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Bayesian Model Selection

Using Bayes’ rule, select the model mj with the highest probability given the data y:

p(mj |y) =
p(mj) p(y |mj)

p(y)
, p(y |mj) =

∫
dθj p(θj |mj)p(y |θj,mj)︸ ︷︷ ︸

marginal likelihood

(Sampling) interpretation of p(y |mj): The probability that randomly selected
parameter values from the model class mj would generate data set y.
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• Model classes that are too simple are unlikely to generate the data set.
• Model classes that are too complex can generate many possible data sets, so again,
they are unlikely to generate that particular data set at random.



Some examples of model selection

Structure learning The pattern of arcs between variables in a graphical model implies
a set of conditional independence (CI) relationships; the structure learning problem
is inferring the CI relationships that hold given a set of (complete or incomplete)
observations of the variables. A related problem is learning the direction of the
dependencies (i.e. A→ B, or B → A).

Input dependence Selecting which input (i.e. explanatory) variables are needed to
predict the output (i.e. response) variable in a regression/classification task can be
equivalently cast as deciding whether each input variable is a parent (or, more accurately,
an ancestor) of the output variable in the corresponding directed graph.

Cardinality Many statistical models contain discrete nominal latent variables, but
their cardinalities are often unknown. Examples include deciding how many mixture
components are required in a finite mixture model, or how many hidden states are
needed in a hidden Markov model.

Dimensionality Other statistical models contain real-valued vectors of latent variables:
model selection examples include choosing the intrinsic dimensionality in a probabilistic
principal components analysis (pPCA) or factor analysis (FA) model, or the state-space
dimensionality of a linear-Gaussian state-space model.



Marginal likelihoods can be intractable to compute

The marginal likelihood is often a difficult integral to compute

p(y |m) =
∫
dθ p(θ |m)p(y |θ)

because of the high dimensionality of the parameter space, analytical
intractability, but also due to the presence of hidden variables, s:

s θ

y

p(y |m) =
∫
dθ p(θ |m)p(y |θ) =

∫
dθ p(θ |m)

∫
ds p(y, s |θ,m)

Example: A mixture model with K components, and we model n = 100 data points.

• The marginal likelihood for that model includes a sum over all possible joint settings
of hidden variables (the component indicator variables), which is Kn terms.
• So, in a mixture model with even just 2 components, this becomes ridiculous.

p(y |θ) =
n∏
i=1

p(yi |θ) , and p(yi |θ) =
K∑

si=1

p(si |θ) p(yi | si,θ)

p(y |m) =
∫
dθ p(θ |m)

n∏
i=1

K∑
si=1

p(si |θ)p(yi | si,θ) . . . this has 2100 terms!!



Understanding why marginal likelihoods are intractable

Integrating out the parameters θ couples the posterior distributions over the hidden
variables for every data point:
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(a) A generative graphical model
for 3 i.i.d. data points, each with
one hidden variable.
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(b) Graph representing the exact
posterior.

(a) Given the parameters, each (xi,xj) pair (i 6= j) are independent. Inference is simple
and i.i.d. (for inference use your standard EM, or E-step constrained EM).

(b) If the parameters are uncertain quantities (unobserved), then the exact posterior
couples (xi,xj) pairs through θ. They are conditionally independent given θ, but
marginally dependent.



A structure model selection task

Which of the following graphical models is the data generating process?
Discrete-valued directed acyclic graphical models: data y = (A,B,C,D,E)n
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If the data are just y = (C,D,E)n, and s = (A,B)n are hidden variables... ?
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Practical Bayesian methods

• Laplace approximations: appeal to Central Limit Theorem.

– Makes a Gaussian approximation about a maximum a posteriori estimate, θ̂.

ln p(y |m) ≈ ln p(θ̂ |m) + ln p(y | θ̂) + d
2 ln 2π − 1

2 ln |H|

• Large sample approximations: as n→∞, prior term vanishes.

– Bayesian Information Criterion (BIC): ln p(y |m) ≈ ln p(y | θ̂)− d
2 lnn

– Cheeseman-Stutz (CS): ln p(y |m) ≈ ln p(ŝ,y |m) + ln p(y | θ̂)− ln p(ŝ,y | θ̂)

• Markov chain Monte Carlo (MCMC): guaranteed to converge in the limit.

– But many samples required for accurate results, hard to assess convergence.
– Posterior is stored as a set of samples, which can be inefficient.

• Variational approximations: this changes the objective function, from a marginal
likelihood to a negative free energy.

– Here we construct a lower bound that is tractable to compute.
– We also obtain tractable, efficient, and intuitive inference & learning steps.



(review, lecture 5): The lower bound interpretation of EM

If y is the observed data, and x are hidden variables, then the log probability of the
data is given by integrating out x; also the ML parameter setting, θML, is given by

L(θ) ≡ ln p(y |θ) = ln
∫
dx p(x,y |θ) , θML ≡ arg max

θ
L(θ) .

