introduces a person-
number-gender feature for use in agreement. ERG things are classified into events, in-
dices, and whether the index is part of a conjunction.

ICEBERG has followed the ERG by classifying mod-thing into types thing and noth-
ing and classifying type thing as handle, eventtime, hole, or individual. individual has
been implemented as a parametric type with parameters for semantic type, explicitness,
fullness, and conjunctiveness, and has a parametric subtype for indices (which in turn
has a parametric subtype for explicit indices). All three parametric types undergo trivial
closure over a generator set of grammar-attested types plus explicitly added conjunction

(cong:plus) types.

ICEBERG Description

semtype sub [(event;index)].
(event;index) sub [event, index].
indextype sub  [deg, (noind;ref)].
(noind;ref) sub [ref, noind].

explindtype sub  [it, ithere].

’mod-thing’ sub  [thing, nothing].

thing sub  [eventtime, handle, hole].

thing sub  ind ( sem : semtype,
expl : bool,
full : bool,
conj : bool ).

ind sub  index_ind( sem : index,

indtype : indextype ).

index_ind(sem) sub expl_ind ( expl : plus,
explind : explindtype) .

ind close trivial(ind_set).
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conj_full_deg-ind conj_full_ref-ind
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Figure A.21: ERG thing types

index_ind close trivial(ind_set).
expl_ind close trivial(ind_set).

ind:sem:sevent_or_sindex,expl:minus) sub disc_frag.

ind_set gen  [{grammar},
ind((event;index) ,minus,bool,plus),
ind (event,minus,bool,plus),
index_ind (index,minus,plus,plus,noind),
index_ind(index,minus,bool,plus,ref),
index_ind (index,minus,bool,plus,deg),
index_ind(index,minus,plus,plus,ref),
index_ind (index,minus,plus,plus,deg),
index_ind(index,minus,bool,plus,noind),
index_ind (index,minus,bool,plus,indextype)].
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ICEBERG ground instances

ERG name ICEBERG name
individual ind(expl:bool)

non_expl ind (expl:minus)

event ind(sem:event,expl:minus)

event_or_index
conj-ind
conj_event

index

full_index
non_expl-ind

full non_expl
ref-ind

deg-ind

full ref-ind
full_deg-ind
conj_full non_expl
conj_ref-ind
conj_deg-ind
conj_full ref-ind
conj_full deg-ind
conj_non_expl-ind
expl-ind

it-ind

there-ind

(
(
(
ind(sem:(event;index),expl:minus)
ind(sem:(event;index),expl:minus,conj:plus)
ind(sem:event,expl:minus,conj:plus)

index _ind(expl:bool)

index_ind (full:plus)

index_ind (expl:minus)
index_ind(expl:minus,full:plus,indtype:(noind;ref))
index_ind(expl:minus,indtype:ref)
index_ind(expl:minus,indtype:deg)
index_ind(expl:minus,full:plus,indtype:ref)
index_ind(expl:minus,full:plus,indtype:deg)
index_ind(expl:minus,full:plus,conj:plus,indtype:noind)
index_ind(expl:minus,conj:plus,indtype:ref)
index_ind(expl:minus,conj:plus,indtype:deg)
index_ind(expl:minus,full:plus,conj:plus,indtype:ref)
index_ind(expl:minus,full:plus,conj:plus,indtype:deg)
index_ind (expl:minus,conj:plus,indtype:noind)
expl_ind(full:bool)

expl_ind(full:plus,explind:it)

expl_ind(explind:ithere)

continued on next page
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ERG name

ICEBERG name

full_there-ind
glbtype888
glbtype889
glbtype890

expl_ind(full:plus,explind:ithere)
index _ind(expl:minus,full:plus)
index_ind(expl:minus,conj:plus)

index_ind(expl:minus,full:plus,conj:plus)

A.5 Sign structure

Sign structure types are those which combine syntax and semantics and argument struc-

ture to form ERG signs: local, non-local, synsem, and sign types (figure A.22).

sign

SYNSEM

ARGS

synsem

LOCAL [local]

NON-LOCAL |:n()n-]0(:a]:|

_list(sign)}

Figure A.22: ERG sign feature structure

A.5.1 Local

HPSG local types encode local syntactic and semantic information. According to [PS94],

local types should contain features for grammatical category, content, and context, and

should be appropriate to the LO

also include features required fo

CAL feature of synsem types. In the ERG, local types

r coordination. The ERG filter of local types is quite
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flat; there are a sequence of types used for delaying feature introduction, after which the
filter fans out into a number of maximally specific sister types.

ICEBERG has implemented a parametric type local which captures delayed feature
introduction, after which the remaining simple types have been added by ground-instance
subtyping links. ICEBERG closes local by trivial closure over grammar-attested ground

instances.

ICEBERG description

mod_type sub [isect, scopal, disc, none].

min sub  [basic].

basic sub  [reall.

avm sub  [local(mod:mod_type, expr:min)].
local(expr:real) sub  [non_fin_verb, verb_participle_affix,

plur_noun, pos_adj, sing_noun, non_perf,
’-1y’, er_comp_adj, est_super_adj,
mass_noun] .

non_fin_verb sub  [psp_verb, prp_verb, bse_verb].
local(mod:none,expr:real) sub [psp_verb].

verb_participle_affix sub  [prp_verb].

non_perf sub  [fin_verb].

fin_verb sub [past_verb, pres_verb, subjunctive_verb].
pres_verb sub  [non_third_sg_fin_verb, third_sg_fin_verb].
local close trivial(grammar).

ICEBERG ground instances

ERG name ICEBERG name

int_mod_local local(mod:isect, expr:real)
intersective_mod local(mod:isect, expr:mintype)
local_min local(mod:mod_type, expr:mintype)
local local(mod:mod_type, expr:real)

continued on next page
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ERG name

ICEBERG name

local_basic
scopal_mod
scopal_mod_local
nomod local

ly

bse_verb
er_comp_adj
est_super_ad]j
fin_verb
mass_noun
non_fin_verb
non_perf
non_third_sg_fin_verb
past_verb
plur_noun
pos_adj
pres_verb
prp_verb
psp_verb
sing_noun
subjunctive_verb

third_sg_fin_verb

verb_participle_affix

local(mod:mod _type, expr:basic)
local(mod:scopal, expr:mintype)
local(mod:scopal, expr:real)
local(mod:none, expr:real)
ly

bse_verb

er_comp_adj

est_super_adj

fin_verb

mass_noun

non_fin_verb

non_perf
non_third_sg_fin_verb
past_verb

plur_noun

pos_adj

pres_verb

prp_verb

psp_verb

sing_noun

subjunctive_verb

third sg_fin_verb
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third_sg_fin_verb non_third_sg_fin_verb

pres_verb subjunctive_verb past_verb
psp_verb pg/ bse_verb fin_verb
int_mod_local est_super_adj mass_noun nomod_local non_fin_verb verb_participle_affix plur_noun pos_adj sing_noun non_perf -ly er_comp_adj scopal_mod_local

!

local_min
mod_local

Figure A.23: ERG local types

non-local

T

non-local_min

Figure A.24: ERG non-local types

A.5.2 Non-local

HPSG non-local types manage unbounded dependencies. Non-local types are appropriate
to the NON-LOCAL feature of synsem types and introduce three features: SLASH, QUE, and
REL. The ERG contains only two non-local types, one of which is used for delayed feature

introduction. We have not performed any higher-order re-factoring of non-local types.

ICEBERG description

’non-local_min’ sub ’non-local’.
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A.5.3 Synsem

HPSG syntax-semantics (synsem) types encode all information that can be subcatego-
rized for. Local information is encoded via a LOCAL feature, and non-local information
is encoded via a NON-LOCAL feature. Although HPSG is a “system of signs”, HPSG sign
types simply a contain a SYNSEM feature, a phonology feature, and an argument list.

The ERG sysem type hierarchy is complex, containing 612 types, 266 of which are
GLB completion types. The hierarchy is most succinctly described as containing mostly
independent filters for each kind of part of speech and each kind of phrase. There are also
a number of more general synsem types which encode number of arguments and valency
considerations and which are subsumed by maximally (or near maximally) specific lexical
and phrasal synsems.

Figure A.25 is a modulated sketch of the synsem filter. Each circled node refers to a
set, of synsem types and each uncircled node refers to a single synsem type. A link between
nodes denotes an IS-A relationship between at least one element in each module. Due to
time considerations, ICEBERG has not re-factored synsem types—the current ICEBERG

grammar simply contains the ERG synsem hierarchy.

A.5.4 Sign

HPSG signs, as defined in [PS94], are “structured complexes of phonological, syntactic,
semantic, discourse, and phrase-structural information.” Signs represent independent
linguistic entities—sentences, words, and phrases, and all HPSG grammar rules are defined
over sign types. Every node in an HPSG parse tree is a sign.

The ERG filter of sign types contains four major kinds of signs: words, phrases,
lexical rules, and grammar rules. As evidenced in figure A.26, phrases, words, and lexical
rules are mutually independent, and each grammar rule is a speciation of some phrase

type. Lexical rule types are used for derivational and inflectional morphology in order
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GRAMMAR_RULES

\

PHRASES LEX_RULES WORDS

T T T

phrase lex_rule_supermost word
NSNS
lingo_rule phrase_or_lexrule word_or_lexrule
sign
\
basic_sign word_or_lexrule_min
NS
sign_min

Figure A.26: ERG sign types

to capture morphological patterns and to avoid storing all inflected and derived forms of

lexical entries.

In the ERG there are lexical rules for, among others, passives, gerunds, dative shifts.
The lexical rule hierarchy is quite flat, implementing a very small hierarchical base struc-
ture, after which most lexical rules are immediate subtypes of lex_rule. For this reason
ICEBERG has simply imported lexical rules from the ERG and has not attempted any

higher-order re-factoring.

Phrase and word types have been re-implemented with parametric types and will be

described in §A.6 and §A.T.
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A.6 Phrases

Phrasal signs encode all the syntactic constructions licensed by the HPSG grammar.
In particular, phrases are used by gramamr rules to determine how daughters combine
in a parent structure. The ERG derives its hierarchy of phrase types from [Sag97]’s
classification of English relative clauses, extending Sag’s classification to handle other
constructions and to provide a more fine-grained analysis of English phrases.

The phrase hierarchy is an obvious candidate for parameterization. Sag explicitly
classified phrases by CLAUSALITY and HEADEDNESS dimensions, but there are nu-
merous other dimensions of classification at work in the ERG, including arity, head
position, finiteness, and argument type.

ICEBERG has implemented phrases with a hierarchy of parametric product types. At
the basic level, there is a phrase type which contains six parameters and which is subtyped
by 18 other parameteric types and a small number of simple types. All parametric phrase
types undergo trivial closure over the set of grammar-attested ground instances. Because
there are many different kinds of phrases which are not clauses, ICEBERG has broken
ranks with [Sag97] by replacing the clausality dimension with a parametric type clause

and adding other parametric types for non-clausal phrases.

A.6.1 Basic phrase classification

At the base of ICEBERG’s phrase hierarchy is a parametric type, phrase, with param-
eters for arity (binary or unary), headedness, head position (initial or final), phrasality
(whether the mother constituent is actually a phrase or is a lexical construction like
“twenty-two”), rule status, and direction of the “key” rule argument (left or right).
General cross-classified phrase types such as headed_phrase and unary_phrase are ground
instances of phrase.

Type phrase is subtyped by an additional foundational phrase type, nezus_phr, which
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serves as the common supertype of all phrasal constructions which support unbounded
dependencies—head-filler phrases, head-complement phrases, head-subject phrases, head-
specifier phrases, and clauses. Head-nexus phrases implement the wh-inheritance and
slash-inheritance principles developed in [Sag97] to handle extraction and pied-piping.
Though phrases supporting Sag’s wh-inheritance principle must propagate both their
lists of indices and lists of quantifiers, the ERG factors the wh-principle into two con-
straints to allow phrases to propagate either list independently. ICEBERG implements
nexus phrases with a parametric type, nexus_phr, which subtypes phrase and introduces
parameters for quantifier passing (que), index passing (rel), and slash category propaga-

tion (slash).

ICEBERG description

head_pos sub [initial, final].
arity_type sub  [unary, binary].
rule_dir sub [r_1, 1_r].

lexroot sub  phrase ( headed : bool,

arity : arity_type,

head : head_pos,

phrasal : bool,

rule : bool,

rdir : rule_dir ).
phrase sub  nexus_phr( headed : plus,

que : bool,

rel : bool,

slash  : bool).
phrase close trivial(grammar) .

nexus_phr close trivial(grammar) .
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ICEBERG ground instances

ERG name ICEBERG name
phrase phrase(headed:bool)
lingo_rule phrase(rule:plus)

binary _rule_left_to_right
binary _rule_right_to_left
headed_phrase
non_headed_phrase
binary_phrase
unary_phrase
binary_headed_phrase
head_only

head_initial

head _final

phrasal
head_nexus_que_phrase
head_nexus_rel_phrase
head_nexus_phrase

head_valence_phrase

phrase(rule:plus,rdir:] r)
phrase(rule:plus,rdir:r_1)
phrase(headed:plus)

phrase(headed:minus)

(

(

(

(

(

(

phrase(arity:binary)

phrase(arity:unary)

phrase(headed:plus,arity:binary)

phrase(headed:plus,arity:unary)

phrase(headed:plus,arity:binary,head:initial)

phrase(headed:plus,arity:binary,head:final)

phrase(phrasal:plus)

nexus_phr(que:plus)

nexus_phr(rel:plus)

nexus_phr(rel:plus,que:plus)
(

nexus_phr(rel:plus,que:plus,slash:plus)

A.6.2 Appositional phrases

Appositional phrases are constructions consisting of adjacent units having identical refer-
ents. The ERG considers the first unit to be the phrasal head and classifies appositional
phrases as binary head-initial phrases. ICEBERG posits a parametric subtype, appos_phr,

of phrase which refines the arity, headed, and head parameters.
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ICEBERG description

phrase sub  appos_phr( arity : binary,
headed : plus,
head : initial ).

appos_phr close trivial (grammar) .

