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Abstract

We propose a new dimensionality reduction
method, the elastic embedding (EE), that op-
timises an intuitive, nonlinear objective func-
tion of the low-dimensional coordinates of the
data. The method reveals a fundamental re-
lation betwen a spectral method, Laplacian
eigenmaps, and a nonlinear method, stochas-
tic neighbour embedding; and shows that EE
can be seen as learning both the coordinates
and the affinities between data points. We
give a homotopy method to train EE, char-
acterise the critical value of the homotopy pa-
rameter, and study the method’s behaviour.
For a fixed homotopy parameter, we give a
globally convergent iterative algorithm that
is very effective and requires no user param-
eters. Finally, we give an extension to out-
of-sample points. In standard datasets, EE
obtains results as good or better than those
of SNE, but more efficiently and robustly.

1. Introduction

We consider the problem of dimensionality reduction,
also called manifold learning, where we seek to ex-
plain an observed high-dimensional data set Y =
(y1, . . . ,yn) of D×N in terms of a much smaller num-
ber of dimensions L≪ D. We will focus on algorithms
that take as input Y and estimate only the coordinates
of the corresponding low-dimensional (latent) points
X = (x1, . . . ,xn) of L × N . Within this framework,
there has been an enormous amount of recent work on
spectral dimensionality reduction, mainly algorithmic
but also theoretical. Spectral methods such as Isomap
(Tenenbaum et al., 2000), LLE (Roweis & Saul, 2000)
or Laplacian eigenmaps (Belkin & Niyogi, 2003) for-
mulate an objective function of X based on pairwise
affinities defined on a neighbourhood graph of the
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data, whose solution is given by the nontrivial ex-
tremal eigenvectors of a certain N × N matrix, often
sparse. Their success is due to their lack of local op-
tima, to the availability of excellent numerical eigen-
solvers, and to the remarkably good results (often cap-
turing the global structure of the underlying manifold)
that can be obtained with simple affinity functions
such as Gaussian. That said, such simple affinities can
only do so much, and the maps obtained typically col-
lapse non-similar points in small latent space regions
or, conversely, leave large gaps in it; they also show
significant boundary effects. These problems are par-
ticularly clear when the data consists of several sep-
arate manifolds. Using more sophisticated affinities
that encode non-local information (as in Isomap or
in maximum variance unfolding; Weinberger & Saul,
2006) can improve this at a higher computational cost,
but are still sensitive to noise in the data and in the
graph.

Nonlinear methods such as stochastic neighbour em-
bedding (SNE) can go beyond spectral methods and
find better optima, representing the global and local
structure as well as dealing with multiple manifolds
(Hinton & Roweis, 2003; van der Maaten & Hinton,
2008). However, nonlinear methods are far less devel-
oped. Only a few such methods have been proposed,
and while their results are very encouraging, their op-
timisation is costly and prone to local optima, and our
understanding of the algorithms is limited to an in-
tuitive interpretation of their objective function. The
objective of this paper is (1) to propose a new non-
linear algorithm of this type, with results as good as
those of SNE but more efficient and robust; and (2) to
further our understanding of this type of algorithms.

2. Related work

Metric MDS (Borg & Groenen, 2005) preserves data-
space distances in latent space by minimising an
objective function (stress) of the latent coordi-
nates. The linear version (classical scaling) re-
sults in an eigenvalue problem with a unique solu-
tion in generic cases. Several nonlinear versions ex-
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ist, such as the Sammon mapping (Sammon, 1969),
which are generally difficult to optimise and prone
to bad local optima. Stochastic neighbour em-
bedding (SNE) (Hinton & Roweis, 2003) preserves
probabilities instead of distances, and earlier papers
(Hinton & Roweis, 2003; van der Maaten & Hinton,
2008) have shown its superiority over other MDS-like
methods when dealing with data that lies in nonlin-
ear, clustered manifolds (though the optimisation is
still difficult). We will focus on SNE-type methods.
SNE defines the following normalised, non-symmetric
affinities pnm and qnm for each data point n in the
data and latent spaces, respectively:

pnm =
exp (−d2

nm)∑
n6=m′ exp (−d2

nm′)
pnn = 0 (1)

qnm =
exp (−‖xn − xm‖

2
)

