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438 33 — Variational Methods

(a) (b)

Figure 33.6. Two separable
Gaussian approximations (dotted
lines) to a bivariate Gaussian
distribution (solid line). (a) The
approximation that minimizes the
variational free energy. (b) The
approximation that minimizes the
objective function G. In each
figure, the lines show the contours
at which x

T
Ax = 1, where A is

the inverse covariance matrix of
the Gaussian.

In contrast, if we use the objective function G then we find:
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where the constant depends on σ1 and σ2 only. Differentiating,
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, (33.61)

which is zero when

σ2
Q =

1

2

(

σ2
1 + σ2

2

)

. (33.62)

Thus we set the approximating distribution’s variance to the mean variance
of the target distribution P .

In the case σ1 = 10 and σ2 = 1, we obtain σQ ' 10/
√

2, which is just a
factor of

√
2 smaller than σ1, independent of the value of σ2.

The two approximations are shown to scale in figure 33.6.

Solution to exercise 33.6 (p.436). The best possible variational approximation
is of course the target distribution P . Assuming that this is not possible, a
good variational approximation is more compact than the true distribution.
In contrast, a good sampler is more heavy tailed than the true distribution.
An over-compact distribution would be a lousy sampler with a large variance.
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34

Independent Component Analysis and

Latent Variable Modelling

�
34.1 Latent variable models

Many statistical models are generative models (that is, models that specify
a full probability density over all variables in the situation) that make use of
latent variables to describe a probability distribution over observables.

Examples of latent variable models include Chapter 22’s mixture models,
which model the observables as coming from a superposed mixture of simple
probability distributions (the latent variables are the unknown class labels
of the examples); hidden Markov models (Rabiner and Juang, 1986; Durbin
et al., 1998); and factor analysis.

The decoding problem for error-correcting codes can also be viewed in
terms of a latent variable model – figure 34.1. In that case, the encoding
matrix G is normally known in advance. In latent variable modelling, the
parameters equivalent to G are usually not known, and must be inferred from
the data along with the latent variables s.

yNy1

G

sKs1

Figure 34.1. Error-correcting
codes as latent variable models.
The K latent variables are the
independent source bits
s1, . . . , sK ; these give rise to the
observables via the generator
matrix G.

Usually, the latent variables have a simple distribution, often a separable
distribution. Thus when we fit a latent variable model, we are finding a de-
scription of the data in terms of ‘independent components’. The ‘independent
component analysis’ algorithm corresponds to perhaps the simplest possible
latent variable model with continuous latent variables.

�
34.2 The generative model for independent component analysis

A set of N observations D = {x(n)}N
n=1 are assumed to be generated as follows.

Each J -dimensional vector x is a linear mixture of I underlying source signals,
s:

x = Gs, (34.1)

where the matrix of mixing coefficients G is not known.

The simplest algorithm results if we assume that the number of sources
is equal to the number of observations, i.e., I = J . Our aim is to recover
the source variables s (within some multiplicative factors, and possibly per-
muted). To put it another way, we aim to create the inverse of G (within a
post-multiplicative factor) given only a set of examples {x}. We assume that
the latent variables are independently distributed, with marginal distributions
P (si|H) ≡ pi(si). Here H denotes the assumed form of this model and the
assumed probability distributions pi of the latent variables.

The probability of the observables and the hidden variables, given G and

439
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H, is:

P ({x(n), s(n)}N
n=1 |G,H) =

N
∏

n=1

[

P (x(n) | s(n),G,H)P (s(n) |H)
]

(34.2)

=
N
∏

n=1









∏

j

δ
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j −∑i Gjis

(n)
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)





(

∏

i

pi(s
(n)
i )

)



 . (34.3)

We assume that the vector x is generated without noise. This assumption is
not usually made in latent variable modelling, since noise-free data are rare;
but it makes the inference problem far simpler to solve.