Let’s form a free-energy, by lower bounding the likelihood L(θ) using Jensen’s inequality

L(θ) = ln
∫
dx p(x,y |θ) = ln

∫
dx qx(x)

p(x,y |θ)
qx(x)

≥
∫
dx qx(x) ln

p(x,y |θ)
qx(x)

≡ F(qx(x),θ,y)

log function is
concave

F(·) is a lower bound on L — for any distribution we choose for qx(x) — some q(·)
will give tighter bounds than others.

ln p(y |θ)︸ ︷︷ ︸
desired

quantity

−F(qx(x),θ,y)︸ ︷︷ ︸
computable

=
∫
dx qx(x) ln

qx(x)
p(x |y,θ)

= KL(q‖p)︸ ︷︷ ︸
measure of inaccuracy of approximation



(review, lecture 5): Cartoon of ML EM learning using F

If the form of qx(x) is not constrained to any particular family, then the bound can be
made tight on every E step.

log likelihood
ln p(y | θ(t))

KL

[
q
(t)
x ‖ p(x | y, θ(t))

]

F(q
(t)
x , θ(t))

lower bound

E step

E step makes the

lower bound tight

ln p(y | θ(t))

= F(q
(t+1)
x , θ(t))

KL = 0

M step

new log likelihood
ln p(y | θ(t+1))

KL

F
new lower bound



(review, lecture 5): Cartoon of ML EM learning using F

If the form of qx(x) is not flexible enough to capture the hidden variable posterior
distribution, then the bound is loose on the E step, by an amount which is the KL
divergence between the approximate distribution qx(x) and the true posterior p(x |y,θ).

log likelihood
ln p(y | θ(t))

KL

[
q
(t)
x ‖ p(x | y, θ(t))

]

F(q
(t)
x , θ(t))

lower bound

constrained E step

constrained E step,

so lower bound

is no longer tight

ln p(y | θ(t))

KL

[
q
(t+1)
x ‖ p(x | y, θ(t))

]
F(q

(t+1)
x , θ(t))

M step

new log likelihood
ln p(y | θ(t+1))

KL

F
new lower bound



Lower Bounding the Marginal Likelihood
Variational Bayesian Learning

Let the hidden states be x, data y and the parameters θ.

We can lower bound the marginal likelihood (Jensen’s inequality):

ln p(y |m) = ln
∫
dx dθ p(y,x,θ |m)

= ln
∫
dx dθ q(x,θ)

p(y,x,θ |m)
q(x,θ)

≥
∫
dx dθ q(x,θ) ln

p(y,x,θ |m)
q(x,θ)

.

x θ

y

log function is still
concave!

Use a simpler, factorised approximation to q(x,θ) = qx(x)qθ(θ):

ln p(y |m) ≥
∫
dx dθ qx(x)qθ(θ) ln

p(y,x,θ |m)
qx(x)qθ(θ)

= Fm(qx(x), qθ(θ),y).



Optimising the VB lower bound using variational calculus

Maximizing this lower bound, Fm, leads to EM-like updates:

VBE q∗x(x) ∝ exp
[∫

dθ qθ(θ) ln p(x,y |θ)
]

E−like step

VBM q∗θ(θ) ∝ p(θ) exp
[∫

dx q∗x(x) ln p(x,y |θ)
]

M−like step

As before, maximizing Fm is equivalent to minimizing KL-divergence between the
approximate posterior, qθ(θ) qx(x) and the true posterior, p(θ,x |y,m):

ln p(y |m)︸ ︷︷ ︸
desired

quantity

−Fm(qx(x), qθ(θ),y)︸ ︷︷ ︸
computable

=
∫
dx dθ qx(x) qθ(θ) ln

qx(x) qθ(θ)
p(x,θ |y,m)

= KL(q‖p)︸ ︷︷ ︸
measure of inaccuracy of approximation

In the limit as n → ∞, for identifiable models, the variational lower bound approaches
Schwartz’s (1978) BIC criterion.



Cartoon of VB EM learning using F

Using the factorisation q(x,θ) = qx(x)qθ(θ), we know the bound can’t be tight bound
for either VBE or VBM steps. NB: log marginal likelihood ln p(y |m) is constant (if the hyperparameters remain fixed).
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VB-EM is just coordinate ascent in (q(x), q(θ)) space
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The Variational Bayesian EM algorithm

EM for MAP estimation

Goal: maximize p(θ |y,m) w.r.t. θ

E Step: compute

q(t+1)
x (x) = p(x |y,θ(t))

M Step:

θ
(t+1)

= arg max
θ

∫
dx q(t+1)

x (x) ln p(x, y, θ)

Variational Bayesian EM

Goal: lower bound p(y |m)
VB-E Step: compute

q(t+1)
x (x) = p(x |y, φ̄(t))

VB-M Step:

q
(t+1)
θ (θ)∝ exp

[∫
dx q(t+1)

x (x) ln p(x, y, θ)

]
Properties of VB-EM:

• Reduces to the EM algorithm if qθ(θ) = δ(θ − θ∗).

• Fm increases monotonically, and incorporates the model complexity penalty.

• Analytical parameter distributions (but not constrained to be Gaussian).

• VB-E step has same complexity as corresponding E step.

• We can use the junction tree, belief propagation, Kalman filter, etc, algorithms in the
VB-E step of VB-EM, but using expected natural parameters, φ̄.