∑
n6=m′ exp (−‖xn − xm′‖

2
)
. (2)

We will take d2
nm = 1

2 ‖(yn − ym)/σn‖
2
, that is,

Gaussian affinities, though other types of affinity may
be used. Each width σn is chosen by a binary search
so the entropy of the distribution Pn over neighbours
is roughly log k (for a user-provided k ≪ N , which is
then the perplexity, or effective number of neighbours).
SNE minimises the following objective function:

ESNE(X) =

N∑

n=1

D (Pn‖Qn) =

N∑

n,m=1

pnm log
pnm

qnm

(3)

and so tries to match the latent-space distributions
over neighbours to the data-space ones.

One important disadvantage of SNE is that its
gradient-based optimisation is slow and requires care
to find good optima. The user must tune for each
dataset several parameters (learning rate, momentum
rate, amount of gradient jitter, etc., and all these must
be adapted by hand as the optimisation proceeds).
Some versions of SNE have been proposed that slightly
simplify the gradient by symmetrising the objective
function (Venna & Kaski, 2007) or the probabilities
(Cook et al., 2007), but the normalisation term in the
qnm terms still makes it very nonlinear.

When the dimensionality L of the latent space
is smaller than the intrinsic dimensionality of the
data, the resulting map is unavoidably distorted.
For purposes of visualisation (rather than of faith-
ful dimensionality reduction), Cook et al. (2007) and
van der Maaten & Hinton (2008) have proposed two
ways of improving the separation of clusters in this
case, UNI-SNE and t-SNE, resp. UNI-SNE biases each
qnm by a fixed constant, while t-SNE defines Q as a t-
distribution with one degree of freedom. In both cases

Q has longer tails, which allows x-points correspond-
ing to y-pairs at a moderate distance to separate more.

SNE and our EE (described later) are related with the
elastic net (EN) (Durbin et al., 1989), originally pro-
posed to approximate the travelling salesman prob-
lem. The EN minimises the sum of a log-sum term
(Gaussian-mixture likelihood) that moves Y-space
centroids towards the data, and a data-independent
quadratic prior on the centroids (a graph Laplacian
prior), using a homotopy method. In the EN, the
centroids move in the data, rather than the latent,
space; and the quadratic prior on them enforces a
predetermined topology rather than being based on
data affinities. An interesting connection with EE
(see section 6), is that the EN prior is provably
equivalent to a certain Mexican-hat interaction term
(Carreira-Perpiñán & Goodhill, 2004).

EE (and SNE) can be seen as symmetrising the con-
straints of Laplacian eigenmaps, where both types of
mistakes are penalised: placing far apart latent points
that correspond to similar data points, and placing
close together latent points that correspond to dis-
similar data points. A related phenomenon occurs
with principal curves (Hastie & Stuetzle, 1989) and
Dimensionality Reduction by Unsupervised Regres-
sion (Carreira-Perpiñán & Lu, 2008); the latter may
be seen as a symmetrised version of the former that
penalises errors in the data and the latent space. Clos-
ing the loop in this way seems to lead to better em-
beddings.

In the rest of the paper, we show a relation between
SNE and Laplacian eigenmaps (sec. 3) that immedi-
ately suggests our EE algorithm, which we then study
(sec. 4) and apply in practice (sec. 5).

3. A Relation between SNE and LE

Laplacian eigenmaps (LE) (Belkin & Niyogi, 2003) is
a spectral method that optimises

ELE(X) =

N∑

n,m=1

wnm ‖xn − xm‖
2

(4)

subject to quadratic and linear constraints, and has a
unique solution given by the nontrivial trailing eigen-
vectors of the normalised version of the graph Lapla-
cian matrix L = D −W, where WN×N is the sym-
metric affinity matrix (typically Gaussian) and D =
diag

( ∑N

n=1 wnm

)
the degree matrix. LE discourages

placing far apart latent points that correspond to simi-
lar data points, but places no direct constraint on pairs
associated with distant data points. This often leads
to distorted maps where large clusters of points col-
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lapse (as happens with related methods such as LLE).