The likelihood function

For learning about G from the data D, the relevant quantity is the likelihood
function

P (D |G,H) =
∏

n

P (x(n) |G,H) (34.4)

which is a product of factors each of which is obtained by marginalizing over
the latent variables. When we marginalize over delta functions, remember
that

∫

ds δ(x − vs)f(s) = 1
vf(x/v). We adopt summation convention at this

point, such that, for example, Gjis
(n)
i ≡ ∑

i Gjis
(n)
i . A single factor in the

likelihood is given by

P (x(n) |G,H) =

∫

dI
s
(n) P (x(n) | s(n),G,H)P (s(n) |H) (34.5)

=

∫

dI
s
(n)
∏

j

δ
(

x
(n)
j − Gjis

(n)
i

)

∏

i

pi(s
(n)
i )(34.6)

=
1

|detG|
∏

i

pi(G
−1
ij xj) (34.7)

⇒ lnP (x(n) |G,H) = − ln |detG| +
∑

i

ln pi(G
−1
ij xj). (34.8)

To obtain a maximum likelihood algorithm we find the gradient of the log
likelihood. If we introduce W ≡ G

−1, the log likelihood contributed by a
single example may be written:

lnP (x(n) |G,H) = ln |detW| +
∑

i

ln pi(Wijxj). (34.9)

We’ll assume from now on that detW is positive, so that we can omit the
absolute value sign. We will need the following identities:

∂

∂Gji
ln detG = G−1

ij = Wij (34.10)

∂

∂Gji
G−1

lm = −G−1
lj G−1

im = −WljWim (34.11)

∂

∂Wij
f = −Gjm

(

∂

∂Glm
f

)

Gli. (34.12)

Let us define ai ≡ Wijxj ,

φi(ai) ≡ d ln pi(ai)/dai, (34.13)
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Repeat for each datapoint x:

1. Put x through a linear mapping:

a = Wx.

2. Put a through a nonlinear map:

zi = φi(ai),

where a popular choice for φ is φ = − tanh(ai).

3. Adjust the weights in accordance with

∆W ∝ [WT]
−1

+ zx
T.

Algorithm 34.2. Independent
component analysis – online
steepest ascents version.
See also algorithm 34.4, which is
to be preferred.

and zi = φi(ai), which indicates in which direction ai needs to change to make
the probability of the data greater. We may then obtain the gradient with
respect to Gji using equations (34.10) and (34.11):

∂

∂Gji
lnP (x(n) |G,H) = −Wij − aizi′Wi′j . (34.14)

Or alternatively, the derivative with respect to Wij:

∂

∂Wij
lnP (x(n) |G,H) = Gji + xjzi. (34.15)

If we choose to change W so as to ascend this gradient, we obtain the learning
rule

∆W ∝ [WT]
−1

+ zx
T. (34.16)

The algorithm so far is summarized in algorithm 34.2.

Choices of φ

The choice of the function φ defines the assumed prior distribution of the
latent variable s.

Let’s first consider the linear choice φi(ai) = −κai, which implicitly (via
equation 34.13) assumes a Gaussian distribution on the latent variables. The
Gaussian distribution on the latent variables is invariant under rotation of the
latent variables, so there can be no evidence favouring any particular alignment
of the latent variable space. The linear algorithm is thus uninteresting in that
it will never recover the matrix G or the original sources. Our only hope is
thus that the sources are non-Gaussian. Thankfully, most real sources have
non-Gaussian distributions; often they have heavier tails than Gaussians.

We thus move on to the popular tanh nonlinearity. If

φi(ai) = − tanh(ai) (34.17)

then implicitly we are assuming

pi(si) ∝ 1/ cosh(si) ∝
1

esi + e−si

. (34.18)

This is a heavier-tailed distribution for the latent variables than the Gaussian
distribution.
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Figure 34.3. Illustration of the
generative models implicit in the
learning algorithm. (a)
Distributions over two observables
generated by 1/ cosh distributions
on the latent variables, for

G =

[

3/4 1/2
1/2 1

]

(compact

distribution) and

G =

[

2 −1
−1 3/2

]

(broader

distribution). (b) Contours of the
generative distributions when the
latent variables have Cauchy
distributions. The learning
algorithm fits this amoeboid
object to the empirical data in
such a way as to maximize the
likelihood. The contour plot in
(b) does not adequately represent
this heavy-tailed distribution. (c)
Part of the tails of the Cauchy
distribution, giving the contours
0.01 . . . 0.1 times the density at
the origin. (d) Some data from
one of the generative distributions
illustrated in (b) and (c). Can you
tell which? 200 samples were
created, of which 196 fell in the
plotted region.

