CSC2535
Appendix to Lecture 4:

Introduction to
Markov Chain Monte Carlo

Andriy Mnih



The problem

* Training and performing inference in probabilistic
models often requires computing expectations with
respect to complex distributions.

- Computing these expectations directly is usually
infeasible.

— They can, however, be efficiently approximated by
generating samples from the distribution using Markov
Chain Monte Carlo (MCMC) and averaging over the

samples.

* We might also want to generate samples from a
probabilistic model to see what input vectors the model
finds probable (1.e. “believes 1n™).



Monte Carlo

* Basic idea: To estimate an intractable expectation
E[f(X)]=2. P(x)f(x)
do the following:
— Generate K samples from P(x) (call them x' o xt )
~ Set E:% ALS
* FE1s an estimate of the expectation.

— Using more samples produces more accurate estimates.

* The samples don't have to be independent, but fewer samples are
required to achieve the desired accuracy if they are independent.

— In the limit of the infinite number of samples, £ 1s equal
to the expectation being esimated.



Why sampling 1s difficult

* We usually work with distributions over high-
dimensional vectors.

— In the discrete case, the number of joint configurations is
exponential in the number of random variables.

* Therefore, even enumerating all the possible configurations 1s
infeasible.

— In the continuous case, rejection sampling or
importance sampling can be used (in theory).

* However, these methods are exponentially inefficeint in high-
dimensional spaces.

* This means that sampling from the distribution of
interest directly 1s infeasible 1n both cases.



Markov Chain Monte Carlo

* Markov Chain Monte Carlo methods do not sample from
the distribution of interest P(x) directly. Instead, they
sample from a sequence of distributions that converges
to P(x).

* The state vector x stores the current assignment of values
to the vector of random variables, which can be viewed
as a “sample 1n the making”.

* An MCMC method makes random changes to the state
vector using the transition probabilities T(x, ).

— T(x, y) 1s the probability of going to state y given that we
are currently in state x.

— These probabilities define a Markov chain that converges
to P(x). This means that after sufficienly many transitions
the state vector is a sample from P(x).



Transition probabilities

* Transition probabilities are almost never specified
explicitly. Instead they are defined algorithmically.

— Different MCMC methods are simply different ways of
making the transitions (and thus defining 7(x,y)).

* For example, a transition can be made by generating a proposed
new state y from some simple distribution “centered” at the
current state x and accepting or rejecting this proposal based on

P(x) and P(y).
— To ensure convergence of the Markov chain to P(x), T has
to satisfy P(x)= . P(y)T(x,y) forallx.

 Examples of MCMC algorithms used in machine
learning are Hybrid Monte Carlo, Gibbs sampling, and
various Metropolis algorithms.



G1bbs sampling

Suppose we have a distribution such that sampling from
its conditional distributions P (x |{x j} j#) 1S easy.

— This 1s the case, for example, 1f the conditionals are
multinomial or Gaussian.

Then we can generate samples from this distribution
using Gibbs sampling.

G1bbs sampling cycles through the state vector, updating
one vector component at a time by sampling 1t from the
corresponding conditional distribution.

— Components can be visited 1n a determinstic or random
order, as long as every component 1s visited infinitely
often (1.e. “once 1n a while”).

If some of the components are strongly correlated, the
Markov chain can take a long time to converge.



Gibbs sampling algorithm

x = 1nitial value
repeat

fori=1ton
x, = sample from P(xl'ij}j;éi)

until convergence



Finding conditional distributions

e To find the conditional distribution for X

— Write down the joint distribution P(x) for the model

— Factor out the terms containing x_

— Normalize the product of these terms with respect to x. to
get P(xiH'xj}j;ti)



