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The problem

● Training and performing inference in probabilistic 
models often requires computing expectations with 
respect to complex distributions.
– Computing these expectations directly is usually 

infeasible.

– They can, however,  be efficiently approximated by 
generating samples from the distribution using Markov 
Chain Monte Carlo (MCMC) and averaging over the 
samples.

● We might also want to generate samples from a 
probabilistic model to see what input vectors the model 
finds probable (i.e. “believes in”). 



Monte Carlo

● Basic idea: To estimate an intractable expectation 

    do the following:
– Generate K samples from P(x) (call them                  )

– Set

● E is an estimate of the expectation. 
– Using more samples produces more accurate estimates.

● The samples don't have to be independent, but fewer samples are 
required to achieve the desired accuracy if they are independent.

– In the limit of the infinite number of samples, E is equal 
to the expectation being esimated. 
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Why sampling is difficult
● We usually work with distributions over high-

dimensional vectors.
– In the discrete case, the number of joint configurations is 

exponential in the number of random variables.
● Therefore, even enumerating all the possible configurations is 

infeasible.

– In the continuous case, rejection sampling or 
importance sampling can be used (in theory).

● However, these methods are exponentially inefficeint in high-
dimensional spaces.

● This means that sampling from the distribution of 
interest directly is infeasible in both cases.



Markov Chain Monte Carlo

● Markov Chain Monte Carlo methods do not sample from 
the distribution of interest P(x) directly. Instead, they 
sample from a sequence of distributions that converges 
to P(x).

● The state vector x stores the current assignment of values 
to the vector of random variables, which can be viewed 
as a “sample in the making”.

● An MCMC method makes random changes to the state 
vector using the transition probabilities T(x, y).
– T(x, y) is the probability of going to state y given that we 

are currently in state x.

– These probabilities define a Markov chain that converges 
to P(x). This means that after sufficienly many transitions 
the state vector is a sample from P(x).



Transition probabilities
● Transition probabilities are almost never specified 

explicitly. Instead they are defined algorithmically.
– Different MCMC methods are simply different ways of 

making the transitions (and thus defining T(x,y)).
● For example, a transition can be made by generating a proposed 

new state y from some simple distribution “centered” at the 
current state x and accepting or rejecting this proposal based on 
P(x) and P(y).

– To ensure convergence of the Markov chain to P(x), T has 
to satisfy                                              for all x.

● Examples of MCMC algorithms used in machine 
learning are Hybrid Monte Carlo, Gibbs sampling, and 
various Metropolis algorithms.

P x =∑y
P  y T  x , y 



Gibbs sampling
● Suppose we have a distribution such that sampling from 

its conditional distributions                          is easy.
– This is the case, for example, if the conditionals are 

multinomial or Gaussian.

● Then we can generate samples from this distribution 
using Gibbs sampling.

● Gibbs sampling cycles through the state vector, updating 
one vector component at a time by sampling it from the 
corresponding conditional distribution.
– Components can be visited in a determinstic or random 

order, as long as every component is visited infinitely 
often (i.e. “once in a while”).

● If some of the components are strongly correlated, the 
Markov chain can take a long time to converge.

P x i∣{x j}j≠i



Gibbs sampling algorithm

x = initial value 

repeat

for i = 1 to n

    = sample from 

until convergence

xi P  xi∣{x j}j≠i



Finding conditional distributions

● To find the conditional distribution for x
i
:

– Write down the joint distribution P(x) for the model

– Factor out the terms containing x
i

– Normalize the product of these terms with respect to x
i 
 to 

get P  xi∣{x j}j≠i