We could also use a tanh nonlinearity with gain β, that is, φi(ai) =
− tanh(βai), whose implicit probabilistic model is pi(si) ∝ 1/[cosh(βsi)]

1/β . In
the limit of large β, the nonlinearity becomes a step function and the probabil-
ity distribution pi(si) becomes a biexponential distribution, pi(si) ∝ exp(−|s|).
In the limit β → 0, pi(si) approaches a Gaussian with mean zero and variance
1/β. Heavier-tailed distributions than these may also be used. The Student
and Cauchy distributions spring to mind.

Example distributions

Figures 34.3(a–c) illustrate typical distributions generated by the independent
components model when the components have 1/ cosh and Cauchy distribu-
tions. Figure 34.3d shows some samples from the Cauchy model. The Cauchy
distribution, being the more heavy-tailed, gives the clearest picture of how the
predictive distribution depends on the assumed generative parameters G.

�
34.3 A covariant, simpler, and faster learning algorithm

We have thus derived a learning algorithm that performs steepest descents
on the likelihood function. The algorithm does not work very quickly, even
on toy data; the algorithm is ill-conditioned and illustrates nicely the general
advice that, while finding the gradient of an objective function is a splendid

idea, ascending the gradient directly may not be. The fact that the algorithm is
ill-conditioned can be seen in the fact that it involves a matrix inverse, which
can be arbitrarily large or even undefined.

Covariant optimization in general

The principle of covariance says that a consistent algorithm should give the
same results independent of the units in which quantities are measured (Knuth,
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34.3: A covariant, simpler, and faster learning algorithm 443

1968). A prime example of a non-covariant algorithm is the popular steepest
descents rule. A dimensionless objective function L(w) is defined, its deriva-
tive with respect to some parameters w is computed, and then w is changed
by the rule

∆wi = η
∂L

∂wi
. (34.19)

This popular equation is dimensionally inconsistent: the left-hand side of this
equation has dimensions of [wi] and the right-hand side has dimensions 1/[wi].
The behaviour of the learning algorithm (34.19) is not covariant with respect
to linear rescaling of the vector w. Dimensional inconsistency is not the end of
the world, as the success of numerous gradient descent algorithms has demon-
strated, and indeed if η decreases with n (during on-line learning) as 1/n then
the Munro–Robbins theorem (Bishop, 1992, p. 41) shows that the parameters
will asymptotically converge to the maximum likelihood parameters. But the
non-covariant algorithm may take a very large number of iterations to achieve
this convergence; indeed many former users of steepest descents algorithms
prefer to use algorithms such as conjugate gradients that adaptively figure
out the curvature of the objective function. The defense of equation (34.19)
that points out η could be a dimensional constant is untenable if not all the
parameters wi have the same dimensions.

The algorithm would be covariant if it had the form

∆wi = η
∑

i′

Mii′
∂L

∂wi
, (34.20)

where M is a positive-definite matrix whose i, i′ element has dimensions [wiwi′ ].
From where can we obtain such a matrix? Two sources of such matrices are
metrics and curvatures.

Metrics and curvatures

If there is a natural metric that defines distances in our parameter space w,
then a matrix M can be obtained from the metric. There is often a natural
choice. In the special case where there is a known quadratic metric defining
the length of a vector w, then the matrix can be obtained from the quadratic
form. For example if the length is w

2 then the natural matrix is M = I, and
steepest descents is appropriate.

