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Abstract

In this study, we investigate temporal slowness as a learning principle for receptive fields using slow
feature analysis, a new algorithm to determine functions that extract slowly varying signals from the in-
put data. We find that the learned functions trained on image sequences develop many properties found
also experimentally in complex cells of primary visual cortex, such as direction selectivity, non-orthogonal
inhibition, end-inhibition and side-inhibition. Our results demonstrate that a single unsupervised learn-
ing principle can account for such a rich repertoire of receptive field properties.
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1 Introduction

Primary visual cortex (V1) is the first cortical area dedicated to visual processing. This area has been inten-
sively studied neurophysiologically since the seminal work by Hubel and Wiesel (1962), who also introduced
the standard classification of neurons in V1 in two main groups: simple and complex cells. These neurons
are conceived as edge or line detectors: simple cells respond to bars having a specific orientation and position
in the visual field; complex cells also respond to oriented bars but are insensitive to their exact position.

Idealized simple and complex cells are well described by Gabor wavelets, which have the shape of sine
gratings with a Gaussian envelope function (Figure 2 A). A single Gabor wavelet used as a linear filter
is similar to a simple cell, since the response depends on the exact alignment of a stimulus edge on an
excitatory (positive) subfield of the wavelet. Taking the square sum of the responses of two Gabor wavelets
with identical envelope function, frequency, and orientation but with a 90◦ phase difference, one obtains a
response similar to that of a complex cell, insensitive to the exact location of the bar (following a rule similar
to the relation sin(x)2 + cos(x)2 = 1) while still being sensitive to its orientation. We will refer to these
models as the classical models of simple and complex cells.

This idealized picture, however, is clearly not complete. Complex cells in V1 show a much richer repertoire
of receptive field properties than can be explained with this simple model. For example, they show end-
inhibition, direction selectivity, and sharpened or broadened tuning to orientation or frequency.

In this work we investigate temporal slowness as a possible computational principle for the emergence of
complex cell receptive fields1. The slowness principle is based on the observation that the environment, sen-
sory signals, and internal representations of the environment vary on different time scales. The environment,

1 An early description of the principle was given by Hinton (1989) (p. 208) and early models based on temporal slowness
were presented by Földiák (1991) and Mitchison (1991). Successive studies applied this principle to the extraction of disparity
from stereograms (Stone, 1996) or from artificially generated simple cell outputs (Wiskott and Sejnowski, 2002), and to blind
source separation (Stone, 2001). Other studies modeling complex and simple cells are discussed in the Conclusion section.
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e.g. the objects we see around us, changes usually on a relatively slow time scale. Sensory signals on the
other hand, such as the responses of single receptors in the retina, have a faster time scale, because even a
small eye movement or shift of a textured object may lead to a rapid variation of the light intensity received
by a receptor neuron. The internal representation of the environment, finally, should vary on a time scale
similar to that of the environment itself, i.e. on a slow time scale. If we succeed in extracting slowly varying
features from the quickly varying sensory signal, then the features are likely to reflect the properties of the
environment and are in addition invariant or at least robust to frequent transformations of the sensory input,
such as visual translation, rotation, or zoom. Our working hypothesis is that the cortex organizes according
to this principle in order to build a consistent internal representation of the environment. In order to verify
this hypothesis we consider a general space of non-linear input-output functions, determine those functions
that extract the slowest features in response to natural image sequences, and compare their behavior to that
of complex cells in V1 described in the literature.

The following section introduces the slow feature analysis algorithm. Section 3 presents the input data
set and the methods used to analyze the results. Section 4 describes the simulation results and compares
the learned functions with neurons described in the physiological literature.

2 Slow Feature Analysis

2.1 Problem statement

The problem of extracting slow features from time sequences can be formally stated as follows (Wiskott and
Sejnowski, 2002): given a multidimensional input signal x(t) = (x1(t), . . . , xN (t))T , t ∈ [t0, t1], find a set of
real-valued functions g1(x), . . . , gM (x) so that for the output signals yj(t) := gj(x(t))

∆(yj) := 〈ẏ2
j 〉t is minimal (1)

under the constraints

〈yj〉t = 0 (zero mean) , (2)
〈y2

j 〉t = 1 (unit variance) , (3)
∀i < j, 〈yiyj〉t = 0 (decorrelation) , (4)

with 〈.〉t and ẏ indicating time averaging and the time derivative of y, respectively. The zero-mean constraint
(2) is present for convenience only, so that eqs. (3) and (4) take a simple form. Constraint (3) means that
each signal should carry some information and avoids the trivial solution gj(x) = 0. Alternatively, one could
drop this constraint and divide the right side of (1) by the variance 〈y2

j 〉t. Constraint (4) forces different
signals to code for different aspects of the input.

