
ARTICLE Communicated by Yoshua Bengio

An Efficient Learning Procedure for Deep
Boltzmann Machines

Ruslan Salakhutdinov
rsalakhu@utstat.toronto.edu
Department of Statistics, University of Toronto, Toronto,
Ontario M5S 3G3, Canada

Geoffrey Hinton
hinton@cs.toronto.edu
Department of Computer Science, University of Toronto, Toronto,
Ontario M5S 3G3, Canada

We present a new learning algorithm for Boltzmann machines that
contain many layers of hidden variables. Data-dependent statistics are
estimated using a variational approximation that tends to focus on a sin-
gle mode, and data-independent statistics are estimated using persistent
Markov chains. The use of two quite different techniques for estimating
the two types of statistic that enter into the gradient of the log likelihood
makes it practical to learn Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can be made more efficient
by using a layer-by-layer pretraining phase that initializes the weights
sensibly. The pretraining also allows the variational inference to be ini-
tialized sensibly with a single bottom-up pass. We present results on the
MNIST and NORB data sets showing that deep Boltzmann machines
learn very good generative models of handwritten digits and 3D objects.
We also show that the features discovered by deep Boltzmann machines
are a very effective way to initialize the hidden layers of feedforward
neural nets, which are then discriminatively fine-tuned.

1 A Brief History of Boltzmann Machine Learning

The original learning procedure for Boltzmann machines (see section 2)
makes use of the fact that the gradient of the log likelihood with respect
to a connection weight has a very simple form: it is the difference of two
pair-wise statistics (Hinton & Sejnowski, 1983). The first statistic is data
dependent and is the expectation that both binary stochastic units in a pair
are on when a randomly selected training case is clamped on the “visible”
units and the states of the “hidden” units are sampled from their posterior
distribution. The second statistic is data independent and is the expectation
that both units are on when the visible units are not constrained by data

Neural Computation 24, 1967–2006 (2012) c© 2012 Massachusetts Institute of Technology

1968 R. Salakhutdinov and G. Hinton

and the states of the visible and hidden units are sampled from the joint
distribution defined by the parameters of the model.

Hinton and Sejnowski (1983) estimated the data-dependent statistics by
clamping a training vector on the visible units, initializing the hidden units
to random binary states, and using sequential Gibbs sampling of the hidden
units (Geman & Geman, 1984) to approach the posterior distribution. They
estimated the data-independent statistics in the same way, but with the ran-
domly initialized visible units included in the sequential Gibbs sampling.
Inspired by Kirkpatrick, Gelatt, and Vecchi (1983), they used simulated an-
nealing from a high initial temperature to a final temperature of one to
speed up convergence to the stationary distribution. They demonstrated
that this was a feasible way of learning the weights in small networks, but
even with the help of simulated annealing, this learning procedure was
much too slow to be practical for learning large, multilayer Boltzmann ma-
chines. Even for small networks, the learning rate must be very small to
avoid an unexpected effect: the high variance in the difference of the two
estimated statistics has a tendency to drive the parameters to regions where
each hidden unit is almost always on or almost always off. These regions
act as attractors because the variance in the gradient estimate is lower in
these regions, so the weights change much more slowly.

Neal (1992) improved the learning procedure by using persistent Markov
chains. To estimate the data-dependent statistics, the Markov chain for each
training case is initialized at its previous state for that training case and
then run for just a few steps. Similarly, for the data-independent statistics,
a number of Markov chains are run for a few steps from their previous
states. If the weights have changed only slightly, the chains will already
be close to their stationary distributions, and a few iterations will suffice
to keep them close. In the limit of very small learning rates, therefore, the
data-dependent and data-independent statistics will be almost unbiased.
Neal did not explicitly use simulated annealing, but the persistent Markov
chains implement it implicitly, provided that the weights have small initial
values. Early in the learning, the chains mix rapidly because the weights are
small. As the weights grow, the chains should remain near their stationary
distributions in much the same way as simulated annealing should track
the stationary distribution as the inverse temperature increases.