Another way of finding a metric is to look at the curvature of the objective
function, defining A ≡ −∇∇L (where ∇ ≡ ∂/∂w). Then the matrix M =
A

−1 will give a covariant algorithm; what is more, this algorithm is the Newton
algorithm, so we recognize that it will alleviate one of the principal difficulties
with steepest descents, namely its slow convergence to a minimum when the
objective function is at all ill-conditioned. The Newton algorithm converges
to the minimum in a single step if L is quadratic.

In some problems it may be that the curvature A consists of both data-
dependent terms and data-independent terms; in this case, one might choose
to define the metric using the data-independent terms only (Gull, 1989). The
resulting algorithm will still be covariant but it will not implement an exact
Newton step. Obviously there are many covariant algorithms; there is no
unique choice. But covariant algorithms are a small subset of the set of all

algorithms!
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Back to independent component analysis

For the present maximum likelihood problem we have evaluated the gradient
with respect to G and the gradient with respect to W = G

−1. Steepest
ascents in W is not covariant. Let us construct an alternative, covariant
algorithm with the help of the curvature of the log likelihood. Taking the
second derivative of the log likelihood with respect to W we obtain two terms,
the first of which is data-independent:

∂Gji

∂Wkl
= −GjkGli, (34.21)

and the second of which is data-dependent:

∂(zixj)

∂Wkl
= xjxlδikz

′

i, (no sum over i) (34.22)

where z′ is the derivative of z. It is tempting to drop the data-dependent term
and define the matrix M by [M−1](ij)(kl) = [GjkGli]. However, this matrix
is not positive definite (it has at least one non-positive eigenvalue), so it is
a poor approximation to the curvature of the log likelihood, which must be
positive definite in the neighbourhood of a maximum likelihood solution. We
must therefore consult the data-dependent term for inspiration. The aim is
to find a convenient approximation to the curvature and to obtain a covariant
algorithm, not necessarily to implement an exact Newton step. What is the
average value of xjxlδikz

′

i? If the true value of G is G
∗, then

〈

xjxlδikz
′

i

〉

=
〈

G∗

jmsmsnG∗

lnδikz
′

i

〉

. (34.23)

We now make several severe approximations: we replace G
∗ by the present

value of G, and replace the correlated average 〈smsnz′i〉 by 〈smsn〉〈z′i〉 ≡
ΣmnDi. Here Σ is the variance–covariance matrix of the latent variables
(which is assumed to exist), and Di is the typical value of the curvature
d2 ln pi(a)/da2. Given that the sources are assumed to be independent, Σ

and D are both diagonal matrices. These approximations motivate the ma-
trix M given by:

[M−1](ij)(kl) = GjmΣmnGlnδikDi, (34.24)

that is,
M(ij)(kl) = WmjΣ

−1
mnWnlδikD

−1
i . (34.25)

For simplicity, we further assume that the sources are similar to each other so
that Σ and D are both homogeneous and that ΣD = 1. This will lead us to
an algorithm that is covariant with respect to linear rescaling of the data x,
but not with respect to linear rescaling of the latent variables. We thus use:

M(ij)(kl) = WmjWmlδik. (34.26)

Multiplying this matrix by the gradient in equation (34.15) we obtain the
following covariant learning algorithm:

∆Wij = η
(

Wij + Wi′jai′zi

)

. (34.27)

Notice that this expression does not require any inversion of the matrix W.
The only additional computation once z has been computed is a single back-
ward pass through the weights to compute the quantity

x′

j = Wi′jai′ (34.28)
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Repeat for each datapoint x:

1. Put x through a linear mapping:

a = Wx.

2. Put a through a nonlinear map:

zi = φi(ai),

where a popular choice for φ is φ = − tanh(ai).

3. Put a back through W:

x
′ = W

T
a.

4. Adjust the weights in accordance with

∆W ∝ W + zx
′T.

Algorithm 34.4. Independent
component analysis – covariant
version.

in terms of which the covariant algorithm reads:

∆Wij = η
(

Wij + x′

jzi

)

. (34.29)

The quantity
(

Wij + x′

jzi

)

on the right-hand side is sometimes called the

natural gradient. The covariant independent component analysis algorithm is
summarized in algorithm 34.4.