We solve this optimization problem with slow feature analysis (SFA) (Wiskott, 1998; Wiskott and Se-
jnowski, 2002), an unsupervised algorithm based on an eigenvector approach. Slow feature analysis permits
to consider general finite dimensional function spaces and is efficient enough to do simulations of reason-
able scale in terms of size and dimensionality of the input signals. The following two sections sketch the
mathematical background and the definition of the algorithm.

2.2 The linear case

Consider first the linear case gj(x) = wT
j x, for some input x and weight vectors wj . In the following we

assume x to have zero mean (i.e. 〈x〉t = 0) for simplicity and without loss of generality.
We can write equation (1) as

∆(yj) := 〈ẏj
2〉t = 〈(wT

j ẋ)2〉t = wT
j 〈ẋẋT 〉twj . (5)

If we integrate Constraint (3) in the objective function (5), as suggested in the previous section, we obtain:

∆(yj) =
wT

j 〈ẋẋT 〉twj

wT
j 〈xxT 〉twj

=:
wT

j Awj

wT
j Bwj

. (6)

It is known from linear algebra that the weight vectors wj that minimize this equation correspond to the
eigenvectors of the generalized eigenvalue problem

AW = ΛBW , (7)
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where W = (w1, . . . ,wN ) is the matrix of the generalized eigenvectors and Λ is the diagonal matrix of the
generalized eigenvalues λ1, . . . , λN (see e.g. Gantmacher, 1959, chap. 10.7, Theorem 8, 10 and 11, pp.310–
320). In particular the vectors wj can be chosen such that wT

i Bwj = δij , which implies that Constraints
(3) and (4) are fulfilled:

〈y2
j 〉t = 〈(wT

j x)2〉t = wT
j 〈xxT 〉twj = wT

j Bwj = 1 , (8)

〈yiyj〉t = 〈(wT
i x)(wT

j x)〉t = wT
i 〈xxT 〉twj = wT

i Bwj = 0 . (9)

Note that, by equation (6), λj = ∆(yj), so that by sorting the eigenvectors by increasing eigenvalues we
induce an order where the slowest signals have lowest indices (i.e. ∆(y1) ≤ ∆(y2) ≤ . . .).

2.3 The general case

In the more general case of a finite dimensional function space F , we consider a basis h1, . . . , hM of F . For
example, in the standard case where F is the space of all polynomials of degree n, the basis will include all
monomials up to order n.

Defining the expanded input h(x) := (h1(x), . . . , hM (x)), every function g ∈ F can be expressed as
g(x) =

∑M
k=1 wkhk(x) = wT h(x). This leads us back to the linear case if we assume that h(x) has zero

mean (again, without loss of generality), which can be easily obtained in practice by subtracting the mean
over time from the expanded input signal (this reduces the dimensionality of the problem by one).

We can now formulate the Slow Feature Analysis (SFA) algorithm (Wiskott and Sejnowski, 2002):

Non-linear expansion: expand the input data and subtract the mean over time to obtain the expanded
signal z := h(x) = (h1(x), . . . , hM (x)).

Slow Feature Extraction: solve the generalized eigenvalue problem

AW = ΛBW , (10)
with A := 〈żżT 〉t (11)
and B := 〈zzT 〉t . (12)

The N eigenvectors w1, . . . ,wN corresponding to the lowest generalized eigenvalues λ1 ≤ λ2 ≤ . . . ≤
λN define the non-linear input-output functions g1(x), . . . , gN (x):

gj(x) := wT
j h(x) (13)

which satisfy constraints (2-4) and minimize (1).

In the simulations presented here, the derivative of z(t) is computed by the linear approximation ż(t) =
z(t+dt)−z(t). Other simulations performed with cubic interpolation show equivalent results. The function
space F is chosen to be the set of all polynomials of order 2, mainly because of limited computational
resources. This function space, however, is much larger than the ones spanned by the neural networks used
in standard studies in the field (cf. Conclusions). Those models usually rely either on linear networks, which
span the space of all linear functions, or on networks with one layer of a small number (typically 2 or 4) of
linear units followed by a quadratic non-linearity, which span a small subset of the space of polynomials of
order 2.