ICEBERG ground instances

ERG name ICEBERG name
appos_phr appos_phr(rule:bool)
appos_rule appos_phr(rule:plus,rdir:r_1)

A.6.3 Clauses

Clauses are syntactic units which generally contain a subject and predicate, and which
express a proposition. The ERG clauses follow the classification in [Sag97] wherein max-
imally specific clause types inherit from CLAUSALITY and HEADEDNESS dimensions.
ICEBERG has implemented clauses as a parametric subtype of nexus_phr with additional
parameters for relativeness, clausal type (declarative, imperative, or interrogative), and
finiteness. Headedness (as well as arity, wh-inheritance, and slash-inheritance) classifi-
cation is achieved via parameters inherited from nezus_phr. Relative clauses include a

simple subtype for a head filler rule.

ICEBERG description

cl_type sub [cl_decl, cl_imp, cl_interrog].

nexus_phr sub clause( phrasal : plus,
clrel : bool,
cltype : cl_type,
finite : bool ).
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clause close trivial(grammar) .

clause(clrel:plus,rule:plus,rdir:1_r) sub filler_head_rule_rel.

ICEBERG ground instances

non_rel_clause
decl

imp

imperative_rule

interrog

wh_interrog

wh_interrog_fin

non_wh _rel _cl
fin_non_wh_rel cl
inf non_wh_rel _cl
fin_non_wh_rel_rule

inf_non_wh_rel_rule

ERG name ICEBERG name
clause clause(clrel:bool)
rel cl clause(clrel:plus)

clause(headed:plus,rel:plus,clrel:minus)

(
(
(
clause(headed:plus,rel:plus,clrel:minus,cltype:cl_decl)

clause(headed:plus,arity:unary,que:plus,rel:plus,
slash:plus,clrel:minus,cltype:cl imp)

clause(headed:plus,arity:unary,rule:plus,que:plus,rel:plus,
slash:plus,clrel:minus,cltype:cl imp)

clause(headed:plus,rel:plus,clrel:minus,cltype:cl_interrog)

clause(headed:plus,arity:binary,rel:plus,clrel:minus,
cltype:cl_interrog)

clause(headed:plus,arity:binary,rel:plus,clrel:minus,
cltype:cl_interrog,finite:plus)

clause(arity:unary,clrel:plus)

clause(arity:unary,clrel:plus,finite:plus)

(

(
clause(arity:unary,clrel:plus, finite:minus)
clause(arity:unary,rule:plus,clrel:plus,finite:plus)
(

clause(arity:unary,rule:plus,clrel:plus,finite:minus)

A.6.4 Coordinate phrases

Coordinate phrases are classified as binary non-headed phrases. ICEBERG implements

coordinate phrases with a parametric type, coord_phr, which subtypes phrase, refines the
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headed and arity parameters inherited from phrase, and adds parameters for coordination

height and propositionality.

ICEBERG description

coord_height sub  [top, mid].

phrase sub  coord_phr( arity : binary,
headed : minus,
prop : bool,

height : coord_height ).

coord_phr close trivial(grammar) .

ICEBERG ground instances

ERG name ICEBERG name

coord_phr coord_phr(rule:bool)

top_coord_rule coord_phr(rule:plus,rdir:r_1 height:top)
mid_coord_rule coord_phr(rule:plus,rdir:r_1 height:mid)
top_coord_prop_rule coord_phr(rule:plus,rdir:r_1,prop:plus,height:top)
top_coord_nonprop_rule coord_phr(rule:plus,rdir:r 1, prop:minus, height:top)
mid_coord_prop_rule coord_phr(rule:plus,rdir:r_1,prop:plus,height:mid)
mid_coord_nonprop_rule coord_phr(rule:plus,rdir:r_l,prop:minus,height:mid)

A.6.5 Extracted argument phrases

Extracted argument phrases can be bifurcated into two distinct classes: extracted sub-
ject phrases and extracted complement phrases, both of which facilitate extraction of
subjects and complements in unbounded dependency structures via the slash-inheritance

and wh-inheritance principles. The ERG classifies extracted argument phrases as unary



A.6. PHRASES 165

headed phrases and posits parameters for classification by argument type (subject or
complement) and finiteness. ICEBERG has implemented extracted argument phrases as
a parametric type, extr_arg_phr, which subtypes nezus_phr and introduces parameters for
argument type and finiteness. In addition, finite extracted subject phrases are classified

as declarative clauses.

ICEBERG description

arg_type sub  [arg_subj, arg_comp].

nexus_phr sub  extr_arg_phr( headed : plus,
arity : unary,
que : plus,
rel : plus,
slash : plus,

argtype : arg_type,
finite : bool ).

extr_arg_phr close trivial(grammar).

clause(headed:plus,rel:plus,clrel:minus, cltype: cl_decl)
sub extr_arg_phr(argtype:arg_subj,finite:plus).

ICEBERG ground instances

ERG name ICEBERG name

extracted_arg_phrase extr_arg_phr(argtype:arg_type)
extracted_comp_phrase extr_arg_phr(argtype:arg_comp)

extracomp_rule extr_arg_phr(rule:plus,argtype:arg_comp)
extracted_subj_phrase extr_arg_phr(argtype:arg_subj)
extracted_subj_phrase_fin extr_arg_phr(argtype:arg_subj,finite:plus)
extrasubj_fin_rule extr_arg_phr(rule:plus,argtype:arg_subj,finite:plus)
extracted_subj_phrase_inf extr_arg_phr(argtype:arg_subj,finite:minus)
extrasubj_inf_rule extr_arg_phr(rule:plus,argtype:arg_subj,finite:minus)
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A.6.6 Head adjunct phrases

Head-adjunct phrases implement [Sag97]’s head-adj-phr—for phrases with modifiers that
aren’t specified by their valency requirements. The ERG classifies head-adjunct phrases
as headed phrases which support wh-inheritance and classifies types of head-adjuncts by
head-position (initial or final), modifier type, and others. ICEBERG has implemented
head-adjunct phrases as a parametric subtype, head_adj_phr, of nexus_phr which adds
parameters for modifier type, ’h’ versus 'n’ distinctions, and to distinguish relative clause
adjuncts. head_adj_phr also includes a parametric subtype, eztr_adj_phr, for extracted

adjuncts.

ICEBERG description

mod_type sub [isect, scopal, disc, none].
hn_type sub (h, n].

nexus_phr  sub head_adj_phr( phrasal : plus,
headed : plus,

rel : plus,

que : plus,

hmod : mod_type,

hn : hn_type,

relcl : bool ).
head_adj_phr sub extr_adj_phr( arity : unary ).

head_adj_phr close trivial(grammar).
extr_adj_phr close trivial(grammar) .

ICEBERG ground instances

ERG name ICEBERG name

head_mod_phrase head_adj_phr(arity:arity_type)
head_mod_phrase_simple head_adj_phr(arity:binary)
scopal_mod_phrase head_adj_phr(arity:binary,hmod:scopal)

continued on next page
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continued from previous page

ERG name

ICEBERG name

isect_mod _phrase
adj_head_phrase
head_adj_phrase
adj_head_int_phrase
adj_head_scop_phrase
head_adj_int_phrase
head_adj_scop_phrase
h_adj_int_phrase
n_adj_int_phrase

n_adj_relcl_phrase

n_adj_redrel_phrase

hadj_i_relcl_rule

hadj_i_redrel_rule

adjh_s_rule

hadj_s_rule

hadj_i_h_rule

adjh_i_rule

extracted_adj_phrase
extracted_adj_int_phrase

extradj_i_rule

head_adj_phr(arity:binary,hmod:isect)
head_adj_phr(arity:binary,head:final)
head_adj_phr(arity:binary,head:initial)
head_adj_phr(arity:binary,head:final, hmod:isect)

(
(
(
(
head_adj_phr(arity:binary,head:final, hmod:scopal)
head_adj_phr(arity:binary,head:initial,hmod:isect)
head_adj_phr(arity:binary,head:initial,hmod:scopal)
head_adj_phr(arity:binary,head:initial,hmod:isect,hn:h)
head_adj_phr(arity:binary,head:initial,hmod:isect,hn:n)
head_adj_phr(arity:binary,head:initial,hmod:isect,hn:n,
relcl:plus)

head_adj_phr(arity:binary,head:initial,hmod:isect,hn:n,
relcl:minus)

head_adj_phr(arity:binary,head:initial,rule:plus,rdir:r 1,
hmod:isect,hn:n relcl:plus)

head_adj_phr(arity:binary,head:initial,rule:plus,rdir:r 1,
hmod:isect,hn:n,relcl:minus)

head_adj_phr(arity:binary,head:final,rule:plus,rdir:1 r,
hmod:scopal)

head_adj_phr(arity:binary,head:initial,rule:plus,rdir:r 1,
hmod:scopal)

head_adj_phr(arity:binary,head:initial,rule:plus,rdir:r 1,
hmod:isect,hn:h)

head_adj_phr(arity:binary,head:final,rule:plus,rdir:1r,
hmod:isect)

extr_adj_phr(hmod:mod_type)
extr_adj_phr(hmod:isect)

extr_adj_phr(rule:plus,hmod:isect)
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A.6.7 Head complement phrases

Head complement phrases implement [Sag97]’s head-comp-phr—for phrases that have sat-
isfied the valency requirements of their complements list. In the ERG, head-complement
phrases are a specialization of nexus phrases which are head-initial and implement the
slash-inheritance principle. ICEBERG implements head-complements as a parametric
subtype of nexus_phr which refines the head and slash parameters and which adds pa-
rameters for free relatives, propositionality, and complement type. A number of ground-

instance subtyping links are also added.

ICEBERG description

complement_type sub  [comp, marker].

nexus_phr sub  head_comp_phr( headed : plus,
head : initial,
slash : plus,
freerel : bool,
prop : bool,

comptype : complement_type ).
head_comp_phr close trivial(grammar).

head_comp_phr(rule:plus,rdir:1_r) sub filler_head_rule_non_wh.
head_comp_phr (headed:plus) sub extr_arg_phr(argtype:arg_comp) .

ICEBERG ground instances

ERG name ICEBERG name

head_compositional head_comp phr(arity:arity_type)

free_rel_phrase head_comp _phr(arity:binary,freerel:plus)

free_rel rule head_comp phr(arity:binary,rule:plus,rdir:1 r freerel:plus)
(

head_comp_or_marker_phrase| head_comp_phr(arity:binary,que:plus,rel:plus,
freerel:minus)

head_opt_comp_phrase head_comp_phr(arity:unary,que:plus,rel:plus)

continued on next page
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continued from previous page

ERG name ICEBERG name
hoptcomp_rule head_comp _phr(arity:unary,rule:plus,que:plus,rel:plus)
head_comp_phrase head_comp _phr(arity:binary,que:plus,rel:plus,

comptype:comp,freerel:minus)

hcomp_rule head_comp _phr(arity:binary,rule:plus,rdir:1 r,que:plus,
rel:plus,comptype:comp,freerel:minus)

head_marker_phrase head_comp_phr(arity:binary,que:plus,rel:plus,
comptype:marker,freerel:minus)

head_marker_phrase_prop head_comp _phr(arity:binary,que:plus,rel:plus,
comptype:marker,freerel:minus,prop:plus)

hmark_prop_rule head_comp _phr(arity:binary,rule:plus,rdir:1_r,que:plus,
rel:plus,comptype:marker,freerel:minus,prop:plus)

head_marker_phrase nonprop| head_comp_phr(arity:binary,que:plus,rel:plus,
comptype:marker,freerel:minus,prop:minus)

hmark _nonprop_rule head_comp _phr(arity:binary,rule:plus,rdir:1_r,que:plus,
rel:plus,comptype:marker,freerel:minus,prop:minus)

A.6.8 Head filler phrases

Head-filler phrases ground the propagation of non-local dependencies by filling the prop-
agated empty category with a constituent. In the ERG, head-filler phrases are binary
nexus phrases and, following [Sag97], come in two distinct categories, finite and non-
finite. Head-filler phrases additionally serve as classifiers for interrogative-clause-filling
rules, which the ERG implements for both subject, non-subject, root, and non-root
clauses.

ICEBERG implements head-filler phrases as a parametric subtype of nezxus_phr which
refines the arity parameter and introduces a parameter for finiteness. ICEBERG then
posits a parametric type wh_fill_rule which is a subtype of both head_filler_phr and clause

and whose ground instances are non-relative interrogative-clause-filler rules. The most
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general head-filler type also serves as a supertype for relative clause fillers and non-wh
head-filler rules are classified as finite head-final head-filler phrases. Finally, a main clause

type is introduced to ensure finite wh-filler rules result in a main clause.