There is a fundamental relation between LE and SNE.
Expanding (3) and ignoring terms that do not depend
on X, we have that

ESNE(X) =
N∑

n,m=1

pnm ‖xn − xm‖
2

+

N∑

n=1

log
∑

n6=m

exp (−‖xn − xm‖
2
) (5)

since
∑N

m=1 pnm = 1 for each n. The first term
in the RHS is identical to the LE objective if using
normalised affinities as in diffusion maps (i.e., taking
wnm = pnm). It is a local distance term, and also a
data-dependent term (since it depends on the data Y

through the pnm). The second term encourages latent
points to separate from each other as much as possible
(or until the exponentials become negligible). It is a
global distance term, symmetric wrt xn and xm, which
pushes apart all point pairs equally, irrespective of
whether their high-dimensional counterparts are close
or far in data space. It is also a data-independent term,
since it does not depend on the data Y.

Therefore, SNE may be seen as LE with a data-
independent prior that blows points apart from each
other. It is thus more accurate to say that the SNE ob-
jective function enforces keeping the images of nearby
objects nearby while pushing all images apart from
each other, rather than to say that it enforces both
keeping the images of nearby objects nearby and keep-
ing the images of widely separated objects relatively
far apart. However, this prior does cause the result
from SNE to be radically different from that of LE,
improving the spacing of points and clusters, and bet-
ter representing the manifold structure. We are now
ready to introduce our algorithm.

4. The Elastic Embedding (EE)

We define the objective function

E(X;λ) =

N∑

n,m=1

w+
nm ‖xn − xm‖

2

+ λ

N∑

n,m=1

w−
nm exp (−‖xn − xm‖

2
) (6)

where w−
nm = w−

nm ‖yn − ym‖
2

and we have two
graphs: one with attractive weights W+ = (w+

nm) and
the other with repulsive weights W− = (w−

nm), both
nonnegative. The left (+) term is the LE term and

preserves local distances, where w+
nm could be (nor-

malised) Gaussian affinities, geodesic distances, com-
muting times or other affinities, possibly nonsymmet-
ric or sparse. The right (−) term preserves global
distances or separates latent points as in SNE but

in a simpler way. This repulsion becomes negligible
once neigbouring xs are farther apart than a charac-
teristic, λ-dependent scale, so the map remains some-
what compact. The regularisation parameter λ ≥ 0
trades off both terms. For simplicity, consider full
graphs w+

nm = exp (− 1
2 ‖(yn − ym)/σ‖

2
) and w−

nm = 1
∀n 6= m, with w+

nn = w−
nn = 0 ∀n; although some of

our results use sparse graphs. Note that the X re-
sulting from EE are equivalent up to rigid motions,
and that globally rescaling the data simply rescales λ:
E(X;λ;Y, σ) = E(X;λ/α2;αY, ασ).

We can then obtain the gradient of E from eq. (6):

∂E

∂xn

= 4

N∑

m 6=n

wnm(xn − xm) (7)

G(X;λ) =
∂E

∂X
= 4X(L+ − λL̃−) = 4XL (8)

where we define the affinities

w̃−
nm = w−

nm exp (−‖xn − xm‖
2
) (9)

wnm = w+
nm − λw̃−

nm (10)

and their graph Laplacians L̃ = D̃− W̃, L = D−W

in the usual way. Note that L+ is the usual (unnor-
malised) graph Laplacian that appears in Laplacian
eigenmaps. W can be considered a learned affinity

matrix and contains negative weights for λ > 0. Both
the objective function and the gradient of EE are quite
less nonlinear than those of SNE and its variations
because we have eliminated the cumbersome log-sum
term. This results in an easier optimisation and pre-
sumably fewer local optima.

At a minimiser (for each λ) we have G(X;λ) = 0, so
the embedding X(λ) satisfies XL = 0 and therefore
consists of eigenvectors of the nullspace of the graph
Laplacian L for the learned graph affinity matrix W.
In minimising E at each λ, we both construct this
graph and find its nullspace eigenvectors (a spectral
problem). Note that this does not mean that EE at
a given λ is equivalent to LE using as affinity matrix
W, as LE would find the eigenvectors associated with
the algebraically smallest eigenvalues, which for large
enough λ are negative.