Neal (1992) showed that persistent Markov chains work quite well for
training a Boltzmann machine on a fairly small data set. For large data sets,
however, it is much more efficient to update the weights after a small mini-
batch of training examples, so by the time a training example is revisited, the
weights may have changed by a lot and the stored state of the Markov chain
for that training case may be far from equilibrium. Also, once the weights
become large, the Markov chains used for estimating the data-independent
statistics may have a very slow mixing rate since they typically need to
sample from a highly multimodal distribution in which widely separated
modes have very similar probabilities but the vast majority of the joint states

An Efficient Learning Procedure for Deep Boltzmann Machines 1969

are extremely improbable. This suggests that the learning rates might need
to be impractically small for the persistent chains to remain close to their
stationary distributions with only a few state updates per weight update.
Fortunately, the asymptotic analysis is almost completely irrelevant: there
is a subtle reason, explained later in this section, why the learning works
well with a learning rate that is much larger than the obvious asymptotic
analysis would allow.

In an attempt to reduce the time required by the sampling process, Peter-
son and Anderson (1987) replaced Gibbs sampling with a simple mean-field
method that approximates a stationary distribution by replacing stochastic
binary values with deterministic real-valued probabilities. More sophisti-
cated deterministic approximation methods were investigated by Galland
(1991) and Kappen and Rodriguez (1998), but none of these approximations
worked very well for learning for reasons that were not well understood at
the time.

It is now well known that in directed graphical models, learning typically
works quite well when the statistics from the true posterior distribution
that are required for exact maximum likelihood learning are replaced by
statistics from a simpler approximating distribution, such as a simple mean-
field distribution (Zemel, 1993; Hinton & Zemel, 1994; Neal & Hinton, 1998;
Jordan, Ghahramani, Jaakkola, & Saul, 1999). The reason learning still works
is that it follows the gradient of a variational bound (see section 2.2). This
bound consists of the log probability that the model assigns to the training
data penalized by the sum, over all training cases, of the Kullback-Leibler
divergence between the approximating posterior and the true posterior
over the hidden variables. Following the gradient of the bound tends to
minimize this penalty term, thus making the true posterior of the model
similar to the approximating distribution.

An undirected graphical model, such as a Boltzmann machine, has an
additional, data-independent term in the maximum likelihood gradient.
This term is the derivative of the log partition function, and unlike the
data-dependent term, it has a negative sign. This means that if a varia-
tional approximation is used to estimate the data-independent statistics,
the resulting gradient will tend to change the parameters to make the ap-
proximation worse. This probably explains the lack of success in using
variational approximations for learning Boltzmann machines.

The first efficient learning procedure for large-scale Boltzmann machines
used an extremely limited architecture, first proposed in Smolensky (1986),
that was designed to make inference easy. A restricted Boltzmann machine
(RBM) has a layer of visible units and a layer of hidden units with no
connections between the hidden units. The lack of connections between
hidden units eliminates many of the computational properties that make
general Boltzmann machines interesting, but makes it easy to compute the
data-dependent statistics exactly, because the hidden units are independent
given a data vector. If connections between visible units are also prohibited,

1970 R. Salakhutdinov and G. Hinton

the data-independent statistics can be estimated by starting Markov chains
at hidden states that were inferred from training vectors, and alternating
between updating all of the visible units in parallel and updating all of the
hidden units in parallel (Hinton, 2002). It is hard to compute how many
alternations (half-steps) of these Markov chains are needed to approach the
stationary distribution, and it is also hard to know how close this approach
must be for learning to make progress toward a better model. It is tempting
to infer that if the learning works, the Markov chains used to estimate the
data-independent statistics must be close to equilibrium, but it turns out
that this is quite wrong.