ICEBERG description

nexus_phr sub  head_filler_phr( arity : binary,
finite : bool ).

head_filler_phr sub wh_fill rule ( headed : plus,

arity : binary,
head : final,
phrasal : plus,
rule : plus,
rdir 1T,
que : plus,
rel : plus,
clrel : minus,
cltype : cl_interrog,
finite : bool,
root : bool,
subj : bool ).

clause sub wh_fill_rule.

head_filler_phr close trivial(grammar).
wh_fill_rule close trivial(grammar) .

head_filler_phr(headed:plus,head:final,que:plus,finite:plus)
sub filler_head_rule_non_wh.

head_filler_phr(headed:bool) sub filler_head_rule_rel.
phrase(headed:bool) sub mc_phrase.

mc_phrase sub [wh_fill_rule(finite:plus,root:minus,subj:plus),
wh_fill_rule(finite:plus,root:plus)].
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ICEBERG ground instances

ERG name ICEBERG name

basic_head_filler_phrase | head_filler_phr(headed:bool)

head_filler_phrase head _filler_phr(headed:plus,head:final que:plus)
head_filler_phrase_fin head _filler_phr(headed:plus,head:final,que:plus,finite:plus)
head_filler_phrase_inf head _filler_phr(headed:plus,head:final,que:plus,finite:minus)

filler_head _rule_wh_subj wh_fill rule(finite:plus,root:minus,subj:plus)

filler_head_rule_wh_root wh_fill rule(finite:plus,root:plus)

(
filler_head rule_wh nr_fin | wh_fill rule(finite:plus,root:minus,subj:minus)
(

filler_head rule_wh_nr_inf | wh_fill_rule(finite:minus,root:minus,subj:minus)

A.6.9 Head subject phrases

Head subject phrases implement [Sag97]’s head-subj-phr—phrases which have satisfied
their subject requirements. In the ERG, head-subject phrases are a specialization of
nexus phrases which are head-initial and implement the slash-inheritance principle. ICE-
BERG implements head-complements as a parametric subtype of nezus_phr which refines
the head and slash parameters and which adds parameters for free relatives, proposition-
ality, and complement type. In addition, the head-subject rule is classified as the same

rule which constructs declarative clauses.

ICEBERG description

nexus_phr(headed:plus,arity:binary,head:final,rel:plus,que:plus,val:plus)
sub head_subj_phrase.

head_subj_phrase sub subjh_rule_decl.

clause(headed:plus,rel:plus,clrel:minus,cltype:cl_decl,rule:plus,rdir:r_1)
sub subjh_rule_decl.
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A.6.10 Letter phrases

Letter phrases represent spelled-out words. The ERG contains both binary and unary
letter phrases, as well as corresponding rules for each kind of letter phrase. ICEBERG

implements letter phrases as an immediate parametric subtype of phrase.

ICEBERG description

phrase sub  letter_phr.

letter_phr close trivial(grammar) .

ICEBERG ground instances

ERG name ICEBERG name

letter_phr letter_phr(arity:binary)
letter_rule letter_phr(arity:binary, rule:plus)
letter_phr2 letter_phr(arity:unary)
letter_rule2 letter_phr(arity:unary,rule:plus)

A.6.11 Nominal compound phrases

Nominal compound phrases encode noun-noun compounds such as ‘ceiling tile’ and ‘yard
line’. The ERG posits several types of nominal compounds, each of which handles com-
pounds between different kinds of nominal constructions. All nominal compounds are
classified as binary head-final phrases. ICEBERG implements nominal compounds with
a parametric type, noun_cmpnd_phr which subtypes phrase, adds a parameter to dis-
tinguish noun-noun compounds from np-noun compounds, and adds a parameter for

optional specifiers.
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ICEBERG description

phrase sub  noun_cmpnd_phr( headed : plus,
arity : binary,
head : final,
np : bool,

optspec : bool ).

noun_cmpnd_phr close trivial(grammar).

ICEBERG ground instances

ERG name ICEBERG name

n_n_cmpnd_phr noun_cmpnd_phr(np:bool)

noun_n_cmpnd_phr noun_cmpnd_phr(np:minus)

np_n_cmpnd_phr_2 noun_cmpnd_phr(np:plus,optspec:plus)

np_n_cmpnd_phr noun_cmpnd_phr(np:plus,optspec:minus)
noun_n_cmpnd_rule noun_cmpnd_phr(rule:plus,rdir:r_1,np:minus)
np_n_cmpnd_rule_2 noun_cmpnd_phr(rule:plus,rdir:r 1 np:plus,optspec:plus)
np_n_cmpnd_rule noun_cmpnd_phr(rule:plus,rdir:r 1 np:plus,optspec:minus)

A.6.12 Non-clausal phrases

Non-clausal phrases include bare specifier phrases and head-specifier phrases. Following
[Sag97], ERG bare specifiers are subtypes of the dimensional classification type non-
clause and are classified as unary headed phrases which support wh-extraction. Head-
specifier phrases support both wh-extraction and slash categories. Because ICEBERG
does not have a clausality dimension, we implement non-clauses as a parametric subtype
of nexus_phr which refines several inherited parameters and introduces parameters for

existence of specifiers and to distinguish nominal heads from verbal gerunds.
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ICEBERG description

bare_spec_type sub  [np, vger].

nexus_phr sub non_clause( headed : plus,
arity : unary,
phrasal : plus,
que : plus,
rel : plus,
spec : bool,

bare_spec : bare_spec_type ).

non_clause close trivial(grammar) .

ICEBERG ground instances

ERG name ICEBERG name

non_clause non_clause(bare_spec:bare_spec_type)

bare_np_phrase non_clause(bare_spec:np)

bare_np_rule non_clause(rule:plus,bare_spec:np)

bare_vger_phrase non_clause(bare_spec:vger)

bare_vger_rule non_clause(rule:plus,bare_spec:vger)

head_spec_phrase non_clause(arity:binary,head:final slash:plus,spec:plus)

hspec_rule non_clause(arity:binary,head:final,rule:plus,rdir:r 1,
slash:plus,spec:plus)

A.6.13 Numerical adjective noun phrases

Numerical adjective noun phrases are unary phrases with nominal heads and a quantita-
tive modifier. In the ERG, there is only one kind of numerical adjective noun phrase which
is classified as unary and phrasal. ICEBERG implements numerical adjective phrases as

a parametric subtype of phrase which refines the arity and phrasal parameters.
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ICEBERG description

phrase sub  numadj_noun_phrase( arity ! unary,
phrasal : plus ).

numadj_noun_phrase close trivial(grammar).

ICEBERG ground instances

ERG name ICEBERG name
numadj_noun_phrase numadj noun_phrase(rule:bool)
numadj noun_rule numadj noun_phrase(rule:plus)

A.6.14 Root phrases

Root phrases and root clauses are main (sentential) phrases and clauses which are not
embedded in another construction. Roots always appear as the top node in a parse
tree. The ERG posits a type, root_phrase with a subtype root_clause, both of which are
also grammar rules. There are additional types, called root gap clauses, which encode
elliptical constructions consisting of an adverb and an NP which would have normally

functioned as the argument of an elided VP, such as ‘not Kim’ and ‘maybe Sandy.”

ICEBERG description

hpos_type sub  [pre, post].
phrase sub  root_phrase ( phrasal : plus,
rule : plus,
clause : bool ).
phrase sub  root_gap_clause( arity : binary,
phrasal : plus,
mod : hpos_type ).

3ERG source code
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root_phrase close trivial(grammar) .
root_gap_clause close trivial(grammar) .

ICEBERG ground instances

ERG name ICEBERG name

root_phrase root_phrase(clause:bool)

root_clause root_phrase(clause:plus)

root_gap_clause root_gap_clause(rule:bool)
root_gap_rule_postmod root_gap_clause(rule:plus,rdir:r 1, mod:post)
root_gap_rule_premod root_gap_clause(rule:plus,rdir:1_r,mod:pre)

A.6.15 Temporal modifier phrases

Temporal modifier phrases are unary phrases whose argument is a constituent that adds
temporal information to the head. ICEBERG implements temporal modifier phrases as

a parametric subtype of phrase which restricts the arity and phrasal parameters.

ICEBERG description

phrase sub  temp_mod_phrase( arity : unary,
phrasal : plus ).

temp_mod_phr close trivial(grammar) .

ICEBERG ground instances

ERG name ICEBERG name

temp_mod_phrase temp_mod_phrase(rule:bool)

temp_mod_rule temp_mod_phrase(rule:plus)




A.7. WORDS 177

A.6.16 Yes-no phrases

Yes-no phrases implement interrogatives which require a yes or no response. In the ERG,
yes-no phrases are a specialization of interrogative non-relative clauses which are further
cross-classified as unary headed phrases and which implement the wh-inheritance and
slash-inheritance principles. ICEBERG implements yes-no phrases as a parametric type,
yesno_phrase, which is a subtype of clause and which refines the necessary inherited

parameters.

ICEBERG description

clause sub  yesno_phr( headed : plus,
arity : nary,
que : plus,
rel : plus,
val : plus,
clrel : minus,

cltype : cl_interrog ).

yesno_phr close trivial(grammar) .

ICEBERG ground instances

ERG name ICEBERG name
yesno_phrase yesno_phr(rule:bool)
yesno_rule yesno_phr(rule:plus)

A.7 Words

Word signs encode the kinds of lexical entries licenced by HPSG grammars. In particular,
HPSG word types are used as labels for lexicon entries, as arguments to lexical rules, and

as the teminal nodes in parse trees. The ERG contains, among others, word types for
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adjectives, nouns, adverbs, main verbs, auxiliary verbs, prepositions, determiners, and
relativizers.

The ERG hierarchy of word types classifies all words according to nine dimension
types (nonmsg, nonque, etc ...) which determine properties such as affixing, MRS mes-
sages, MRS handle location, and ability to participate in pied-piping, extraction, and
coordination constructions. Each maximally specific word type subsumes some subset of
these nine types.

ICEBERG has implemented the nine dimension types as parameters of a parametric
product type, word. word is subtyped by 37 other parametric types (figure A.28) which
refine the values of the original nine parameters and generally introduce additional pa-
rameters for further classification. word and all its parametric subtypes undergo the

trivial closure over grammar-attested ground instances.

A.7.1 Basic word classification

Basic words implements the nine basic dimensional classifiers with the following param-

eters:
e slash : Is the SLASH list empty?
e que : Is the QUE list empty?
e rel : Is the REL list empty?
e msg : Is the MSG list empty?
e conj : Can the lexical item participate in coordinate structures?
e mc : Must the lexical item appear in a main clause?
e tkey : Is the local main relation identified with the relation in the top MRS handle?

e hcphr : Do head-complement structures build a phrase or another lexical item?



sodAy piom otrjeurered HYAGHADT 82 Y 2In31

subconj_word

to_compl_word np_pron_word np_adv_word ought_aux

|

N/

|

compl_word rel_word coord_conj i_mv tmv noun_word pron_word np_word day_part_word modal_verb have_aux

AT T

T/

adv_word

N \

deg_word conj_word det_word main_verb basic_noun one_word num_word prep_word time_word

T e\ =

. word

unknown_word

do_aux

be_or_aux_verb

will_aux go_aux

root_marker

how_about_word

title_word

expl_word

cp_adj_word

adj_word

Y

SAYO M

6L1



180

e aff : Can this word type bear affixes?

AprPPENDIX A. ICEBERG

ICEBERG adds two additional parameters—one parameter to encode properties of the

“key” relation’s label, and one parameter to handle unary branches to maximally specific

word types.

ICEBERG description

word_or_lexrule sub

aff : bool,

label : 1list,

le : bool ).
word close trivial(grammar).

word( slash : bool,

que : bool,
rel : bool,
conj : bool,
mc ¢ luk,
msg . bool,

tkey : bool,
hcphr : bool,

ICEBERG ground instances

nonque
nonrel
nonslash
mcna

topkey

norm_mod_no_affix_word

ERG name ICEBERG name
word word (slash:bool)
he-to-phr word (hcphr:plus)
nonconj word (conj:minus)
nonmsg word (msg:minus)

word (que:minus)
word (rel:minus)
word (slash:minus)

word (mec:na)

(
(
(
(
word (msg:plus)
(
(
(
(
(

word (tkey:plus)

continued on next page
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continued from previous page

ERG name ICEBERG name

non _affix_bearing word (aff:minus)

affix_bearing word (aff:plus,label:list (x:syn_sign))
key_label ne word (label:list(x:syn sign))

A.7.2 Adjectives

Adjectives generally modify nominals by specifying attributes or properties of a noun.
The ERG classifies adjectives by, among other classifiers, transitivity, predicativity, ab-
stractness, and as comparative or superlative. There is also a set of adjectives which
modify clauses.

ICEBERG has implemented adjectives with a parametric type, adj_word, which in-
herits all parameters from word, refines six inherited parameters, and adds six additional
parameters: transitivity, abstractness, predicativity, attributivity, adjective type (com-
parative or superlative), and whether the adjective is part of a multi-word expression.
ICEBERG has also posited a parametric subtype, cp_adj_word, of adj_word which encodes
cp-taking adjectives, and four additional simple types are introduced via ground-instance

subtyping links.