Further reading

ICA was originally derived using an information maximization approach (Bell
and Sejnowski, 1995). Another view of ICA, in terms of energy functions,
which motivates more general models, is given by Hinton et al. (2001). An-
other generalization of ICA can be found in Pearlmutter and Parra (1996,
1997).There is now an enormous literature on applications of ICA. A vari-
ational free energy minimization approach to ICA-like models is given in
(Miskin, 2001; Miskin and MacKay, 2000; Miskin and MacKay, 2001). Further
reading on blind separation, including non-ICA algorithms, can be found in
(Jutten and Herault, 1991; Comon et al., 1991; Hendin et al., 1994; Amari
et al., 1996; Hojen-Sorensen et al., 2002).

Infinite models

While latent variable models with a finite number of latent variables are widely
used, it is often the case that our beliefs about the situation would be most
accurately captured by a very large number of latent variables.

Consider clustering, for example. If we attack speech recognition by mod-
elling words using a cluster model, how many clusters should we use? The
number of possible words is unbounded (section 18.2), so we would really like
to use a model in which it’s always possible for new clusters to arise.

Furthermore, if we do a careful job of modelling the cluster corresponding
to just one English word, we will probably find that the cluster for one word
should itself be modelled as composed of clusters – indeed, a hierarchy of
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clusters within clusters. The first levels of the hierarchy would divide male
speakers from female, and would separate speakers from different regions –
India, Britain, Europe, and so forth. Within each of those clusters would be
subclusters for the different accents within each region. The subclusters could
have subsubclusters right down to the level of villages, streets, or families.

Thus we would often like to have infinite numbers of clusters; in some
cases the clusters would have a hierarchical structure, and in other cases the
hierarchy would be flat. So, how should such infinite models be implemented
in finite computers? And how should we set up our Bayesian models so as to
avoid getting silly answers?

Infinite mixture models for categorical data are presented in Neal (1991),
along with a Monte Carlo method for simulating inferences and predictions.
Infinite Gaussian mixture models with a flat hierarchical structure are pre-
sented in Rasmussen (2000). Neal (2001) shows how to use Dirichlet diffusion
trees to define models of hierarchical clusters. Most of these ideas build on
the Dirichlet process (section 18.2). This remains an active research area
(Rasmussen and Ghahramani, 2002; Beal et al., 2002).

�
34.4 Exercises

Exercise 34.1.[3 ] Repeat the derivation of the algorithm, but assume a small

amount of noise in x: x = Gs + n; so the term δ
(

x
(n)
j −∑i Gjis

(n)
i

)

in the joint probability (34.3) is replaced by a probability distribution

over x
(n)
j with mean

∑

i Gjis
(n)
i . Show that, if this noise distribution has

sufficiently small standard deviation, the identical algorithm results.

Exercise 34.2.[3 ] Implement the covariant ICA algorithm and apply it to toy
data.

Exercise 34.3.[4-5 ] Create algorithms appropriate for the situations: (a) x in-
cludes substantial Gaussian noise; (b) more measurements than latent
variables (J > I); (c) fewer measurements than latent variables (J < I).

Factor analysis assumes that the observations x can be described in terms of
independent latent variables {sk} and independent additive noise. Thus the
observable x is given by

x = Gs + n, (34.30)

where n is a noise vector whose components have a separable probability distri-
bution. In factor analysis it is often assumed that the probability distributions
of {sk} and {ni} are zero-mean Gaussians; the noise terms may have different
variances σ2

i .

Exercise 34.4.[4 ] Make a maximum likelihood algorithm for inferring G from
data, assuming the generative model x = Gs + n is correct and that s

and n have independent Gaussian distributions. Include parameters σ2
j

to describe the variance of each nj, and maximize the likelihood with
respect to them too. Let the variance of each si be 1.

Exercise 34.5.[4C ] Implement the infinite Gaussian mixture model of Rasmussen
(2000).