4.1. Study of the case N = 2

The simple case of N = 2 points in 1D is surprisingly
informative. Take w.l.o.g. one point at the origin and
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Figure 1. Left : plot of (x(λ))2 when the dataset has N = 2
points in 1D, for w

+ = w
− = λ

∗

1 = 1. Right : plot of the
squared diameter of X(λ) for the Swiss roll example (blue
vertical lines bound λ

∗

1).

call x ≥ 0 the position of the other. The objective
function for λ ≥ 0 is E(x;λ) = 2(w+x2 + λw−e−x2

).
Define the critical value λ∗

1 = w+/w− at which a bi-
furcation occurs. For λ < λ∗

1, E has a minimum at
x = 0 and nothing interesting happens, the points
are coincident. For λ > λ∗

1 it has a maximum at
x = 0 and a minimum at x =

√
log (λ/λ∗

1); as λ
grows, the points separate very slowly (square-root-
log). Fig. 1 (left) shows the squared scale of the map
(x(λ))2 = max (0, log (λ/λ∗

1)), which grows logarithmi-
cally after the bifurcation. When N > 2, X(λ) follows
the same behaviour for small or large λ (fig. 1 right),
but shows multiple bifurcations and local minima for
intermediate λ.

4.2. Study of the critical λ = λ∗
1 for N > 2

For λ ≤ λ∗
1, the EE objective function E(X;λ) is min-

imised by the point X = 0, corresponding to an em-
bedding where all latent points are coincident. For
λ > λ∗

1, the embedding unfolds. We want to locate
this bifurcation and study the evolution of the point
X = 0 at it. X = 0 is a stationary point for all λ, and
the Hessian of E(X;λ) at it equals

H(0;λ) = 4 diag
(
L+ − λL−, . . . ,L+ − λL−

)

since L̃− = L−, and assuming X in row-major order.
Using Taylor’s theorem, we can approximate E(X;λ)
near X = 0 to second order. Since the Hessian is
block-diagonal with N × N blocks corresponding to
the L dimensions of X, we can study the behaviour
of each dimension separately by studying the function
e(x;λ) = x

T Lx, where L = L+ − λL− and x is an
N×1 vector containing the coordinates of all N points
in dimension 1 (i.e., the first row of X transposed).
The function e is the sum of two quadratic functions
of opposite sign and the negative one is weighted by λ.
For λ = 0, e equals the positive quadratic, for λ→∞
it tends to the negative one, and for intermediate λ,

e is a hyperbolic paraboloid. For λ ≤ λ∗
1, e is posi-

tive semidefinite and has global minima along the line
x = αu0 for α ∈ R and u0 = 1; this is the eigenvector
of L associated with a null eigenvalue, and represents
the embedding where all points are coincident; we will
refer to this embedding as x = 0 for simplicity. Eigen-
vector 1 exists for all λ and represents EE’s invariance
to global translations of X. We are interested in the
critical value λ∗

1 when L stops being positive semidefi-
nite and the hyperbolic paraboloid first arises. At that
point, x = 0 is about to stop being a minimum and
become a saddle point (or a maximum in particular
cases), and a second eigenvector u∗

1 exists with null
eigenvalue and orthogonal to u0. For λ > λ∗

1, u∗
1 is

associated with a negative eigenvalue, and e decreases
fastest along u∗

1. Thus, when λ is just larger than λ∗
1,

each dimension of the embedding expands along the
negative eigenvector u∗

1 of L. Note that u∗
1 is the sec-

ond trailing eigenvector of L at λ = λ∗
1 and thus corre-

sponds to the 1D embedding that LE would produce
with an affinity matrix W+ − λ∗

1W
− and constraints

XXT = I and X1 = 0; in practice this is close to the
first nontrivial trailing eigenvector of L+.

In summary, at the bifurcation λ = λ∗
1, the latent

points separate and an embedding X arises that is 1D
and very similar to the 1D LE embedding. This em-
bedding X(λ) keeps evolving as λ is increased.