ICEBERG description

trans_type sub [atrans, intrans, trans, ditrans].
adj_type sub  [compar, superl].

word sub adj_word ( tkey : plus,
msg : minus,
conj : minus,
mc : na,

hcphr . plus,
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label : list(x:sign_struct),
multi : bool,
trans : trans_type,
abstract : bool,
adjtype : adj_type,
pred : bool,
attr : bool ).

adj_word sub cp_adj_word( multi : minus,
abstract : minus,
that : bool ).

adj_word close trivial(grammar).

cp_adj_word close trivial(grammar).

adj_word(aff:minus,abstract:minus,adjtype:compar) sub more_adj_le.
adj_word(aff :minus,slash:minus,que:minus,rel:minus) sub meas_adj_le.
word(msg:plus,tkey:plus,conj:minus,slash:minus,

mc:na,rel:minus,que:minus,aff:minus) sub comparthan_adj_le.
word(aff :minus,conj:minus,mc:na,msg:minus,

rel:minus,slash:minus)

sub wh_adjective_le.

ICEBERG ground instances

reg_adj_word

irreg_adj_-word

hcons_amalg non_affixed _word
basic_compar_adj_word
basic_superl_adj_word

superl_adj_le

comp_trans_adj_le

ERG name ICEBERG name
adj_word (abstract:bool)
adj_word adj_word(abstract:plus)

adj_word(abstract:plus,multi:minus)

adj_word(aff:minus,abstract:minus)

(

(

(
adj_word(aff:minus,abstract:plus,multi:plus)

(
adj_word(aff:minus,abstract:minus,adjtype:compar)

(

adj_word(aff:minus,abstract:minus,adjtype:superl)
adj_word(aff:minus,le:plus,abstract:minus,
adjtype:superl)

adj_word(aff:minus,le:plus,abstract:minus,
adjtype:compar,trans:trans)

continued on next page




A.7. WORDS

183

continued from previous page

ERG name

ICEBERG name

comp_adj_le

reg_adj_equi_le

intrans_adj_oddsem

compound_adj_le

reg-intrans_ad]j

attr_intrans_adj_le

intrans_adj_le

pred_intrans_adj_le

trans_adj_le

irreg_trans_adj_le

irreg np_trans_adj_le

irreg_pred_intrans_adj_le

irreg_attr_adj_le

reg_adj_atrans_le

reg_adj_atrans_cp_le
reg-adj_atrans_cp_word

reg_adj_atrans_that_cp_le

adj_word(aff:minus,le:plus,abstract:minus,
adjtype:compar,trans:intrans)

adj_word(slash:minus,que:minus,rel:minus,le:plus,
attr:minus)

adj_word(slash:minus,que:minus,rel:minus,aff:minus,
attr:plus)

adj_word(slash:minus,que:minus,rel:minus,aff:minus,
le:plus,attr:plus)

adj_word(abstract:plus,attr:minus,multi:minus,
trans:intrans)

adj_word(le:plus,abstract:plus,attr:plus,pred:minus,
multi:minus,trans:intrans)

adj_word(le:plus,abstract:plus,attr:minus,pred:minus,
multi:minus,trans:intrans)

adj_word(le:plus,abstract:plus,attr:minus,pred:plus,
multi:minus,trans:intrans)

adj_word(le:plus,abstract:plus,multi:minus,trans:trans)
adj_word(aff:minus,abstract:plus,pred:plus,multi:plus,
trans:trans)

adj_word(aff:minus,abstract:plus,pred:minus,multi:plus,
trans:trans)

adj_word(aff:minus,abstract:plus,pred:plus,multi:plus,
trans:intrans)

adj_word(aff:minus,abstract:plus,attr:plus,pred:minus,
multi:plus)

adj_word(aff:plus,le:plus,abstract:minus,multi:minus,
trans:atrans)

cp-adj_word(that:bool)

cp-adj_word (aff:plus,le:plus,trans:atrans)
cp-adj_word (aff:plus,trans:atrans)
(

cp-adj_word (aff:plus,trans:atrans,that:plus)

continued on next page
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continued from previous page

ERG name ICEBERG name

reg_adj_cp_word cp-adj_word (aff:plus,trans:intrans)
reg_adj_cp_le cp-adj_word (aff:plus,le:plus,trans:intrans)
reg_adj_that_cp_le cp-adj_word (aff:plus,trans:intrans,that:plus)

A.7.3 Adverbs

Adverbs are broadly defined as words which modify constituents other than nouns. In the
ERG there are vp-modifying adverbs, sentential-modifying adverbs, discourse adverbs,
and degree specifiers. Adverbs are additionally classified as intersective or scopal, and
by direction from the adverb to the constituent head.

ICEBERG has implemented adverbs with two parametric subtypes of word: adv_word
and deg_word. adv_word inherits all parameters from word, refines three word parameters,
and introduces parameters for modified constituent type, position relative to the head,
modifier type (intersective, scopal, or discourse), complement optionality, and presence of
an adverb specifier. deg_word also inherits all parameters from word, refines seven word
parameters, and introduces parameters for wh-adverbs and whether the degree specifier

can modify prepositions.

ICEBERG description

hpos_type sub [pre, post].
mod_type sub [isect, scopal, disc, none].
comp_type sub [pp, vp, cp, np, s, vp_aux, nomp, nbar, none].

word sub adv_word( rel : minus,
conj : minus,
aff : minus,

pos : hpos_type,
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type : mod_type,
comp : comp_type,
copt : bool,

spec : bool ).

word sub  deg_word( slash : minus,
rel : minus,
conj : minus,
aff : minus,
mc : na,
msg . minus,
hcphr : plus,
wh : bool,

prep : bool ).

deg_word close trivial(grammar) .
adv_word close trivial(grammar) .

nsl_adv syn adv_word(que:minus,slash:minus,msg:plus,mc:na).
s_adv syn  adv_word(que:minus,slash:minus,msg:plus).

adv_word(mc:na,slash:minus,tkey:plus) sub wh_adverb_le.
adv_word (msg:plus,mc:na,slash:minus,tkey:plus,que:minus) sub not_le.

ICEBERG ground instances
ERG name ICEBERG name

adv_word (pos:hpos_type)
int_vp_adverb_word nsl_adv(tkey:plus,comp:vp,type:isect)
int_vp_adv_le nsl_adv(tkey:plus,le:plus,comp:vp,type:isect)
int_vp_adv_post_le nsl_adv(tkey:plus,comp:vp,pos:post,type:isect)
vp_adverb_word nsl_adv(tkey:plus,comp:vp,type:scopal)
vp_adv_le nsl_adv(tkey:plus,le:plus,comp:vp,type:scopal)
vp_adv_pre_le nsl_adv(tkey:plus,comp:vp,pos:pre,type:scopal)
vp_adv_post_le nsl_adv(tkey:plus,comp:vp,pos:post,type:scopal)
adverb_word nsl_adv(tkey:plus,copt:plus,type:scopal)

continued on next page
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ERG name ICEBERG name

adv_le nsl_adv(tkey:plus,le:plus,copt:plus,type:scopal)
adv_pre_le nsl_adv(tkey:plus,copt:plus,pos:pre,type:scopal)
adv_post_le nsl_adv(tkey:plus,copt:plus,pos:post,type:scopal)

norm_mod_no_affix_notopkey
s_adv_pre_le
s_adv_le

s_adv_pre_word_nospec_le

s_adv_nospec_le
comp_vp_adv_le
vp_aux_adv_le
int_pp_adv_le

comparison_spec_le

disc_adv_word

disc_adv_sat_le

disc_adv_le

disc_adv_like_ le

basic_degree_spec_word
wh_degree_spec_le
degree_spec_word
degree_spec_le

degree_spec_noprep_le

s_adv(tkey:minus,type:scopal)
s_adv(tkey:minus,comp:s,pos:pre,spec:plus,type:scopal )
s_adv(tkey:minus,le:plus,comp:s,spec:plus,type:scopal)
s_adv(tkey:minus,comp:s,pos:pre,spec:minus,
type:scopal)
s-adv(tkey:minus,le:plus,comp:s,spec:minus,type:scopal)
nsl_adv(tkey:plus,le:plus,comp:vp_aux,pos:post)
nsl_adv(tkey:plus,le:plus,comp:vp_aux,pos:pre)
nsl_adv(tkey:plus,le:plus,comp:pp,type:isect)

adv_word (slash:minus,que:minus,mc:na, msg:minus,
tkey:plus,hcphr:plus,le:plus)

adv_word (que:minus,tkey:minus,hcphr:plus,comp:s,
type:disc)

adv_word(que:minus,tkey:minus,hcphr:plus,le:plus,
comp:s,spec:minus,type:disc)

adv_word (que:minus,tkey:minus,hcphr:plus,le:plus,
comp:s,spec:plus,type:disc)

adv_word (que:minus,tkey:plus,hcphr:plus,le:plus,
type:disc)

deg_word(wh:bool)

deg_word(le:plus,wh:plus)

(
(
deg_word(que:minus,wh:minus)
deg_word(que:minus,le:plus,prep:plus,wh:minus)
(

deg_word(que:minus,le:plus,prep:minus,wh:minus)
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A.7.4 Auxiliary verbs and the verb ‘to be’

Auxiliary verbs accompany a main verb and generally express grammatical properties
such as person, number, gender, tense, and aspect. Because the verb ‘to be’ may function
both as an auxiliary and as a main verb, the ERG word types for ‘to be’ verbs and for
auxiliaries are intrinsically linked, and for this reason they are presented together here.

ICEBERG implements auxiliaries and ‘to be’ verbs with seven parametric types:
be_or_auz_verb, modal_verb, go_aux, ought_auz, have_auzx, do_auzr, and will_auz.
be_or_auz_verb is the supertype of the other six parametric auxiliary verb types and is
an immediate subtype of word. be_or_auz_verb refines three parameters inherited from
word, as well as introducing thirteen new parameters. These thirteen parameters classify
auxiliaries (and ‘to be’ verbs) by auxiliary type (‘to be’ or true auxiliary), tense, aspect,
mood, pernum, contraction, negation, local predicativeness and verb form, complement
(main verb) predicativeness and verb form, copula type, and the HEAD: AUX feature value.

The auxiliary verb ‘to have’ is encoded by have_auz, which subtypes be_or_auz_verb
and refines five inherited parameters, auxiliary verb ‘to do’ is encoded by do_auz, which
subtypes be_or_auz_verb and refines seven inherited parameters, auxiliary verb ‘will’ is
encoded by will_auz, which subtypes be_or_auz_verb and refines eight inherited parame-
ters, and auxiliary verb ‘to go’ is encoded by go_auz, which subtypes be_or_auz_verb and
refines three inherited parameters.

Lastly, modal auxiliaries are encoded by modal_verb, which is also a subtype of
be_or_aux_verb and refines four inherited parameters. modal_verb posits one paraemtric

subtype, ought_auz, which encodes various forms of the verb ‘ought’.

ICEBERG description

auxtype sub [aux, bel.
smaux smyth auxtype.
cop_type sub  [id, there, cop].

word sub  be_or_aux_verb( msg : minus,
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conj : minus,
mc ! na,
type ! auxtype,
aux : luk,
neg : bool,
cntr : bool,
pn ! pernum,
tense : temnse,
aspect : aspect,
mood : mood,
cop . cop_type,
lvform : vform,
lprd : bool,
cvform : vform,
cprd : bool ).
be_or_aux_verb sub modal_verb ( type : aux,
hcphr : plus,
cprd : minus,

cvform : stv(bse) ).

modal_verb sub  ought_aux ( 1prd : minus,
lvform : fin,
aspect : none,

aux 0 ostl(-) ).
be_or_aux_verb sub  have_aux ( type : aux,
aux Do+,

hcphr : plus,
aspect : perf,
cvform : pastpart(irreg:minus) ).

be_or_aux_verb sub do_aux ( type . aux,
hcphr : plus,
aux Do+,
lprd : minus,
lvform : fin,
cprd : minus,

cvform : stv(bse) ).

be_or_aux_verb sub will_aux ( type : aux,
hcphr : plus,
aux Do+,

1lprd : minus,
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be_or_aux_verb sub

be_or_aux_verb close

modal_verb
ought_aux

have_aux_word

do_aux_word
will_aux
go_aux
aux_verb
be_aux
be_verb
be_past

be_pres

be_cop

be_cop_past

be_cop_pres

modal_pres

have_pres
have_past

do_pres
do_past

close
close
close
close
close
close
syn
syn
syn
syn

syn

syn

syn

syn

syn

syn
syn

syn
syn
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lvform : fin,

tense : future,
cprd ! minus,
cvform : stv(bse) ).

go_aux ( hcphr : plus,
type © aux,
aux :ostl(-) ).

trivial (grammar) .
trivial (grammar) .
trivial(grammar) .
trivial(grammar) .
trivial(grammar) .
trivial(grammar) .
trivial(grammar) .

be_or_aux_verb(type:aux, hcphr:plus).
be_or_aux_verb(type:aux,hcphr:plus,cprd:plus,cop:cop) .
be_or_aux_verb(type:be) .

be_verb(lprd:minus,lvform:fin,aspect:fa(none;progr),
mood:ind,tense:past).

be_verb(lprd:minus,lvform:fin,aspect:fa(none;progr),
mood:ind,tense:present) .

be_verb(aux:+,type:smaux(aux,be),cop:cop,hcphr:plus,
cprd:plus).

be_cop(lprd:minus,lvform:fin,aspect:fa(none;progr),
mood:ind,tense:past) .