3 Methods

3.1 Input data

Our data source consisted of 36 gray-valued natural images extracted from the Natural Stimuli Collection of
H. van Hateren2 and preprocessed as suggested in (van Hateren and van der Schaaf, 1998) (block averaging
and taking the logarithm of the pixel intensities). We constructed image sequences by moving a window
over the images by translation, rotation, and zoom and subsequently rescaling the frames to a standard size
of 16× 16 pixels. The transformations were performed simultaneously, so that each frame differed from the

2The Natural Stimuli Collection of H. van Hateren is available online at http://hlab.phys.rug.nl/archive.html
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Figure 1 Optimal stimuli, overview. Optimal excitatory stimuli (S+) and optimal inhibitory stimuli
(S−) of the first 41 units of the simulation described in the text. For most units S+ and S− look like Gabor
wavelets in agreement with physiological data. The optimal stimuli give information about the preferred
frequency and orientation of a unit. A comparison between the patches at time t and at time t + dt hints at
the temporal structure of the receptive field, e.g. its preferred speed. The units surrounded by a black frame
are magnified and described in Figure 2.

previous one by position, orientation, and scale. We produced in this way 250,000 frames per simulation.
To include temporal information, the input vectors to SFA were formed by the pixel intensities of two
consecutive frames at times t and t + dt.

A run with these settings requires the computation of large covariance matrices having in the order of
O(N4) elements, where N is the input dimension. We perform a standard preprocessing step using PCA to
reduce the dimensionality of the input vectors from 512 = 16× 16× 2 dimensions to 100.

3.2 Analysis of results

SFA learns a set of second degree polynomials that applied to our input visual stimuli have the most slowly
varying output. We refer to the i-th polynomial as the i-th unit. The units are ordered by slowness (the
first unit being the slowest) and their outputs are mutually uncorrelated. As the sign of a unit’s response
is arbitrary in the optimization problem, we choose it in this paper such that the strongest response to an
input vector with norm r is positive (i.e. such that the magnitude of the response to S+ is greater than that
to S−; see below).
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Figure 2 Gabor wavelets and selected optimal stimuli. (A) Two Gabor wavelets with frequencies
of 2.5 and 4.5 cycles/degree of arc and equal orientation. These wavelets were used to produce the images
of Figures 3 B and C according to the classical simple and complex cell models. (B–F) Optimal excitatory
stimuli (S+) and optimal inhibitory stimuli (S−) for some of the units shown in Figure 1, obtained from the
simulation described in the text. The units are chosen to illustrate typical behaviors, namely orthogonal
inhibition (B), non-orthogonal inhibition (C), direction selectivity (D), end-inhibition (E), and side-inhibition
(F). Response images corresponding to B–F are shown in Figures 4 E,F,C and Figures 5 B,C, respectively,
as indicated in brackets.

Since the input vectors are pairs of image patches, the functions gj can be interpreted as non-linear spatio-
temporal receptive fields of neurons in V1 and tested with input stimuli much like in neurophysiological
experiments. The units can have a spontaneous firing rate, i.e. a non-zero response to a blank visual input.
As in physiological experiments we interpret an output lower than the spontaneous one as active inhibition.

In order to analyze the units, we first compute for each of them the optimal excitatory stimulus S+ and
the optimal inhibitory stimulus S−, i.e. the input that elicits the strongest and the weakest output from the
unit, respectively, given a constant norm r of the input vector (Figure 1, Figure 2 B-F). This is in analogy
to the physiological practice of characterizing a neuron by the stimulus to which the neuron responds best.
We choose r to be the mean norm of the training input, since we want S+ and S− to be representative of
the typical input. The optimal stimuli give us information for example about the preferred frequency and
orientation of the unit. In addition, a comparison between the optimal stimulus at time t and at time t + dt
hints at the temporal structure of the receptive field. However, since the units are non-linear the optimal
stimuli give only a partial view of their behavior.

To gain further insight into the response properties we use an appropriate pair of test images (one at
time t and one at time t + dt) and compute for each unit the corresponding response image3. The response
image is computed by cutting at each point of the test images a 16 × 16 window, using it as the input to
the unit and plotting its output at the corresponding point. This leads to response images like those shown
in Figure 4 B-F and Figure 5 B,C. An illustrative example for the classical simple and complex cells models
on a static test image is shown in Figure 3.