Empirically, learning usually works quite well if the alternating Gibbs
sampling is run for only one full step starting from the sampled binary
states of the hidden units inferred from a data vector (Hinton, 2002). This
gives very biased estimates of the data-independent statistics, but it greatly
reduces the variance in the estimated difference between data-dependent
and data-independent statistics (Williams & Agakov, 2002), especially when
using mini-batch learning on large data sets. Much of the sampling error in
the data-dependent statistics caused by using a small mini-batch is elimi-
nated because the estimate of the data-independent statistics suffers from
a very similar sampling error. The reduced variance allows a much higher
learning rate. Instead of viewing this learning procedure as a gross approx-
imation to maximum likelihood learning, it can be viewed as a much better
approximation to minimizing the difference of two divergences (Hinton,
2002), and so it is called contrastive divergence (CD) learning. The quality
of the learned model can be improved by using more full steps of alternat-
ing Gibbs sampling as the weights increase from their small initial values
(Carreira-Perpignan & Hinton, 2005), and with this modification, CD learn-
ing allows RBMs with millions of parameters to achieve state-of-the art
performance on a large collaborative filtering task (Salakhutdinov, Mnih, &
Hinton, 2007).1

The architectural limitations of RBMs can be overcome by using them
as simple learning modules that are stacked to form a deep, multilayer
network. After training each RBM, the activities of its hidden units, when
they are being driven by data, are treated as training data for the next RBM
(Hinton, Osindero, & Teh, 2006; Hinton & Salakhutdinov, 2006). However, if
multiple layers are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine (Hinton et al.,
2006). It is a hybrid generative model called a deep belief net that has
undirected connections between its top two layers and downward-directed
connections between all adjacent lower layers.

1The performance is comparable with the best other single models, such as probabilis-
tic matrix factorization. By averaging many models, it is possible to do better, and the
two systems with the best performance on Netflix use multiple RBMs among the many
models that are averaged.

An Efficient Learning Procedure for Deep Boltzmann Machines 1971

In this article, we present a fairly efficient learning procedure for fully
general Boltzmann machines. To estimate the data-dependent statistics, we
use mean-field variational inference and rely on the learning to make the
true posterior distributions be close to the factorial distributions assumed
by the mean-field approximation. To estimate the data-independent statis-
tics, we use a relatively small number of persistent Markov chains and rely
on a subtle interaction between the learning and the Markov chains to al-
low a small number of slow mixing chains to sample quickly from a highly
multimodal energy landscape. For both sets of statistics, the fact that the pa-
rameters are changing is essential for making the estimation methods work.

We then show how to make our learning procedure for general Boltz-
mann machines considerably more efficient for deep Boltzmann machines
(DBMs) that have many hidden layers but no connections within each layer
and no connections between nonadjacent layers. The weights of a DBM
can be initialized by training a stack of RBMs, but with a modification
that ensures that the resulting composite model is a Boltzmann machine
rather than a deep belief net (DBN). This pretraining method has the added
advantage that it provides a fast, bottom-up inference procedure for ini-
tializing the mean-field inference. We use the MNIST and NORB data sets
to demonstrate that DBMs learn very good generative models of images
of handwritten digits and 3D objects. Although this article is primarily
about learning generative models, we also show that the weights learned
by these models can be used to initialize deep feedforward neural networks.
These feedforward networks can then be fine-tuned using backpropagation
to give much better discriminative performance than randomly initialized
networks.

2 Boltzmann Machines

A Boltzmann machine (BM) is a network of symmetrically coupled stochas-
tic binary units. It contains a set of visible units v ∈ {0, 1}V and a set of
hidden units h ∈ {0, 1}U (see Figure 1, left panel) that learn to model higher-
order correlations between the visible units. The energy of the state {v, h} is
defined as

E(v, h; θ)=−v�Wh − 1
2

v�Lv − 1
2

h�Jh, (2.1)

where θ = {W, L, J} are the model parameters.2 W , L, J represent visible-
to-hidden, visible-to-visible, and hidden-to-hidden symmetric interaction

2We have omitted the bias terms for clarity of presentation. Biases are equivalent to
weights on a connection to a unit whose state is fixed at 1, so the equations for their
derivatives can be inferred from the equations for the derivatives with respect to weights
by simply setting the state of one of the two units to 1.