Examples of where Variational Bayesian EM is being used

The Variational Bayesian EM algorithm has been used to approximate Bayesian learning
in a wide range of models, such as:

• probabilistic PCA and factor analysis (Bishop, 1999)

• mixtures of Gaussians (Attias, 1999)

• mixtures of factor analysers (Ghahramani & Beal, 1999)

• state-space models (Ghahramani & Beal, 2000; Beal, 2003)

• ICA, IFA (Attias, 1999; Miskin & MacKay, 2000; Valpola 2000)

• mixtures of experts (Ueda & Ghahramani, 2000)

• hidden Markov models (MacKay, 1995; Beal, 2003)

The main advantage is that it can be used to automatically do model selection and
does not suffer from overfitting to the same extent as ML methods do.

Also it is about as computationally demanding as the usual EM algorithm.

See: www.variational-bayes.org

http://www.variational-bayes.org


More to VB than we can cover

• Empirically VB seems to do well on model selection problems.

• But how can we be sure the bound is equally tight for different models?

– We can’t! — by the very intractability of the integral.
– But it is feasible to enumerate all possibilities when n is small.

• We can use clever sampling techniques to get a handle on the marginal likelihood

– importance sampling using the variational approximation as importance distn, and
– unbiased marginal likelihood estimates using Neal’s Annealed Importance Sampling.

• The VB algorithm can be analysed closely for Conjugate-Exponential models.

• Theoretical guarantees of improvement over some methods, e.g. Cheeseman-Stutz.

• There are more sophisticated variational methods available to us, e.g. Bethe, Kikuchi,
and generalised belief propagation. But these have not yet been successfully applied
to Bayesian integrals — only to the E-steps of standard EM algorithms.



Extra I — Variational calculus, aka freeform extremisation of F
Optimal forms of qx(x) and qθ(θ) are obtained by taking functional derivatives of F wrt
to each, keeping the other constant, and finding where in q-space the derivative is zero.

A Langrange multiplier constraint is required to ensure the variational distribution is
properly normalised. For example, for qθ(θ), a Langragian is

R(qθ(θ)) = Fm(qx(x), qθ(θ),y) + λ

(
1−

∫
dθ qθ(θ)

)
.

So taking the functional derivative:

∂

∂qθ(θ)
R(qθ(θ)) =

∂

∂qθ(θ)

∫
dθ qθ(θ)

[∫
dx qx(x) ln p(x,y |θ,m) + ln

p(θ |m)
qθ(θ)

]
− λ

=
∫
dx qx(x) ln p(x,y |θ) + ln p(θ |m)− ln qθ(θ)− λ .

Setting this to 0, and rearranging produces

ln q(t+1)
θ (θ) = ln p(θ |m) +

∫
dx q(t+1)

x (x) ln p(x,y |θ)− lnZ(t+1)
θ ,

where Zθ is the normalisation constant, or partition function (here it is exactly λ).



Extra II — Conjugate-Exponential models

Let’s focus on conjugate-exponential (CE) models, which satisfy (1) and (2):

Condition (1). The joint probability over variables is in the exponential family:

p(x,y |θ) = f(x,y) g(θ) exp
{
φ(θ)>u(x,y)

}
where φ(θ) is the vector of natural parameters, u are sufficient statistics

Condition (2). The prior over parameters is conjugate to this joint probability:

p(θ | η,ν) = h(η,ν) g(θ)η exp
{
φ(θ)>ν

}
where η and ν are hyperparameters of the prior.

Conjugate priors are computationally convenient and have an intuitive interpretation:

• η: number of pseudo-observations

• ν: values of pseudo-observations



Extra III — Conjugate-Exponential examples

Some models in the CE family:

• Gaussian mixtures

• factor analysis, probabilistic PCA

• hidden Markov models and factorial HMMs

• linear dynamical systems and switching models

• discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma, Poisson, Dirichlet, Wishart, Multinomial

and others.

Some models not in the CE family:

• Boltzmann machines, MRFs (no conjugacy)

• logistic regression (no conjugacy)

• sigmoid belief networks (not exponential)

• independent components analysis (not exponential)

One can often approximate these models with models in the CE family e.g. IFA (Attias,

1998).



Extra IV — A very useful result in CE models

Theorem Given an iid data set y = (y1, . . .yn), if the model is CE then:

(a) qθ(θ) is also conjugate, i.e.

qθ(θ) = h(η̃, ν̃)g(θ)η̃ exp
{
φ(θ)>ν̃

}
(b) qx(x) =

∏n
i=1 qxi(xi) is of the same form as in the E step of regular EM, but using

pseudo parameters computed by averaging over qθ(θ)

qxi(xi) ∝ f(xi,yi) exp
{
φ
>

u(xi,yi)
}

= p(xi |yi, θ̃)

where φ = 〈φ(θ)〉qθ(θ)
?= φ(θ̃)

KEY points:

(a) the approximate parameter posterior is of the same form as the prior;

(b) the approximate hidden variable posterior, averaging over all parameters, is of the
same form as the exact hidden variable posterior under θ̃.



further reading on variational Bayesian methods
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