To study the response to a range of frequencies and orientations, we use a test image that consists of a
circular pattern of sine waves with frequency increasing from the circumference to the center; we let the ring
patterns move outward at the preferred speed of the unit (Figure 4 A). These images contain information
not only about the whole range of frequencies and orientations to which the unit responds or by which it
is inhibited, but also about the sensitivity of the unit to the phase of the grating. If a unit is sensitive,
the response image will show oscillations in the radial direction, while if there are no oscillations the unit is
phase-invariant. Moreover, since at two opposite points of a ring the grating is moving in opposite directions,

3A different technique, that consists in computing the invariances of the optimal stimuli, i.e. the directions in which a
variation of S+ or S− has the least effect on the output of the unit, is described in (Berkes and Wiskott, 2002) or online at
http://itb.biologie.hu-berlin.de/~berkes/ICANN02/results.shtml.
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Figure 3 Circular test- and response images for the classical simple and complex cells models.
This figure illustrates the technique of response images. The images are created by applying the classical
models to all locations of the test image (we used the two wavelets shown in Figure 2 A for the simple
and the complex cell model, respectively). The output is normalized such that white indicates the maximal
response and dark gray values indicate inhibition. The square in the upper left corner indicates the size
of the windows used as input to the unit. The three circular guidelines in the response images coincide
with the internal, the middle, and the external circumference of the test image. (A) Test image used to
investigate the response of a unit to a range of frequencies and orientations. (B,C) Response images for the
classical models of simple and complex cells when applied to the test image shown in A. Simple cells respond
to oriented bars and are sensitive to the exact position of edges in their receptive field, which causes the
oscillations in B. Complex cells also respond to oriented edges but are insensitive to their position, and thus
there are no oscillations in C. In contrast with our model, there is no inhibitory region in C and therefore no
possibility to modify the orientation- or frequency-tuning of the complex cell. A color version of this figure
can be found at the end of the paper.

different responses indicate selectivity to the direction of motion.

4 Results

For each simulation we extracted the 100 slowest units and analyzed their behavior. We now describe units
computed in a single simulation and make a comparison with corresponding cells reported in the literature4.
Although we concentrate for illustrative purposes on response images, all observations have been confirmed
by independent measures, such as linear sinus gratings.

Gabor-like optimal stimuli and phase invariance: The optimal stimuli of almost all units look like
Gabor wavelets, in agreement with physiological data. This means that the units respond best to
edge-like stimuli. Figure 1 shows an overview of the optimal stimuli of the first 41 units of the
simulation. The response of all these units is largely invariant to phase shift, as illustrated by the lack
of oscillations in the response images (Figure 4), and would thus be classified as complex cells in a
physiological experiment. 98 units out of the 100 studied in each simulation had Gabor-like S+ and
phase-shift invariance, the missing two cells are described under the paragraph Tonic cells.

Active inhibition: In V1 the tuning to orientation and frequency is shaped by active inhibition and other
non-linear interactions (Sillito, 1975; De Valois et al., 1982) and is not simply a consequence of the
shape of S+ like in the classical model of complex cells.

4Further examples will be made available via the author’s homepages.
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Figure 4 Circular test- and response images for some learned units. (A) Test image at time t
used to investigate the response of a unit to a range of frequencies and orientations. A second test image
at time t + dt is also used similar to the first one but with the rings shifted outwards by the preferred
speed of the unit. (B–F) Response images of representative units. The response images are computed
and normalized as described in Figure 3. The labels over the images indicate the illustrated behavior. (B)
The strong inhibitory flanks at an orientation equal to the preferred one but at a slightly lower frequency
than the optimal makes this unit very frequency-selective. (C) Different responses at opposite points of
the rings, where the gratings move in two opposite directions, indicate direction selectivity. (D) This unit
is phase-shift invariant (since there are no oscillations in the response image) and selective to relatively
high frequencies, but it responds rather uniformly to all orientations. (E) This unit show inhibition at an
orientation orthogonal to the preferred one. (F) In this unit the orientation of maximal inhibition is near
to that of maximal excitation. This causes a second peak of activity to appear at the orientation orthogonal
to the optimal one (secondary response lobe). The optimal stimuli of the unit shown in C,E,F are shown in
Figure 2 D,B,C, respectively. A color version of this figure can be found at the end of the paper.