1972 R. Salakhutdinov and G. Hinton

L

J

WW

General Boltzmann Machine
Restricted Boltzmann Machine

Figure 1: (Left) A general Boltzmann machine. The top layer represents a vector
of stochastic binary hidden variables, and the bottom layer represents a vector
of stochastic binary visible variables. (Right) A restricted Boltzmann machine
with no hidden-to-hidden or visible-to-visible connections.

terms, respectively. The diagonal elements of L and J are set to 0. The
probability that the model assigns to a visible vector v is

P(v; θ) = P∗(v; θ)

Z(θ)
= 1

Z(θ)

∑
h

exp (−E(v, h; θ)), (2.2)

Z(θ) =
∑

v

∑
h

exp (−E(v, h; θ)), (2.3)

where P∗ denotes unnormalized probability and Z(θ) is the partition func-
tion. The conditional distributions over hidden and visible units are given
by

p(h j = 1|v, h− j)= g

⎛
⎝∑

i

Wi jvi +
∑
m �= j

J jmhm

⎞
⎠ , (2.4)

p(vi = 1|h, v−i)= g

⎛
⎝∑

j

Wi jh j +
∑
k �=i

Likvk

⎞
⎠ , (2.5)

where g(x) = 1/(1 + exp(−x)) is the logistic function and x−i denotes a
vector x but with xi omitted. The parameter updates, originally derived by
Hinton and Sejnowski (1983), that are needed to perform gradient ascent in
the log likelihood can be obtained from equation 2.2,

�W = α
(
EPdata

[vh�] − EPmodel
[vh�]

)
,

�L = α
(
EPdata

[vv�] − EPmodel
[vv�]

)
,

�J = α
(
EPdata

[hh�] − EPmodel
[hh�]

)
,

An Efficient Learning Procedure for Deep Boltzmann Machines 1973

where α is a learning rate. EPdata
[·], the data-dependent term, is an ex-

pectation with respect to the completed data distribution Pdata(h, v; θ) =
P(h|v; θ)Pdata(v), with Pdata(v) = 1

N

∑
n δ(v − vn) representing the empiri-

cal distribution, and EPmodel
[·], the data-independent term, is an expectation

with respect to the distribution defined by the model (see equation 2.2).
Exact maximum likelihood learning in this model is intractable. The

exact computation of the data-dependent expectation takes time that is
exponential in the number of hidden units, whereas the exact computation
of the model’s expectation takes time that is exponential in the number of
hidden and visible units.

Setting both J = 0 and L = 0 recovers the restricted Boltzmann machine
(RBM) model (see Figure 1, right panel). Setting only the hidden-to-hidden
connections J = 0 recovers a semirestricted Boltzmann machine (Osindero
& Hinton, 2008) in which inferring the states of the hidden units given the
visible states is still very easy but learning is more complicated because
it is no longer feasible to infer the states of the visible units exactly when
reconstructing the data from the hidden states.

2.1 A Stochastic Approximation Procedure for Estimating the Data-
Independent Statistics. Markov chain Monte Carlo (MCMC) methods be-
longing to the general class of stochastic approximation algorithms of the
Robbins-Monro type (Younes, 1989; Robbins & Monro, 1951) can be used
to approximate the data-independent statistics (Younes, 1999; Neal, 1992;
Yuille, 2004; Tieleman, 2008). To be more precise, let us consider the follow-
ing canonical form of the exponential family associated with the sufficient
statistics vector �:

P(x; θ)= 1
Z(θ)

exp (θ��(x)). (2.6)