We do not have an explicit form for λ∗
1 or u∗

1, but we
have upper and lower bounds l1 ≤ λ∗

1 ≤ u1 that are
quite tight in practice (proof omitted for lack of space):

l1 = max

(
λ+

2

λ−
N

, min
n,m

w+
nm

w−
nm

)
(11)

u1 = min

(
λ+

2

λ−
2

, . . . ,
λ+

N

λ−
N

,
L+

11

L−
11

, . . . ,
L+

NN

L−
NN

)
. (12)

4.3. Minimising E(X;λ) for fixed λ

We have noticed that minimising E with gradient de-
scent or conjugate gradients is very slow and requires
tiny steps (this also applies to SNE). Using search
directions derived from a fixed-point iteration works
much better. Rearranging the stationary point equa-
tion (a matrix of L×N)

G(X;λ) =
∂E

∂X
= 4X(D+ −W+ − λD̃− + λW̃−) = 0

as a splitting G = X(A + B) = 0, where A is sym-
metric positive definite and B is symmetric, we ob-
tain a fixed point iteration X← −XBA−1. Although
this iteration does not always converge, it does sug-
gest using a search direction ∆ = −XBA−1 − X =
−X(BA−1 + I) = −GA−1 along which we can de-
crease E with a line search X ← X + η∆ for η ≥ 0.
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The direction ∆ is descent and, if cond (A) is up-
per bounded, it never becomes too close to being or-
thogonal to the gradient (proof omitted). If the line
search satisfies e.g. the Wolfe conditions, then, by Zou-
tendijk’s theorem (th. 3.2 in Nocedal & Wright, 2006),
the algorithm converges to a stationary point of E
from any initial X0 ∈ R

L×N . We have tried several
splittings and found them to improve greatly over the
gradient (A = I), in particular A = 4D+ (computable
in O(NL)). In practice, we find this requires no line
search at all (η = 1) except when λ is close to a bifur-
cation, most notably near λ∗

1.

The cost of each iteration is thus O(LN2) (or O(LN)
with sparse W+ and W−), dominated by the gradient
computation (8).

4.4. Algorithms to find the optimal embedding

We now have two ways of finding the optimal embed-
ding. We can run the homotopy method by increasing
(relatively slowly) λ from above the critical value λ∗

1

(in practice, from above its upper bound u1), minimis-
ing at each step E(X;λ) over X and tracking the path
X(λ), and stopping when the scale grows logarithmi-
cally. Other than not increasing λ too fast, no spe-
cial care or ad-hoc user parameters are needed for the
optimisation. This makes the algorithm almost deter-
ministic, in that the early exploration at small scales
can find and track the same, deep minimum, and in
our experience produces good results, but is slower.

The second, much faster way is to select a large enough
λ, fix it, and optimise there. The result then does
depend on the initial X, which can be taken random,
or from the embedding of a spectral method (rescaled
to match the EE scale at λ, which can be estimated
in a quick, pilot run from random X). Note that SNE
implicitly sets λ = 1.

A third approach, not explored here, is to minimise E
subject to quadratic constraints on X (as in LE, LLE,
etc.). Then, the solution for λ = 0 is not anymore
X = 0, but the solution of the corresponding spectral
problem, which is a better initial point. However, the
now constrained optimisation is more difficult.

4.5. Out-of-sample extension

EE (like SNE and spectral methods) returns low-
dimensional projections X only for points in the train-
ing set Y. One way to define mappings F and f that
apply to new points y or x, respectively, is to fit them
to (Y,X) or (X,Y), respectively. Although this can
be made to work in practice, the result does depend
on the choice of mappings, which is left to the user.

Here we follow instead the more natural approach pro-
posed in the LELVM model of Carreira-Perpiñán & Lu
(2007) for LE, which returns a nonparametric map-
ping. The idea is, given a new point y, to solve the
original problem (i.e., to minimise the EE error E)
over the unknown projection x, keeping all other pro-
jections X fixed (so as not to disturb the embedding
we have already obtained). The same idea applies to
map a new x to the y-space. Then, the error function
augmented with y and x consists of the old error func-
tion E(X) (applied to X and Y) plus the new term

E′(x,y) = 2

N∑

n=1

(
w+(y,yn) ‖x− xn‖

2

+ λw−(y,yn) exp
(
− ‖x− xn‖

2 ))

with kernels

w+(y,yn) = exp
(
− 1

2 ‖(y − yn)/σ‖
2 )

w−(y,yn) = w̃−
n ‖y − yn‖

2

induced from the affinity kernels that were used in
the EE training (using the same neighbourhood struc-
ture). Then, we define the dimensionality reduction
and reconstruction mappings as follows:

F(y) = arg min
x

E′(x,y) f(x) = arg min
y

E′(x,y) (13)

initialising x to the xn whose yn is closest to y in Eu-
clidean distance, and analogously for f . Unlike in the
LELVM model, where these problems had a closed-
form solution, in our case they are nonlinear optimi-
sation problems that can be solved e.g. with gradient
descent. By equating the gradient to zero we see that
the minima of eq. (13) have the form of a linear com-
bination of X or Y, e.g.

x =
N∑

n=1

w(y,yn)
∑N

n′=1 w(y,yn′)
xn = F(y)

w(y,yn) = w+(y,yn)− λw−(y,yn) exp
(
− ‖x− xn‖

2 )

but, unlike in the LELVM model, this linear combina-
tion is not necessarily convex because the weights can
be negative. Thus, the out-of-sample mappings can
result in values beyond the convex hull of the data,
and this allows to extrapolate to some extent.

5. Experimental Results

Fig. 2 shows the result of EE with a 2D spiral with
N = 200 points and full-graph Gaussian affinities with
σ = 0.05. We show all the lower and upper bounds,
which imply λ∗

1 ∈ [4 ·10−5, 10−4] (vertical blue lines in
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Figure 2. EE trained with homotopy with a 2D spiral.
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Figure 3. Swiss roll. Top: EE with homotopy; we show X for different λ. Bottom: true X and results with other methods.

the right plot). We used the homotopy method with
80 values of λ from 10−2 to 102. For each λ we ran
the optimisation until the relative function change was
less than 10−3 or we reached 50 iterations. The step
size was 1 nearly always, 0.8 occasionally. The right
plot shows that more iterations are required shortly
after the λ∗

1 bifurcation; occasional spikes in that plot
indicate subsequent bifurcations as new minima arise
and the map changes. The initial X do not unfold
the spiral correctly, but eventually they do, and this
deep minimum is tracked henceforth. As λ increases,
initial local clustering and boundary effects typically
associated with an LE embedding are removed and the
result is a perfectly spaced sequence matching the data
spacing. The initial affinities wnm of eq. (9) are Gauss-
ian, but as λ increases they develop negative lobes and
adopt a Mexican-hat form (the plot shows wnm for
two interior and two extreme points). As λ further
increases (enlarging the map and forcing points to be
equidistant) wnm become much more negative.

Fig. 3 shows the result of EE with a 3D Swiss roll
with N = 2000 points, w+

nm as k-nearest-neighbour
Gaussian affinities and w−

nm = 1 ∀n,m. We set
k = 12, σ = 15 for all methods. The bounds indi-
cate λ∗

1 ∈ [5 · 10−9, 10−8], so we varied λ from 10−7 to
107. After the critical λ∗

1, X expands along the 1D LE
solution and later on the 2D map unfolds. This small-
λ solution globally unfolds the Swiss roll but shows

defects similar to those of spectral methods (local clus-
ters and gaps, boundary effects; see the LE plot). But
these disappear as λ increases; X for λ ∈ [10−1, 101] is
extremely similar to the true X (see also the result of
Isomap, ideally suited to this problem). For very large
λ, in the region of log-growth of the scale (see fig. 1
right), the point-separating prior dominates and the
2D arrangement tends to a round hexagonal grid (that
still preserves the global structure, though). SNE at-
tains a good map, better than LE’s but worse than
EE’s. However, t-SNE does poorly, grouping points
in local clusters that push away from each other. As
noted in the introduction, t-SNE was designed to cor-
rect the map when the its dimension does not match
the intrinsic one (not the case here). Initialising X

from the true X produces similar results for SNE and
t-SNE, indicating this is not just a bad local optimum.
For SNE, perhaps better results would be obtained if
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Figure 5. Results of EE, SNE and t-SNE with the COIL-20 dataset, all randomly initialised. Right plot : result of EE when
trained on half the data, and points x = F(y) (• marks) predicted for the other half of the data (only 5 of the sequences
are shown to avoid clutter). Below : images y = f(x) predicted for out-of-sample points in x-space along sequence 1.

introducing a λ weight as in EE. Fig. 4 shows that the
affinities wnm again evolve from initially Gaussian to a
2D Mexican-hat shape, with a central positive region,
negative intermediate regions and zero farther away.