be_cop(lprd:minus,lvform:fin,aspect:fa(none;progr),
mood:ind,tense:present).

modal_verb(aspect:none,lprd:minus,lvform:fin,
tense:present) .

have_aux(lvform:fin,mood:ind,tense:present) .
have_aux(lvform:fin,mood:ind,tense:past).

do_aux(aspect:none,mood:ind,tense:present) .
do_aux(aspect:none,mood:ind,tense:past) .
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ICEBERG ground instances

ERG name

ICEBERG name

contracted_aux_word
aux_verb_word_super
aux_verb_word
inf_aux_verb_word

bse_aux_verb_word

prd_aux_verb_word

psp-aux_verb_word

fin_modal_verb_word
pres_modal_verb_word
generic_modal neg_super
modal_verb_word
pos_modal_verb_word
modal_pos_cx_le
modal_pos_le

modal subj_pos_lex_ent

modal subj_pos_cx_le

modal_subj_pos_le

modal_subj_neg_le

modal neg_le

be_or_aux_verb(cntr:bool)
be_or_aux_verb(cntr:plus)
aux_verb(aux:luk)
aux_verb(aux:+)
aux_verb(aux:stl(-))

aux_verb(aux:+,cprd:minus,cvform:stv(bse),
lprd:minus,lvform:fin)

aux_verb(aux:+,cprd:plus)
aux_verb(aux:+,cvform:pastpart (irreg:minus))
modal_verb(lvform:vform)
modal_verb(Iprd:minus,lvform:fin)
modal_verb(Iprd:minus,lvform:fin,tense:present)
modal_verb(neg:plus)

modal_pres(aux:+)
modal_pres(tkey:plus,aux:+)
modal_pres(tkey:plus,le:plus,aux:+,cntr:plus)
modal_pres(tkey:plus,le:plus,aux:+,cntr:minus)
modal_pres(tkey:plus,aux:+,mood:modal subj)

modal_pres(tkey:plus,aux:+,cntr:plus,
mood:modal subj)

modal_pres(tkey:plus,aux:+,cntr:minus,
mood:modal subj)

modal_pres(aux:+,mood:modal subj,neg:plus)
modal_pres(le:plus,aux:+,neg:plus)

go_aux(tkey:bool)

continued on next page
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ERG name

ICEBERG name

quasimodal_word
quasimodal_le

quasimodal_psp_word

quasimodal _psp_le

ought_verb_word
past_ought_verb_word
pos_ought_verb_word
ought_neg_le
past_ought_pos_le
ought_pos_le
have_aux_word
have_fin
have_aux_neg_lex_entry
have_aux_pos_lex_entry
have_pres

have_past

have_subj
had_aux_lex_ent
had_aux_cx_le
had_aux_le
has_aux_lex_ent

has_aux_cx_le

go_aux(tkey:minus)
go_aux(tkey:minus,le:plus)

go_aux(tkey:plus,lprd:minus,
lvform:pastpart(irreg:minus),tense:present)

go_aux(tkey:plus,le:plus,lprd:minus,
lvform:pastpart(irreg:minus),tense:present)

ought_aux(tense:tense)
ought_aux(tense:present)
ought_aux(tkey:plus,tense:past)
ought_aux(tkey:plus,tense:present)
ought_aux(neg:plus,tense:present)
ought_aux(tkey:plus,le:plus,tense:past)
ought_aux(tkey:plus,le:plus,tense:present)
have_aux(Ivform:vform)
have_aux(lvform:fin)
have_aux(Iprd:minus,lvform:fin,neg:plus)
have_aux(tkey:plus)

have_pres

have_past
have_aux(Ivform:fin,mood:stm(subjunctive))
have_past(tkey:plus)
have_past(tkey:plus,cntr:plus)
have_past(tkey:plus,cntr:minus)
have_pres(tkey:plus,pn:stp(threesg))

(

have_pres(tkey:plus,cntr:plus,pn:stp(threesg))
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ERG name

ICEBERG name

has_aux_le
have_fin_aux_lex_ent
have_fin_aux_cx_le
have_fin_aux_le

had_aux_subj_le

have_bse_aux_le

have_prespart_le

had_aux_subj_neg_le

had_aux_neg_le
has_aux_neg_le
have_fin_aux_neg_le
do_aux_word
do_aux_neg_word
do_fin
do_aux_neg_pres
dont_aux_neg_pres_le
doesnt_aux_neg_pres_le
do_aux_neg_past_le
do_aux_neg_subj_le
do_pres

did_aux_le

do_fin_aux_le

have_pres(tkey:plus,cntr:minus,pn:stp(threesg))
have_pres(tkey:plus,pn:stp(non3sg))
have_pres(tkey:plus,cntr:plus,pn:stp(non3sg))
have_pres(tkey:plus,cntr:minus,pn:stp(non3sg))

have_aux(tkey:plus,le:plus,lvform:fin,
mood:stm(subjunctive))

have_aux(tkey:plus,le:plus,lprd:minus,lvform:stv(bse))

have_aux(tkey:plus,le:plus,lprd:minus,
lvform:vpresent(prp:plus))

have_aux(le:plus,lprd:minus,lvform:fin,
mood:subjunctive,neg:plus)

have_past(le:plus,lprd:minus,neg:plus)
have_pres(le:plus,Iprd:minus,neg:plus,pn:stp(threesg))
have_pres(le:plus,Iprd:minus,neg:plus,pn:stp(non3sg))
do_aux(neg:bool)

do_aux(neg:plus)

do_aux(neg:minus)

do_pres(neg:plus)
do_pres(le:plus,neg:plus,pn:stp(non3sg))
do_pres(le:plus,neg:plus,pn:stp(threesg))
do_past(le:plus,neg:plus)
do_aux(le:plus,mood:stm(subjunctive),neg:plus)
do_pres(neg:minus)

do_past(le:plus,neg:minus)

do_pres(le:plus,neg:minus,pn:stp(non3sg))
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ERG name

ICEBERG name

does_aux_le

will verb_word
pos_will_verb_word
will_aux_word
will_aux_pos_lex_e
will neg_le
would_aux_neg_le

will_pos_cx_le

will_pos_le

would_aux_pos_cx_le

would_aux_pos_le

be_verb

be_copula
be_cop_neg
be_cop_pos_generic
be_cop_verb
be_neg

be_id

be_id_pos
be_th_cop_pos

be_id_neg

do_pres(le:plus,neg:minus,pn:stp(threesg))
will aux(tkey:bool)
will aux(tkey:plus)

will aux(tkey:plus,le:plus)

will_aux(tkey:minus,neg:minus)

(
(
(

will aux(tkey:minus)
(

will aux(tkey:minus,le:plus,mood:ind,neg:plus)
(

will_aux(tkey:minus,le:plus,mood:modal_subj,neg:plus)
will_aux(tkey:minus,le:plus,cntr:plus,mood:ind,
neg:minus)

will aux(tkey:minus,le:plus,cntr:minus,mood:ind,
neg:minus)

will aux(tkey:minus,le:plus,cntr:plus,mood:modal subj,
neg:minus)

will_aux(tkey:minus,le:plus,cntr:minus,
mood:modal subj,neg:minus)

be_or_aux_verb(type:be)
be_aux(aux:+)
be_aux(aux:+,neg:plus)
be_aux(aux:+,neg:minus)
be_aux(type:smaux(aux,be))
be_verb(neg:plus)
be_verb(cop:id)

(

(
be_verb(tkey:plus,cop:id,neg:minus)
be_verb(tkey:plus,cop:there,neg:minus)

(

be_verb(cop:id,neg:plus)

continued on next page
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be_th_cop
be_th_cop_neg
be_fin

be_past
be_pres

be_subj

be_be_lex_entry

be_id_be_le

be_th_cop_be_le

be_was_lex_entry
be_were_lex_entry

be_id_were_le

be_th_cop_were_le

be_id_was_le

be_th_cop_was_le

be_past_neg_lex_entry
be_was_neg_contr_lex_entry
be_were_neg_contr_lex_entry
be_id_were_neg_le

be_th_cop_were_neg_le

be_verb(cop:there)

be_verb(cop:there,neg:plus)
be_verb(aspect:fa(none;progr),lprd:minus,lvform:fin)
be_past

be_pres
be_verb(aspect:fa(none;progr),lprd:minus,lvform:fin,

mood:stm(subjunctive))

be_verb(aspect:fa(none;progr),lprd:minus,lvform:bse,
mood:fm(ind,modal subj))

be_verb(tkey:plus,le:plus,aspect:fa(none;progr),cop:id,
lprd:minus,lvform:bse,mood:fm(ind,modal subj))

be_verb(le:plus,aspect:fa(none;progr),cop:there,
lprd:minus,lvform:stv(bse),mood:fm(ind,modal subj))

be_past (neg:minus,pn:stp(oneor3sg))
be_past(neg:minus,pn:stp(nonlsg))

be_past(tkey:plus,le:plus,cop:id,neg:minus,
pu:stp(nonlsg))
be_past(tkey:plus,le:plus,cop:there,neg:minus,
pn:stp(nonlsg))
be_past(tkey:plus,le:plus,cop:id,neg:minus,
pn:stp(oneor3sg))
be_past(tkey:plus,le:plus,cop:there,neg:minus,
pn:stp(oneor3sg))

be_past(neg:plus)
be_past(neg:plus,pn:stp(oneor3sg))
be_past(neg:plus,pn:stp(nonlsg))
be_past(le:plus,cop:id,neg:plus,pn:stp(nonlsg))
(

be_past(le:plus,cop:there,neg:plus,pn:stp(nonlsg))
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ERG name

ICEBERG name

be_id_was_neg_le
be_th_cop_was_neg_le
be_am _lex_entry
be_are_lex_entry
be_is_lex_entry
be_id_am le
be_id_are_le
be_th_cop_are_le
be_id_is_le

be_th_cop_is_le

be_id_is_cx_le

be_th_cop_s_cx_le

be_am _neg_contr_lex_entry
be_is_neg_contr_lex_entry
be_are_neg_contr_lex_entry
be_id_are neg_le
be_th_cop_are_neg_le
be_id_is_neg_le
be_th_cop_is_neg_le
be_id_am neg_le
be_pastpart

be_been_lex_entry

be_past(le:plus,cop:id,neg:plus,pn:stp(oneor3sg))
be_past(le:plus,cop:there,neg:plus,pn:stp(oneor3sg))
be_pres(neg:minus,pn:stp(onesg))
be_pres(neg:minus,pn:stp(nonlsg))
be_pres(neg:minus,pn:stp(threesg))
be_pres(tkey:plus,cop:id,neg:minus,pn:stp(onesg))
be_pres(tkey:plus,cop:id,neg:minus,pn:stp(nonlsg))
be_pres(tkey:plus,cop:there,neg:minus,pn:stp(nonlsg))

be_pres(tkey:plus,cntr:minus,cop:id,neg:minus,
pn:stp(threesg))

be_pres(tkey:plus,cntr:minus,cop:there neg:minus,
pn:stp(threesg))

be_pres(tkey:plus,cntr:plus,cop:id,neg:minus,
pn:stp(threesg))

be_pres(tkey:plus,le:plus,cntr:plus,cop:there,neg:minus)
be_pres(neg:plus,pn:stp(onesg))
be_pres(neg:plus,pn:stp(threesg))
be_pres(neg:plus,pn:stp(nonlsg))
be_pres(le:plus,cop:id,neg:plus,pn:stp(nonlsg))
be_pres(le:plus,cop:there,neg:plus,pn:stp(nonlsg))
be_pres(le:plus,cop:id,neg:plus,pn:stp(threesg))
be_pres(le:plus,cop:there neg:plus,pn:stp(threesg))
be_pres(le:plus,cop:id,neg:plus,pn:stp(onesg))
be_verb(lprd:minus,lvform:pastpart(irreg:minus))
(

be_verb(le:plus,lprd:minus,lvform:pastpart (irreg:minus))
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be_id_been_le

be_th_cop_been_le

be_prespart
be_being lex_entry
be_id_being_le

be_th_cop_being_le

be_c_be_le

be_c_were_le
be_c_was_le
be_c_were_neg_le
be_c_was_neg_le

be_c_been_le

be_c_am_le
be_c_are_le

be_c_is_le

be_c_is_cx_le
be_c_are_neg_le
be_c_is_neg_le
be_c_am_neg_le

be_c_being_le

be_verb(tkey:plus,le:plus,cop:id,lprd:minus,
lvform:pastpart(irreg:minus),neg:minus)

be_verb(tkey:plus,le:plus,cop:there lprd:minus,
lvform:pastpart(irreg:minus),neg:minus)

be_verb(lvform:vpresent(prp:plus))
be_verb(le:plus,lvform:vpresent(prp:plus))

be_verb(tkey:plus,le:plus,cop:id,
lvform:vpresent(prp:plus),neg:minus)

be_verb(tkey:plus,le:plus,cop:there,
lvform:vpresent(prp:plus),neg:minus)

be_cop(aspect:fa(none;progr),lprd:minus,lvform:bse,
mood:fm(ind,modal subj),neg:minus)

be_cop_past(le:plus,neg:minus,pn:stp(nonlsg))
be_cop_past(le:plus,neg:minus,pn:stp(oneor3sg))
be_cop_past(le:plus,neg:plus,pn:stp(nonlsg))
be_cop_past(le:plus,neg:plus,pn:stp(oneor3sg))

be_cop(le:plus,lprd:minus,lvform:pastpart(irreg:minus),
neg:minus)

be_cop_pres(neg:minus,pn:stp(onesg))
be_cop_pres(neg:minus,pn:stp(nonlsg))

be_cop_pres(le:plus,cntr:minus,neg:minus,
pn:stp(threesg))

be_cop_pres(le:plus,cntr:plus,neg:minus,pn:stp(threesg))
be_cop_pres(le:plus,neg:plus,pn:stp(nonlsg))
be_cop_pres(le:plus,neg:plus,pn:stp(threesg))
be_cop_pres(le:plus,neg:plus,pn:stp(onesg))

be_cop(le:plus,lvform:vpresent(prp:plus),neg:minus)
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A.7.5 Conjunctions

Conjunctions link words and constituents, generally expressing a semantic relationship
between them. The ERG contains many kinds of conjunctions, including coordinating
conjunctions, subordinating conjunctions such as complementizers and relativizers, and
other kinds of subordinators.