Given a set of N independent and identically distributed (i.i.d.) training
examples X = {x1, . . . , xN}, the derivative of the log likelihood with respect
to parameter vector θ takes the form

∂ log P(X; θ)

∂θ
= 1

N

N∑
n=1

�(xn) − EPmodel
[�(x)]. (2.7)

The idea behind learning parameter vector θ using stochastic approxima-
tion is straightforward. Let θ t and x̃t be the current parameters and the state.
Then x̃t and θ t are updated sequentially as follows:

� Given x̃t , a new state x̃t+1 is sampled from a transition operator
Tθ t (x̃t+1 ← x̃t) that leaves P(·; θ t) invariant (e.g., a Gibbs sampler).

1974 R. Salakhutdinov and G. Hinton

Algorithm 1: Stochastic Approximation Algorithm for a Fully Visible Boltzmann

Machine.
1. Given a data set X = {x1, ...,xN}. Randomly initialize θ0 and M sample particles

{x̃0,1,, x̃0,M}.

2. for t = 0 : T (number of iterations) do

3. for i = 1 : M (number of parallel Markov chains) do

4. Sample x̃t+1,i given x̃t,i using transition operator Tθt(x̃t+1,i← x̃t,i).

5. end for

6. Update: θt+1 = θt + αt

[
1
N

∑N
n=1 Φ(xn) − 1

M

∑M
m=1 Φ(x̃t+1,m)

]
.

7. Decrease αt.

8. end for

� A new parameter θ t+1 is then obtained by replacing the intractable
data-independent statistics EPmodel

[�(x)] by a point estimate �(x̃t+1).

In practice, we typically maintain a set of M sample points {x̃t,1, . . . , x̃t,M},
which we often refer to as sample particles. In this case, the in-
tractable data-independent statistics are replaced by the sample averages
1/M

∑M
m=1 �(x̃t+1,m). The procedure is summarized in algorithm 1.

The standard proof of convergence of these algorithms relies on the fol-
lowing basic decomposition. First, the gradient of the log-likelihood func-
tion takes the form

S(θ) = ∂ log P(X; θ)

∂θ
= 1

N

N∑
n=1

�(xn) − EPmodel
[�(x)]. (2.8)

The parameter update rule then takes the following form:

θ t+1 = θ t + αt

[
1
N

N∑
n=1

�(xn) − 1
M

M∑
m=1

�(x̃t+1,m)

]

= θ t + αtS(θ t) + αt

[
EPmodel

[�(x)] − 1
M

M∑
m=1

�(x̃t+1,m)

]

= θ t + αtS(θ t) + αtεt+1. (2.9)

The first term is the discretization of the ordinary differential equation
θ̇ = S(θ). The algorithm is therefore a perturbation of this discretization
with the noise term εt+1. The proof then proceeds by showing that the noise
term is not too large.

An Efficient Learning Procedure for Deep Boltzmann Machines 1975

Precise sufficient conditions that ensure almost sure convergence to an
asymptotically stable point of θ̇ = S(θ) are given in Younes (1989, 1999) and
Yuille (2004). One necessary condition requires the learning rate to decrease
with time, so that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α2

t < ∞. This condition can, for
example, be satisfied simply by setting αt = a/(b + t) for positive constants
a > 0, b > 0. Other conditions ensure that the speed of convergence of the
Markov chain, governed by the transition operator Tθ , does not decrease
too fast as θ tends to infinity, and that the noise term εt in the update of
equation 2.9 is bounded. Typically, in practice, the sequence |θ t | is bounded,
and the Markov chain, governed by the transition kernel Tθ , is ergodic.
Together with the condition on the learning rate, this ensures almost sure
convergence of the stochastic approximation algorithm to an asymptotically
stable point of θ̇ = S(θ).