In our model inhibition is present in most units and typically makes an important contribution to the
output. As a consequence, S− is usually well-structured and has the form of a Gabor wavelet as well
(Figure 1, Figure 2 B-F). Its orientation (which corresponds to the orientation of maximal inhibition)
is often not orthogonal to that of S+ (Figure 2 C), like also found in V1 (De Valois et al., 1982). This
results in sharpened orientation tuning. When the orientation of S− is very close to that of S+, it is
possible to observe a second peak of activity at an orientation orthogonal to the optimal one, known
in the experimental literature as secondary response lobe (De Valois et al., 1982) (Figure 4 F).

On the other hand, we also find units that would be classified as complex by their response to edges and
their phase-invariance but which are not selective for a particular orientation (Figure 4 D). Similar cells
are present in V1 and known as non-oriented cells (De Valois et al., 1982). Analogous considerations
also hold for the frequency domain: here again, the tuning varies from a sustained response to a

7



Optimal speed: −0.13 cycles/frame
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Figure 5 Hexagonal test- and response images for some learned units. (A) Test image used to
investigate length- and width-inhibition. The hexagonal shape is oriented such that it is aligned to the
preferred orientation of the considered unit, indicated by the central bar. The gratings are tuned to the
preferred frequency and move with the preferred speed of the unit, in the direction indicated by the thin
arrows. The response images are computed and normalized as described in Figure 3. (B) Response image
of an end-inhibited unit. Going from right to left, the first arrow indicates the point of maximal response,
when only the left part of the input window is filled. In the region indicated by the second arrow the grating
fills the whole input window; the response has decreased, which corresponds to end-inhibition. The third
arrow indicates the region where only the right part of the input window is filled, and the unit is inhibited.
(C) Response image of a width-inhibited unit. The interpretation of the arrows going from left to right is
similar to that in B, except that the grating extends laterally, which corresponds to width-inhibition. The
two dotted circles surround two regions with opposite curvature. The unit responds strongly in one case and
is inhibited in the other, which indicates curvature selectivity. The optimal stimuli of the unit shown in B,C
are shown in Figure 2 E,F, respectively. A color version of this figure can be found at the end of the paper.

large range of frequencies (Figure 4 E) to a sharp (and sometimes even bimodal) tuning due to active
inhibition (Figure 4 B).

End- and Side-Inhibition: Some of the complex cells in V1 are selective to the length (end-inhibited cells)
or width of their input (side-inhibited cells). While in normal cells the extension of a grating at the
preferred orientation and frequency produces an increase of the response up to a saturation level, in
these cells the response drops if the grating extends beyond a certain limit (DeAngelis et al., 1994).

End- and side-inhibited units form approx. 1/6 of the units in our results. They can sometimes be
identified by looking directly at the optimal stimuli: in these cases S+ fills only one half of the window,
while the missing half is covered by S− with the same orientation and frequency (Figure 2 E,F). In
this way, if we extend the stimulus into the missing half, the output receives an inhibitory contribution
and drops.

To investigate this behavior in greater detail, we constructed hexagonal-shaped test images like the
one shown in Figure 5 A. The hexagons are adapted to each unit to have its optimal orientation and
frequency. If a unit is selective for the length or width of the input, one notices a higher response at
the borders of the hexagon, where only part of the input window is filled, than in the inner, where the
whole input window is filled. Figures 5 B,C show the response images of an end- and a side-inhibited
unit.

A secondary characteristic of end-inhibited cells in V1 is that they are sometimes selective for different
signs of curvature (Dobbins et al., 1987; Versavel et al., 1990). This can be observed in our simulation,
for example in Figure 5 C: the dashed circles indicate two opposite curvatures. While in one the unit
responds strongly, in the other one it is inhibited.

Direction selectivity: Complex cells in V1 are sensitive to the motion of the presented stimuli. Some of
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them respond to motion in both directions while others are direction selective (Hubel and Wiesel, 1962;
Schiller et al., 1976; De Valois et al., 1982). Similarly, in our model some units are strongly selective
for direction (Figure 4 C) while others are neutral (e.g. Figure 4 E). In the latter case the optimal
speed may be non-zero but the response is nearly equal for both directions. In a few cases, the two
wavelets in the optimal stimuli have a slightly different orientation or frequency at time t and at time
t + dt, which indicates a more complex behavior in time, such as selectivity for rotation or zoom.

Tonic cells: The first unit in every simulation codes for the mean pixel intensity, and is thus comparable
to the tonic cells found in V1 (Schiller et al., 1976). Tonic cells respond to one sign of light but do
not need a contour in order to respond. We find in addition one unit (the second one) that responds
to the squared mean pixel intensity, and thus to both signs of light.