ICEBERG has implemented conjunctions with six parametric types: conj word, sub-
conj_word, compl_word, to_compl_word, rel_word, and coord_conj. conj_word serves sim-
ply as a common supertype of all conjunctions and merely inherits all parameters from
word. subconj_word encodes subordinating conjunctions such as although, since, and as
by subtyping conj_word, refining six inherited parameters, and adding a parameter for
the verb form of subordinated constituents and a parameter to distinguish if conjunc-
tions. Complementizers are encoded with compl_word and to_compl_-word. compl_word
subtypes conj_word, refines five inherited parameters, and adds parameters for comple-
mentizer type, subordinated constituent verb form, raising, and eliding. to_compl_word
subtypes compl_word, refines the complementizer type parameter to, and adds a param-
eter for propositionality. rel_word encodes relativizers by subtyping conj_word, refining
five inherited parameters, and adding parameters for determiner type, freeness of the
relativized clause, and adverbial relativizers. Finally, coordinating conjunctions are im-
plemented by a parmetric type, coord_conj, which subtypes conj_word and introduces

parameters for coordinating conjunction type (see §A.4.1), and x-to-y coordinations.

ICEBERG description

compl_type sub [to, for, whether, like, that].
det_type sub  [(simple;part), gen].
(simple;part) sub  [part, simple].

word sub conj_word.

conj_word sub  subconj_word ( slash : minus,

rel . minus,
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conj_word

compl_word

conj_word

conj_word

conj_word
subconj_word
compl_word
to_compl_word
coord_conj
rel_word

compl_word(elided:bool)

sub

sub

sub

sub

close
close
close
close
close
close

sub
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que
conj
aff

tkey

if

compl_word ( rel
que
conj
aff
hcphr
elided
raise
type
vform

to_compl_word( type
prop

rel_word ( msg
conj
aff
mc
hcphr
type
free
adv

coord_conj ( type
Xy

trivial (grammar) .
trivial (grammar) .
trivial (grammar) .
trivial(grammar) .
trivial(grammar) .
trivial (grammar) .

[compl_phrase_le] .

: minus,
: minus,
: minus,
: minus,
vform :
: bool ).

vform,

: minus,

: minus,

: minus,

: minus,

: plus,

: bool,

: bool,

: compl_type,
: vform ).

: to,
: bool ).

: minus,

: minus,

: minus,

: na,

: plus,

: det_type,
: bool,

: bool ).

: conj,
: bool ).
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ICEBERG ground instances

ERG name

ICEBERG name

subconj_word

subconj_inf_le

subconj_if le

subconj_le

complementizer_word
plain_compl_word
whether_compl_word

whether_c_inf le

whether_c_fin_le

sor_compl_word

for_c_le

like_c_le

that_c_le

to_compl_elided_word
to_c_prop_elided_le
to_c_nonprop_elided_le

to_c_prop_le

conj_word(slash:bool)
subconj_word(vform:vform)

subconj_word (vform:fv(fin;imp))

subconj_word (mc:na,msg:plus,tkey:plus,le:plus,
vform:inf)

subconj_word (le:plus,if:plus,vform:fv(fin;imp))
subconj_word(le:plus,if:minus,vform:fv(fin;imp))
compl_word (elided:bool)

compl_word (elided:minus)

(

(
compl_word (elided:minus,vform:inf)
compl_word (elided:minus,type:whether)
(

compl_word (le:plus,elided:minus,type:whether,
vform:inf)

compl_word (le:plus,elided:minus,raise:plus,
type:whether,vform:fin)

compl_word (elided:minus,raise:plus)
compl_word (le:plus,elided:minus,raise:plus,type:for,
vform:fin)

compl_word (le:plus,elided:minus,raise:plus,type:like,
vform:fin)

compl_word (le:plus,elided:minus,raise:plus,type:that,
vform:fin)

to_compl_word (elided:bool)

to_compl_word (elided:plus)

(

(
to_compl_word (le:plus,elided:plus,prop:plus)
to_compl_word (tkey:plus,le:plus,elided:plus,prop:minus)
(

to_compl_word (le:plus,elided:minus,vform:inf,prop:plus)

continued on next page
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ERG name

ICEBERG name

to_c_nonprop_le

to_compl_word

free_rel_det_word_gen
free_rel_pro_word
freerel_pdet_le

freerel _det_le
freerel_pro_np_adv_le
freerel_pro_np_le
rel_word

rel_adverb_le

rel_pro_le

conj_word
and_num_le
coord_a_le
coord_c_le

xX_to_y_le

to_compl_word (le:plus,elided:minus,vform:inf,
prop:minus)

to_compl _word (elided:minus,vform:inf)

coord_conj(type:conj)

rel_word (free:bool)

rel_word (rel:minus,free:plus,type:(simple;part))

rel_word (rel:minus,free:plus,type:gen)

rel_word (rel:minus,le:plus,free:plus,type:partitive)

rel_word (rel:minus,le:plus,free:plus,type:simple)

rel_word (rel:minus,le:plus,adv:plus,free:plus,type:gen)

rel_word (rel:minus,le:plus,adv:minus,free:plus,type:gen)
(

rel_word (free:minus)

rel_word (slash:minus,que:minus,tkey:plus,adv:plus,
free:minus)

rel_word (slash:minus,que:minus,tkey:plus,free:minus,
type:gen)

coord_conj(type:conj(atomic;cnil;complex;num;phr)))
coord_conj(le:plus,type:num)

coord_conj(le:plus,type:atomic)

i(
i(
coord_conj(le:plus,type:complex)
coord_conj(slash:minus,que:minus,rel:minus,conj:minus,
mc:na,tkey:plus,hephr:plus,le:plus xy:plus)
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A.7.6 Determiners

Determiners are modifers of nouns which express the determination and/or quantity of
the noun. Examples of English determiners include a, the, some, and all. The ERG
encodes definite and indefinite determiners, partitive and genitive determiners, and de-
terminers for mass and count nouns.

ICEBERG implements determiners with a parametric type, det_word, which subtypes
word, refines five inherited parameters, and adds seven additional parameters. The addi-
tional parameters classify ICEBERG determiners by determiner type (simple, partitive,
or genitive), presence of external modifiers, divisibility, person-number of modified nouns,
wh-determiners, noun type (count or mass), and whether the determiner passes on the

value of its head’s MODIFIED feature.

ICEBERG description

det_type sub  [(simple;part), genl].

(simple;part) sub [part, simple].

n_type sub [count, mass].

word sub det_word( slash : minus,
msg : minus,
conj : minus,
aff : minus,
mc : na,
type : det_type,
mod : xmod,
div ¢ luk,
pn ! pernum,
wh : bool,

ntype : n_type,
mpass : bool ).
det_word close trivial(grammar).

simple_det syn det_word(rel:minus,hcphr:plus,type: (simple;part)).
det_word (hcphr:plus,rel:minus,type:part) sub [pdet_unsp_le,

pdet_one_le].
det_word(hcphr:plus,rel:minus,le:plus,que:minus) sub [next_last_det_le].
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ICEBERG ground instances

ERG name ICEBERG name
det_word(type:det_type)
det_word simple_det(type:simple)
det_plm_le simple_det(le:plus,div:+,mod:fx(lmod;rmod),

det_word_modable

det_wh_le

det_modable_le

det_word_nonque
det_le

det_pl_le

det_sm_le

det_word _sing

det_sing nonque

det_sg_le

det_sg_nomod_le

pdet_word
pdet_word_nonque

pdet_le

pdet_ms_le

pdet_sg_le

type:simple)
simple_det(mod:fx(lmod;rmod),type:simple)
simple_det(le:plus,mod:fx(lmod;rmod),type:simple,
wh:plus)

simple_det(que:minus,le:plus,mod:fx(lmod;rmod),
type:simple)

simple_det(que:minus,type:simple)
simple_det(que:minus,le:plus,mpass:plus,type:simple)
simple_det(que:minus,le:plus,pn:stp(threepl),
type:simple)

simple_det(que:minus,le:plus,mod:fx(lmod;rmod),
pu:stp(threesg),type:simple)

simple_det(div:-,pn:stp(threesg),type:simple)
simple_det(que:minus,div:-,pn:stp(threesg),
type:simple)

simple_det(que:minus,div:-,mod:fx(lmod;rmod),
pn:stp(threesg),type:simple)

simple_det(que:minus,div:-,mod:fx(notmod),
pn:stp(threesg),type:simple)

simple_det(mod:fx(lmod;rmod),type:part)
simple_det(que:minus,mod:fx(lmod;rmod), type:part)
simple_det(que:minus,le:plus,mod:fx(lmod;rmod),
type:part)

simple_det(que:minus,div:4+,mod:fx(Imod;rmod),
pn:stp(threesg),type:part)

simple_det(que:minus,div:-,mod:fx(lmod;rmod),
pn:stp(threesg),type:part)

continued on next page
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ERG name

ICEBERG name

pdet_pl_le

pdet_pl_mass_le

pdet_word_pl_mass_wh

pdet_ms_wh_le

pdet_pl_wh_le

poss_word
nonwh_poss_word
wh_poss_le
poss_le

rel_poss_le

simple_det(que:minus,mod:fx(lmod;rmod),
pn:stp(threepl),type:part)

simple_det(que:minus,div:4+,mod:fx(Imod;rmod),
ntype:mass,type:part)

det_word (rel:minus,hcphr:plus ntype:mass,type:part,
wh:plus)

simple_det(le:plus,div:+ ntype:mass,pn:stp(threesg),
type:part,wh:plus)

simple_det (le:plus,ntype:mass,pn:stp(threepl),type:part,
wh:plus)

det_word(type:gen)

det_word(que:minus,type:gen,wh:minus)

(
(
det_word(rel:minus,le:plus,type:gen,wh:plus)
det_word(que:minus,rel:minus,le:plus,type:gen,wh:minus)
(

det_word(que:minus,rel:plus,le:plus,type:gen,wh:minus)

A.7.7 Main verbs

Main verbs carry the semantic brunt of a clause and may or may not appear with auxiliary

verbs. In the ERG, main verbs are classified by their subcategorization requirements—

each main verb type is the type-antecedent of a constraint specifying the value of the

SYNSEM feature and/or the optionality of members of the COMPS list.

ICEBERG implements main verbs with three parametric types, main_verb, i_mu,

and t_mv. main_verb subtypes word, refines four inherited parameters, and introduces

parameters for synsem type, optionality of the first complement, and inflection. i muv

encodes intransitive main verbs by subtyping main_verb and setting inflection to negative.

t_mv encodes transitive main verbs by subtyping main_verb, refining two parameters
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(including setting inflection to negative), and adding a parameter for optionality of the

second complement. Several simple types are introduced by ground-instance subtyping

links.

ICEBERG

word

main_verb
main_verb

main_verb
i_mv
t_mv

description

sub main_verb( msg
conj
mc
hcphr
infl

hopt

sub i_mv ( infl
sub  t_mv ( tkey
infl
topt

close trivial(grammar).
close trivial(grammar).
close trivial(grammar).

: minus,
: minus,
! na,

! plus,
: bool,
synsem :
: bool ).

synsem_min,

: minus ).
: plus,

: minus,

: bool ).

main_verb(tkey:plus,aff:minus,hopt:minus,

ss:poss_verb)

sub mv_poss_got_le.

main_verb(tkey:plus,aff:minus,hopt:minus,

ss:obj_equi_non_trans_prd_verb)

t_mv(hopt:plus,topt:minus,
ss:expl_it_subj_verb)

sub mv_poss_got_prd_le.

sub mv_expl_it_subj_like_le.