Fig. 5 shows the result with the COIL-20 dataset, con-
taining rotation sequences of 10 objects every 5 de-
grees, each a greyscale image of 128×128 pixels (total
N = 720 points in D = 16 384 dimensions). Thus, this
contains ten 1D manifolds. We did not apply PCA
to the images, and used SNE affinities with perplexity
k = 12. We ran EE for a fixed λ = 1 from a random
initial X. The results shown for EE, SNE and t-SNE
are quite robust (e.g. initialising one method from the
result of another produces very similar maps). They
again indicate that EE (and SNE) do a good job at
both separating different clusters and capturing each
sequence’s 1D order. A self-intersection or a sequence
that folds over itself (e.g. sequence 5) is mostly caused
by quasi-symmetric COIL-20 objects that look very
similar from the back or the front. t-SNE is very good
at separating clusters but unfortunately it also sep-
arates parts of a cluster; most sequences appear in
several pieces and folded over themselves. A further
advantage of EE is that it trains faster than SNE or
t-SNE.

Fig. 5 (rightmost) shows the result of training EE with
half of the data (the even-numbered images in each
sequence). We computed the 2D projection xm =
F(ym) of each of the test ym (odd-numbered images)
with EE’s out-of-sample extension. They project to
their expected locations: between each even image,

and in pairs for sequence 6 which folded over itself.
We then mapped these xm back to image space as
y′

m = f(xm) = f(F(ym)) and achieved the reconstruc-
tions shown. Although blurred (remember we are us-
ing only 2 latent dimensions) they perfectly capture
the viewpoint and general structure of the object.

6. Discussion

The intuition of Hinton & Roweis (2003) in proposing
SNE was to emphasise both local and global distances
through the matching of data and latent probabilities
P and Q, so that e.g. making qnm large when pnm

was small would waste some of the probability mass
in Q. In our view, it is not the (normalised) prob-
abilities that make SNE do well. We can use other
(non-normalised) affinities for pnm and get good re-
sults, and we have shown that the normalisation term
in qnm, which gives rise to the cumbersome log-sum
term in ESNE, is unnecessary. Rather, what makes
SNE, t-SNE and EE do well is the use of Gaussian or
other decaying functions to modulate the relative con-
tributions of local vs global distances, and this is more
easily achieved by EE.

EE reveals an important relation between nonlinear
and spectral methods in that, at a fixed λ, EE both
learns the embedding X and the pairwise affinities
W. We already know that putting some effort in
learning good affinities can give better results than
a simple functional form (e.g. Gaussian), as in the
MVU method (Weinberger & Saul, 2006). However,
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most work on spectral methods for dimensionality re-
duction and clustering and in kernel methods has fo-
cused on nonnegative, positive semidefinite affinity
matrices (although nonpositive affinities do arise nat-
urally in some constrained clustering algorithms, e.g.
Lu & Carreira-Perpiñán, 2008). Our results suggest
that some eigenvectors (not necessarily the extremal
ones) resulting from affinity matrices that are not pos-
itive definite and that have negative entries may con-
tain far more useful information. Remarkably, the
affinities learned by EE look like Mexican-hat func-
tions (that adapt to each point) in the λ region were
the best maps arise. It is intriguing that similar
Mexican-hat functions are a fundamental component
in the majority of the models proposed to explain pat-
tern formation in cortical maps, in particular the elas-
tic net (Carreira-Perpiñán & Goodhill, 2004).

7. Conclusion

Our paper has proposed an algorithm that we think
improves over SNE, producing results of similar or bet-
ter quality more quickly and robustly. We have given
a theoretical study of its homotopy parameter and of
efficient, parameter-free, globally convergent optimisa-
tion algorithms, and an out-of-sample extension. All
these ideas are directly applicable to SNE, t-SNE and
earlier algorithms. Beyond this, our work has explored
a new direction that we hope will spur further research:
the relation of nonlinear methods such as SNE or EE
with spectral methods, and the learning of affinities.
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