Response to complex stimuli: We also find some units that give a near-optimal output (> 80% of the
optimum) in response to corners and T-shaped stimuli, related to the V1-cells described in (Shevelev,
1998). Other units respond to one sign of curvature only. These behaviors are often associated with
length- or width-inhibition, as described above.

Relations between slowness and behavior: Although the precise shape and order of the units can vary
in different simulations, there seem to be relations between the slowness of unit responses and their re-
ceptive field properties. The slowest units are usually less selective for orientation and frequency, have
orthogonal inhibition and their preferred speed is near zero. Units with non-orthogonal inhibition, di-
rection selectivity, and length- or width-inhibition predominate in a faster regime. Moreover, frequency
tends to increase with decreasing slowness. We couldn’t find any relation between preferred orientation
and slowness. It would be interesting to see if similar relations can also be found experimentally.

5 Conclusions

Several theoretical studies have successfully reproduced the basic properties of simple cells (Olshausen and
Field, 1996; Bell and Sejnowski, 1997; Hoyer and Hyvärinnen, 2000; Szatmáry and Lõrincz, 2001; Olshausen,
2002; Einhäuser et al., 2002; Hurri and Hyvärinnen, 2003) or complex cells (Hyvärinnen and Hoyer, 2000;
Kayser et al., 2001) in models based on the computational principles sparseness (Olshausen and Field,
1996; Olshausen, 2002), statistical independence (Bell and Sejnowski, 1997; Hoyer and Hyvärinnen, 2000;
Hyvärinnen and Hoyer, 2000; Szatmáry and Lõrincz, 2001), or slowness (Kayser et al., 2001; Einhäuser
et al., 2002; Hurri and Hyvärinnen, 2003). Among the simple cells models, two included direction selec-
tivity (Olshausen, 2002; Szatmáry and Lõrincz, 2001), two color-selectivity (Hoyer and Hyvärinnen, 2000;
Einhäuser et al., 2002) and one disparity (Hoyer and Hyvärinnen, 2000). Each of these models focused on
one particular aspect of the behavior of cells in V1. In particular, the complex cells resulting from the two
cited models only reproduced phase shift invariance and learned units that were equivalent to the classical
models. To the best of our knowledge, the model presented here is the first one that is able to reproduce
complex cells that are in addition direction-selective, end-inhibited, width-inhibited, curvature selective etc.

One important limitation of the previous models is that they assumed linear or non-linear but simple
neural network architectures spanning a function space much smaller than the one we use. In particular,
none of the non-linear models included inhibition, while many of the illustrated complex cell behaviors are
impossible to obtain without it.

We would like to point out that the definitions of slowness in the models described in (Kayser et al., 2001;
Einhäuser et al., 2002; Hurri and Hyvärinnen, 2003) and in the present work are to some extent incompatible
with each other. In (Kayser et al., 2001), a decorrelation and a slowness term are optimized through gradient
descent. The slowness term is defined by the mean of the ∆-values in eq. (1). The units found by this
rule lie in the subspace of the most slowly varying functions, but they are unique only up to an orthogonal
transformation, i.e. by mixing the results through a rotation one would find different but equally optimal
units (Blaschke 2003, personal communication). In (Einhäuser et al., 2002; Hurri and Hyvärinnen, 2003),
the temporal variation of the output is minimized after a rectifying non-linearity. When the non-linearity
is symmetrical (for example when squaring or taking the absolute value of the output), solutions oscillating
strongly around zero can be optimal, since the sign is canceled out by the rectification. Also in the non-
symmetric case, the solutions found are different from the ones extracted by SFA. Further investigation is
needed in order to compare the different definitions and to find a unifying framework.
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In summary we have shown that slowness leads to a great variety of complex cell properties found also in
physiological experiments. Our results demonstrate that such a rich repertoire of receptive field properties
can be accounted for by a single unsupervised learning principle. It will be interesting to see to what
extent theory and experiments agree also quantitatively, e.g. with respect to the shape of tuning curves,
and whether the relations between the behavior of the neurons and the slowness of their output will be
confirmed experimentally. Earlier modeling studies with SFA (Wiskott and Sejnowski, 2002) have shown
that translation, scale, and other invariances can also be learned for whole objects in a hierarchical network.
This suggests that slowness might be a rather general learning principle in the visual and possibly also other
perceptual systems.
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Figure 3 (color version, see page 6 for figure caption).
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Figure 4 (color version, see page 7 for figure caption).
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Figure 5 (color version, see page 8 for figure caption).
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