ICEBERG ground instances

ERG name ICEBERG name
main_verb(synsem:synsem_min)

main_verb_sans_key main_verb(infl:minus)

main_verb main_verb(tkey:plus,infl:minus)

mv_sorb_pass_le main_verb(le:plus,hopt:minus,infl:minus,
ss:sor_verb)
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ERG name

ICEBERG name

mv_atrans_le
mv_unacc_le

mv_unerg_le

mv_adv_le
mv_cp_prop_raise_key_le
mv_anom_equi_le
mv_cp_fin_inf non_trans_le
mv_empty_prep*_intrans_le
mv_cp_prop* _non_trans_le
mv_cp_prop_non_trans_le
mv_cp_ques_non_trans_le
mv_cp_non_trans_le
mv_empty_prep_intrans_le
mv_np_non_trans_unacc_le
mv_np_non_trans_le
mv_np_trans_le
mv_particle_le

mv_poss_le

mv_ssr_le
mv_subj_equi_prp_le
mv_subj_equi_le
mv_np*_non_trans_le

mv_np*_trans_le

main_verb(tkey:plus,infl:minus,ss:atrans_verb)
main_verb(tkey:plus,infl:minus,ss:unacc_verb)
main_verb(tkey:plus,infl:minus,ss:unerg_verb)
i_mv(synsem:synsem_min)

i_mv(hopt:minus,ss:adv_verb)

i_mv(hopt:minus,ss:cp_prop_raise key_verb)
i_mv(tkey:plus,hopt:plus,ss:anom_equi_verb)

i_mv(tkey:plus,hopt:minus,ss:cp_fin_inf_intrans_verb)

i_mv(tkey:plus,hopt:plus,ss:empty_prep_intrans_verb)

i_mv(tkey:plus,hopt:plus,ss:cp_prop_intrans_verb)

i_mv(tkey:plus,hopt:minus,ss:cp_prop_intrans_verb)

i_mv(tkey:plus,hopt:minus,ss:cp_ques_intrans_verb)

i_mv(tkey:plus,le:plus,hopt:minus,ss:cp_intrans_verb)

i_mv(tkey:plus,hopt:minus,ss:empty_prep_intrans_verb)

(
(
(
(
(
(
(
(
(
(
Lmv(
(
(
(
(
(
(
(
(
(

z

i_mv(tkey:plus,hopt:minus,ss:np_non_trans_unacc_verb)

i_mv(tkey:plus,hopt:minus,ss:np_non_trans_verb)

z

i_mv(tkey:plus,hopt:minus,ss:np_trans_verb)

z

1

z

v(tkey:plus,hopt:minus,ss:particle_verb)

i_mv(tkey:plus,le:plus,hopt:minus,ss:poss_verb)

z

i_mv(tkey:plus,hopt:minus,ss:ssr_verb)
i_mv(tkey:plus,hopt:minus,ss:subj_equi_prp_verb)
i_mv(tkey:plus,hopt:minus,ss:subj_equi_verb)

i_mv(tkey:plus,hopt:plus,ss:np_non_trans_verb)

i_mv(tkey:plus,hopt:plus,ss:np_trans_verb)
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ERG name

ICEBERG name

mv_prd_ssr_le
mv_subj_equi_prd_le
mv_prep_intrans_le
mv_prep_intrans_event_le

mv_prep*_intrans_le

mv_ditrans*_only_le
mv_ditrans_only_le
mv_ditrans_le

myv _ditrans_opt_le
mv_empty_prep*_trans*_le

mv_empty_prep*_trans_le

mv_empty_prep_trans®_le
mv_empty_prep_trans_le

mv_empty_prep_non_trans_le

mv_expl_it_subj_le
mv_expl_obj_cp_le
mv_expl_pp_inf_oeq_le
mv_expl_pp_inf_seq_le
mv_np_trans_cp_le
mv_np_trans_cp_ques_le
mv_np_prep_particle_only_le

mv_np_comp_le

i_mv(tkey:plus,hopt:minus,ss:ssr_prd_verb)
i_mv(tkey:plus,hopt:minus,ss:subj_equi_prd_verb)
i_mv(tkey:plus,hopt:minus,ss:prep_intrans_verb)
i_mv(tkey:plus,hopt:minus,ss:prep_intrans_event_verb)
i_mv(tkey:plus,hopt:plus,ss:prep_intrans_verb)
t_mv(synsem:synsem _min)

t_mv (hopt:plus ss:ditrans_only_verb,topt:plus)
t_mv(hopt:minus,ss:ditrans_only_verb,topt:minus)
t_mv(hopt:minus,ss:ditrans_verb,topt:plus)
t_mv(hopt:plus,ss:ditrans_verb,topt:plus)
t_mv(hopt:plus,ss:empty_prep_trans_verb,topt:plus)

t_mv/(le:plus,hopt:minus,ss:empty_prep_trans_verb,
topt:plus)

t_mv(hopt:plus,ss:empty_prep_trans_verb,topt:minus)
t_mv(hopt:minus,ss:empty_prep_trans_verb,topt:minus)

t_mv(hopt:minus,ss:empty_prep_non_trans_verb,
topt:minus)

t_mv (le:plus,hopt:plus,ss:expl_it_subj_verb,topt:minus)
t_mv(hopt:minus,ss:expl_obj_cp_verb,topt:minus)
t_mv(hopt:minus,ss:expl_pp_inf_oeq_verb,topt:minus)
t_mv(hopt:minus,ss:expl_pp_inf seq_verb,topt:minus)
pt:minus,ss:np_trans_cp_verb,topt:minus)
t_mv(hopt:plus,ss:np_trans_cp_ques_verb,topt:minus)
t_mv(hopt:minus,ss:np_prep_particle_verb,topt:minus)

(
(
(
t_mv(ho
(
(
(

t_mv(hopt:minus,ss:np_comp_verb,topt:minus)
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ERG name

ICEBERG name

mv_np_np_cp_le
mv_obj_equi_le
mv_oeq_pp-inf_le
mv_particle_np_le
mv_prep_particle_np_le
mv_particle_np_pp_to_le
mv_particle_inf_le
mv_particle_pp_le
mv_particle_cp_le
mv_pp-inf_ssr_le
mv_pp-inf_seq_le
mv_pp-cp-_le
mv_sor_non_trans_le
mv_sorb_le

mv_sor_le
mv_np*_prep_trans_le
mv_to*_trans_le
mv_particle_pp*_le
mv_expl_prep_trans_le
mv_prep_trans_le
mv_particle_prd_le
mv_prdp_pp_ssr_le

mv_obj_equi_non_trans_prd_le

t_mv(hopt:plus,ss:np_np_cp_verb topt:plus)
t_mv(hopt:minus,ss:obj_equi_verb,topt:minus)
t_mv(hopt:minus,ss:0oeq_pp_inf_verb,topt:minus)

t_mv (le:plus,hopt:minus ss:particle_np_verb,topt:minus)

t_mv(hopt:minus,ss:prep_particle np_verb,topt:minus)

z

t-

z

v(hopt:minus,ss:particle np_pp_verb,topt:minus)

t_mv(hopt:minus,ss:particle_inf_verb,topt:minus)

z

t_mv(hopt:minus,ss:particle_pp_verb,topt:minus)

z

t_mv(hopt:minus,ss:particle_cp_verb,topt:minus)

z

t_mv(hopt:plus,ss:ssr_pp-inf_verb,topt:minus)

z

t-

z

(
(
(
(
(
(
(
(
(
(
v(hopt:plus,ss:pp_inf_seq_verb, topt:minus)
t_mv(hopt:plus,ss:pp_cp_verb,topt:minus)
(
(
(
(
(
(
(
(
(
(

t-

z

v(hopt:minus,ss:sor_non_trans_verb,topt:minus)

t_mv(hopt:minus,ss:sorb_verb,topt:minus)

5

5

t_mv(hopt:minus,ss:sor_verb,topt:minus)

t_mv(hopt:plus,ss:prep_trans_verb,topt:minus)

t_mv(hopt:minus,ss:to_trans_verb,topt:plus)

5

t-

5

v(hopt:minus,ss:particle_pp_verb,topt:plus)
t_mv(hopt:minus,ss:expl_prep_trans_verb,topt:minus)
t_mv(hopt:minus,ss:prep_trans_verb,topt:minus)
t_mv(hopt:minus,ss:particle_prd_verb,topt:minus)
t_mv(hopt:minus,ss:ssr_prdp_pp_verb,topt:plus)

t_mv (le:plus,hopt:minus,ss:obj_equi_non_trans_prd_verb,
topt:minus)
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ERG name ICEBERG name

mv_obj_equi_prd_le t_mv(hopt:minus,ss:obj_equi_prd_verb,topt:minus)
mv_prep*_trans_le t_mv(hopt:minus,ss:prep_trans_verb topt:plus)
mv_np*_prep*_trans_le t_mv (hopt:plus,ss:prep_trans_verb,topt:plus)

A.7.8 Nominals

Nominal words generally represent persons, places, things, and ideas. Syntactically, nom-
inals function as the subjects of verbs and as the objects of both verbs and prepositions.
The ERG contains nominal word types for mass and count nouns, affixed and non-affixed
nouns, nouns with and without specifiers, and both singular and plural nouns.
ICEBERG classifies nominals with six parametric types: basic_noun, noun_word,
one_word, np_word, np_pron_word, and np_adv_word. basic_noun subtypes word, refines
two inherited parameters, and serves as the common supertype of all ICEBERG nominal
types. Type noun_word encodes nouns which require specifiers by subtyping basic_noun,
refining one inherited parameter, and introducing subtypes for complement type, tran-
sitivity, noun type (count or mass), and deverbalization. Type np_word encodes nouns
which do not require specifiers by subtyping basic_noun, refining four inherited parame-
ters, and introducing parameters for number, external modifiers, and noun-phrase type
(adverb or pronoun). Pronouns are encoded by pron_word and np_pron_word. pron_word
subtypes basic_word, refines one inherited parameters, and introduces a parameter for un-
specified pronoun types and a parameter for external modifiers. np_pron_word subtypes
np_word, refines four inherited parameters, and introduces a parameter for agreement and
a parameter for pronoun type. one_word specifically encodes various forms of the word

‘one’ by subtyping word, refining two inherited parameters, and introducing a pernum
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parameter. Finally, np_adv_word encodes adverbial nominals by subtyping np_word, re-
fining three inherited parameters, and introducing a parameter for comparative adverbs.

A number of simple types are added by ground instance subtyping links.

ICEBERG description

n_type sub [count, mass].
np_type sub  [adv, pron].
num sub [sg, pl].
pronoun_type sub [deictic, poss, adv, clitic].
trans_type sub [atrans, intrans, trans, ditrans].
comp_type sub  [pp, vp, cp, np, S, vp_aux, nomp, nbar, none].
word sub  basic_noun ( conj : minus,

mc : na ).
basic_noun sub noun_word ( msg . minus,

comp : comp_type,

trans : trans_type,

ntype : n_type,

dv : bool ).
basic_noun sub  pron_word ( aff : minus,

type . pronoun_type,

xmod  : xmod ).
word sub  one_word ( tkey : plus,

aff : minus,

pn : pernum ).
basic_noun sub np_word ( slash : minus,

rel : minus,

aff : minus,

hcphr : plus,

num : num,

xmod : xmod,

pos : np_type ).
np_word sub np_pron_word( que : minus,

msg : minus,

pos : pron,

xmod : fx(notmod),

agr : bool,
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type : prontype ).
np_word sub np_adv_word ( num . sg,
pos . adv,
msg : minus,
compar : bool ).
basic_noun close trivial(grammar).
noun_word close trivial(grammar) .
pron_word close trivial(grammar) .
one_word close trivial(grammar) .
np_word close trivial(grammar) .
np_pron_word close trivial(grammar).
np_adv_word close trivial(grammar).
aff_noun syn  noun_word(tkey:plus,hcphr:plus,aff:plus,
label:list(x:syn_sign)).
noaff_noun syn noun_word(tkey:plus,hcphr:plus,aff:minus).
reg_pron syn pron_word(slash:minus,rel:minus,hcphr:plus).
reg_pron(msg:minus) sub [wh_pro_lel].
reg_pron(que:minus,type:poss) sub [poss_of_le].
aff_noun(comp:pp,ntype:count,trans:trans) sub [noun_ppin_word,
noun_ppof_le].
aff_noun(dv:minus,trans:intrans) sub [intr_temp_noun_le,
irreg_intr_noun_le].
noun_word(aff:minus,slash:minus,
rel:minus,hcphr:plus) sub [part_noun_le].
np_adv_word(le:plus) sub [wh_np_adv_le].

np_word(que :minus,msg:minus,xmod:fx(notmod)) sub
np_word (num:sg,que :minus,msg:minus,le:plus) sub

[year_le] .
[holiday_le,proper_le,
season_le] .

ICEBERG ground instances

ERG name

ICEBERG name

noun_ppcomp_word

basic_noun(slash:bool)

noun_word (comp:comp_type)

aff_noun(comp:pp,ntype:count, trans:trans)

continued on next page
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ERG name

ICEBERG name

noun_ppcomp_le
noun_cpcomp_le
noun_vpcomp_le

noun_npcomp_le

plurn_le
deverbal_noun_trans_word
deverbal_noun_intr_le
basic_intr_noun_word
intr_noun_le

massn_le
massn_ppcomp_le
deverbal_massn_le

deverbal_massn_pp_le

deverbal_noun_intr_plural_le

poss_clitic_le

deictic_pro_le

generic_pro_adv_word

generic_pro_adv_le

generic_pro_le

poss_pro_le

one_word

aff_noun(le:plus,comp:pp,ntype:count,trans:trans)
aff_noun(le:plus,comp:cp,ntype:count, trans:trans)
aff_noun(le:plus,comp:vp,ntype:count,trans:trans)

noun_word (slash:minus,que:minus,rel:minus, tkey:plus,
le:plus,comp:np,ntype:count,trans:trans)

noaff_noun(le:plus,dv:minus,ntype:count)
aff_noun(dv:plus,trans:trans)
aff_noun(le:plus,dv:plus,ntype:count,trans:intrans)

(
(
aff_noun(dv:minus,trans:intrans)
aff_noun(le:plus,dv:minus,trans:intrans)
aff_noun(le:plus,dv:minus,ntype:mass)
aff_noun(comp:pp,dv:minus,ntype:mass,trans:trans)

noaff_noun(dv:plus,ntype:mass,trans:intrans)

noaff noun

(
(le:plus,comp:pp,dv:plus,ntype:mass,
trans:trans)
(

noaff_noun(dv:plus,ntype:count,trans:intrans)

pron_word (type:pronoun_type)

pron_word (msg:minus,le:plus,type:clitic)

pron_word (slash:minus,que:minus,rel:minus,msg:minus,
le:plus,type:deictic)

reg_pron(msg:minus,type:adv)
reg_pron(msg:minus,le:plus,type:adv,
xmod:fx(lmod;rmod))
reg_pron(msg:minus,le:plus,type:adv,xmod:fx(notmod))
reg_pron(que:minus,msg:minus,tkey:plus,le:plus,
type:poss)

one_word(pn:pernum)

continued on next page
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ERG name ICEBERG name
one_sing le one_word(le:plus,pn:threesg)
one_plur_le one_word(le:plus,pn:threepl)

basic_np_word
np_word
basic_np_sing_word

np_pl_word

np_sing_word
personal_pro
pers_pro_le
pers_pro_noagr_le
refl_pro_le
recip_pro_le
basic_np_adv_word
np_adv_word

np_comp_adv_le

np_word(pos:np_type)
np_word (que:minus,msg:minus,xmod:fx(notmod))
np_word (num:sg)

(
(
(
np_word (que:minus,msg:minus,num:pl,
xmod:fx(notmod))

(

np-word (que:minus,msg:minus,le:plus,num:sg)
np_pron_word (pron:prontype)
np_pron_word(le:plus,agr:plus,type:ppro(pn:pernum))
np_pron_word(le:plus,agr:minus,type:ppro(pn:pernum))
np_pron_word (le:plus,type:refl)

np_pron_word (le:plus,type:recip)
np_adv_word(compar:bool)

np_adv_word(que:minus)

np_adv_word(que:minus,compar:plus)

(
(
(
(

np_adv_le np_adv_word(que:minus,compar:minus)

A.7.9 Numerals

Numerals appear most often as adjectives which quantitatively modify a noun. The
ERG contains numeric word types for cardinal numbers, ordinal numbers, approximate
numbers, and numbers either requiring or not requiring specifiers and/or complements.

ICEBERG implements numbers with a parametric type, num_word, which subtypes
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word, refines seven inherited parameters, and adds parameters for specifier presence,

complement presence, whether the numeral is approximate, and numeral type (cardinal

or ordinal).

ICEBERG description

num_type sub [card, ord].

num_word( slash
rel
conj
aff
mc
msg
que
spec
comp
approx

type

word sub

num_word close trivial(grammar).

: minus,
: minus,
: minus,
: minus,
. na,

: minus,
: minus,
: bool,
: bool,
: bool,
: num_type ).

ICEBERG ground instances

ERG name

ICEBERG name

norm_num_word

complement_free_number
complemented _number
specified_num_with_complements
specified_num_without_complements
specified_number

unspecified_num

unspecified_num_with_complements

approx_unspecified_num_without_complements

num_word(type:num_type)

num_word (tkey:plus,approx:plus,
comp:minus,spec:minus)

num_word (comp:minus)

num_word(comp:plus)
num_word (comp:plus,spec:plus)
num_word (comp:minus,spec:plus)
num_word (spec:plus)
(
(

num_word(spec:minus)

num_word (comp:plus,spec:minus)

continued on next page
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ERG name

ICEBERG name

unspecified_num_without_complements

norm_card_word
ord_word
card_only_word

approx_bare_unspecified _card_le

bare_unspecified_card_le

bare_specified_card_le

bare_specified_ord_le

bare_unspecified_ord_le

complemented _specified _card_le

complemented_unspecified_card_le

num_word (tkey:plus,approx:minus,
comp:minus,spec:minus)

num_word(type:card)

num_word(type:ord)

num_word (comp:minus,type:card)
num_word (tkey:plus,le:plus,approx:plus,
comp:minus,spec:minus,type:card)
num_word(tkey:plus,le:plus,approx:minus,
comp:minus,spec:minus, type:card)
num_word (le:plus,comp:minus,spec:plus,
type:card)

num_word (le:plus,comp:minus,spec:plus,
type:ord)
num_word(tkey:plus,le:plus,approx:minus,
comp:minus,spec:minus,type:ord)
num_word (le:plus,comp:plus,spec:plus,
type:card)

num_word (le:plus,comp:plus,spec:minus,
type:card)

A.7.10 Prepositions

Prepositions generally appear before a noun phrase and express the syntactic and/or

semantic relation of the noun phrase to another constituent in the containing clause.

The ERG contains prepositions for various kinds of complements and semantic relations.

ICEBERG implements prepositions with a parametric type, prep_word, which sub-

types word, refines four inherited parameters, and introduces parameters for comple-

ment type, complement optionality, transitivity, modifier presence, subject presence, and
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temporal-modifying prepositions. Three simple types are added by ground-instance sub-

typing links.

ICEBERG description

comp_type sub
trans_type sub

word sub

[pp, vp, cp, np, s, vp_aux, nomp, nbar, none].
[atrans, intrans, trans, ditrans].

prep_word( tkey : plus,

conj : minus,

aff . minus,
hcphr : plus,

comp : comp_type,
copt : bool,

trans : trans_type,
mod : bool,

subj : bool,

temp : bool ).

prep_word close trivial(grammar).

prep_word(rel:minus,que:minus,slash:minus,

mc:na,copt:minus,temp:plus) sub before_prep_le.
prep_word(rel:minus,que:minus,slash:minus,
mc:na,temp:plus,trans:trans) sub hour_prep_le.

prep_word(msg:minus,mc:na,comp:nomp,subj:minus) sub prep_nomod_of_le.

ICEBERG ground instances

ERG name

ICEBERG name

basic_prep_word
pp-idiom_le
prep_cp_le
prep_idiom_le
prep_nbar_comp_le

prep_pp-le

prep_word(comp:comp_type)
prep_word(comp:nomp,trans:trans)

prep_word (le:plus,trans:intrans)

prep_word (le:plus,copt:minus,subj:minus,trans:trans)

(
(
(
prep_word (le:plus,comp:s,trans:trans)
(
prep_word(le:plus,comp:nbar,trans:trans)
(

prep_word (le:plus,comp:pp,trans:trans)

continued on next page
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ERG name

ICEBERG name

temp_prep_le
prep_le

prep_no_n_mod_le

prep_optcomp_le

reg_prep_le

ditrans_prep_le

prep_idiom_nomod_le

prep_-nomod_le

pp-le

prep_word (le:plus,temp:plus)
prep_word(le:plus,comp:nomp,copt:minus,trans:trans)
prep_word(comp:nomp,mod:minus,copt:minus,
trans:trans)

prep_word (le:plus,comp:nomp,copt:plus,trans:trans)
prep_word (comp:nomp,copt:minus,temp:minus,
trans:trans)

prep_word (slash:minus,que:minus,rel:minus,mc:na,
le:plus,trans:ditrans)

prep_word (mc:na,msg:minus,le:plus,comp:nomp,
subj:minus)

prep_word (mc:na,msg:minus,le:plus,comp:nomp,
mod:minus)

prep_word (slash:minus,que:minus,rel:minus,mc:na,
msg:minus,trans:intrans)

A.7.11 Time words

ERG time words encode lexical items which express various temporal relations, including

hours, minutes, days of the month, days of the week, months, and years.

The ERG time words appear sprinkled thoughout the type hierarchy and, in most

cases, look to be afterthoughts to the hierarchy rather than full-fledged members. In order

to impose some conceptual structure on these words, ICEBERG has gathered them into

two parametric types: time_word and day_part_word. time_word subtypes word, refines

six inherited parameters, and adds parameters for time word type, ersatz time words,

and approximate times. day_part_word subtypes time_word and adds a parameter for

definiteness.
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ICEBERG description

time_type sub [hour, minute, ampm, dow, month,
month_year, dom, mealtime].

word sub  time_word ( aff : minus,
slash : minus,
rel : minus,
conj : minus,
mc : na,
msg : minus,
time : time_type,

ersatz : bool,
approx : bool ).

time_word sub  day_part_word( def : bool ).

time_word close trivial(grammar).
day_part_word close trivial(grammar).

ICEBERG ground instances

ERG name ICEBERG name

time_word (time:type_type)

abstr_hour_word time_word(que:minus,tkey:plus,time:hour)

approx_hour_le time_word (que:minus,tkey:plus,le:plus,approx:plus,
time:hour)

hour_le time_word (que:minus,tkey:plus,le:plus,approx:minus,
time:hour)

abstr_minute_word time_word (que:minus,hcphr:plus,ersatz:plus,

time:minute)

minute_le time_word (que:minus,hcphr:plus,le:plus,approx:minus,
ersatz:plus,time:minute)

approx_minute_le time_word (que:minus, hephr:plus,le:plus,approx:plus,
ersatz:plus,time:minute)

np_word_no_quant time_word (que:minus,hcphr:plus,ersatz:plus)

am_pm_le time_word (que:minus,hcphr:plus,le:plus,ersatz:plus,

time:ampm)

continued on next page
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ERG name ICEBERG name

day_of_week_le time_word (que:minus,le:plus,time:dow)

month_le time_word(que:minus,le:plus,time:month)

month_year_le time_word(que:minus,le:plus,time:month_year)

day_of_month_le time_word (que:minus,tkey:plus,;hcphr:plus le:plus,
time:dom)

mealtime_le time_word (que:minus,hcphr:plus,le:plus,time:mealtime)

day_part_word(def:bool)

def_day_part_le day_part_word(que:minus,tkey:plus,hcphr:plus,le:plus,
def:plus)
day_part_le day_part_word (hcphr:plus,le:plus,def:minus)

A.7.12 Unknown words

ERG unknown words encode word types for words which appear in corpus data but are
not in the lexicon. There are only eight of such types, four of which ICEBERG encodes
with a parametric subtype, unknown_word, of word. The four remaining unknown word

types are added by ground-instance subtyping links.

ICEBERG description

word sub  unknown_word( msg : minus,
conj : minus,
mc : na,

hcphr : plus).
unknown_word close trivial(grammar) .
nale_word syn  unknown_word(slash:minus,que:minus,rel:minus).

unknown_word (tkey:plus) sub [intr_noun_word_nale, intrans_adj_nale,
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mv_np_trans_nale, mv_unerg_nale] .
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ICEBERG ground instances

ERG name

ICEBERG name

basic_unknown_word
unknown_word
proper_nale

adv_word_nale

unknown_word(tkey:bool)
unknown_word (tkey:plus)
nale_word(tkey:minus)

nale_word (tkey:plus)

A.7.13 Miscellaneous words

This section sketches the ERG word types not captured by previous classifications. In-

cluded in this set of miscellaneous word types are root markers, imperatives, ‘how about’

words, explitive ‘it’ and ‘there’, and title words. The miscellaneous types also include

a number of simple types which encode properties of raising but which appear to be

implemented as afterthoughts to the original ERG word type hierarchy.

ICEBERG description

word sub root_marker ( rel : minus,
que ! minus,
conj : minus,
aff : minus,
hcphr : plus ).

root_marker sub  how_about_word( chead : bool,
copt : bool ).

word sub title_word ( aff : minus,
conj : minus,
mc : na,
nsg : minus,

slash . minus,
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rel : minus,
que : minus,
posthead : bool ).
word sub  expl_word aff : minus,
conj : minus,
mc : na,
msg : minus,
slash : minus,
rel : minus,
que : minus,
ind : expl_ind(full:bool) ).
expl_word close trivial(grammar) .
title_word close trivial(grammar) .
root_marker close trivial(grammar).
how_about_word close trivial(grammar).
root_marker(rel:minus) sub [lex_imperative].
lex_imperative sub [dont_imp_le,lets_imp_le].
word(conj:bool) sub [add_cont,raise_cont,hc_word].
add_cont sub [modal_pres(tkey:plus,le:plus,aux:+),

modal_pres (tkey:plus,aux:+,mood:modal_subj),
ought_aux(tkey:plus,le:plus)].

raise_cont sub [do_aux_word(neg:minus)] .

hc_word sub [time_word(que:minus,tkey:plus,time:hour),
noun_word(slash:minus,que:minus,rel:minus,
tkey:plus,le:plus,comp:np,
ntype:count,trans:trans) ].

ICEBERG ground instances

ERG name ICEBERG name

root_marker_word root_marker(rel:minus)
how_about_word(chead:bool)

how_about_n_or_p_le how_about_word(chead:plus)

continued on next page
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continued from previous page

ERG name

ICEBERG name

how_about_vp_le

how_about_s_le

title le

post_title_le

expl_it_le

expl_there_le

how_about_word(chead:minus,copt:plus)
how_about_word(chead:minus,copt:minus)
title_word(posthead:bool)
title_word(le:plus,posthead:minus)
title_word(tkey:plus,hcphr:plus,le:plus,posthead:plus)
expl_word(ind: expl_ind(full:bool))
expl_word(le:plus,ind:expl_ind(full:plus,explind:it))

(

expl_word(le:plus,ind:expl_ind (explind:ithere))
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