Informally the intuition behind why this procedure works is the fol-
lowing. As the learning rate becomes sufficiently small compared with the
mixing rate of the Markov chain, this persistent chain will always stay
very close to the stationary distribution, even if it is run for only a few
MCMC steps per parameter update. Samples from the persistent chain will
be highly correlated for successive parameter updates, but if the learning
rate is sufficiently small, the chain will mix before the parameters have
changed enough to significantly alter the value of the estimator.

The success of learning relatively small Boltzmann machines (Neal, 1992)
seemed to imply that the learning rate was sufficiently small to allow the
chains to stay close to equilibrium as the parameters changed. Recently,
however, this explanation has been called into question. After learning an
RBM using persistent Markov chains for the data-independent statistics, we
tried sampling from the RBM and discovered that even though the learning
had produced a good model, the chains mixed extremely slowly. In fact,
they mixed so slowly that the appropriate final learning rate, according
to the explanation above, would have been smaller by several orders of
magnitude than the rate we actually used. So why did the learning work?

Tieleman and Hinton (2009) argue that the fact that the parameters are
being updated using the data-independent statistics gathered from the per-
sistent chains means that the mixing rate of the chains with their parameters
fixed is not what limits the maximum acceptable learning rate. Consider,
for example, a persistent chain that is stuck in a deep local minimum of
the energy surface. Assuming that this local minimum has very low prob-
ability under the posterior distributions that are used to estimate the data-
dependent statistics, the effect of the learning will be to raise the energy of
the local minimum. After a number of weight updates, the persistent chain
will escape from the local minimum not because the chain has had time
to mix but because the energy landscape has changed to make the local
minimum much less deep. The learning causes the persistent chains to be
repelled from whatever state they are currently in, and this can cause slow-
mixing chains to move to other parts of the dynamic energy landscape much

1976 R. Salakhutdinov and G. Hinton

faster than would be predicted by the mixing rate with static parameters.
Welling (2009) has independently reported a closely related phenomenon
that he calls “herding.”

Recently Tieleman (2008), Salakhutdinov and Hinton (2009a), Salakhut-
dinov (2009), and Desjardins, Courville, Bengio, Vincent, and Delalleau
(2010) have shown that this stochastic approximation algorithm, also
termed persistent contrastive divergence, performs well compared to con-
trastive divergence at learning good generative models in RBMs. Although
the allowable learning rate is much higher than would be predicted from
the mixing rate of the persistent Markov chains, it is still considerably lower
than the rate used for contrastive divergence learning because the gradient
estimate it provides has lower bias but much higher variance. The vari-
ance is especially high when using online or mini-batch learning rather
than full batch learning. With contrastive divergence learning, the error
in the data-dependent statistics introduced by the fact that a mini-batch
has sampling error is approximately cancelled by approximating the data-
independent statistics using short Markov chains that start at the data in
the mini-batch and do not have time to move far away. With persistent
contrastive divergence, this strong correlation between the sampling errors
in the data-dependent and data-independent statistics is lost.

2.2 A Variational Approach to Estimating the Data-Dependent Statis-
tics. Persistent Markov chains are less appropriate for estimating the data-
dependent statistics, especially with mini-batch learning on large data sets.
Fortunately, variational approximations work well for estimating the data-
dependent statistics. Given the data, it is typically quite reasonable for the
posterior distribution over latent variables to be unimodal, especially for
applications like speech and vision where normal data vectors really do
have a single correct explanation and the data are rich enough to allow that
explanation to be inferred using a good generative model.

In variational learning (Zemel, 1993; Hinton & Zemel, 1994; Neal &
Hinton, 1998; Jordan et al., 1999), the true posterior distribution over latent
variables P(h|v; θ) for each training vector v is replaced by an approxi-
mate posterior Q(h|v;μ), and the parameters are updated to maximize the
variational lower bound on the log likelihood,

log P(v; θ)≥
∑

h

Q(h|v;μ) log P(v, h; θ) + H(Q)

≥ log P(v; θ) − KL [Q(h|v;μ)||P(h|v; θ)] , (2.10)

where H(·) is the entropy functional.
Variational learning has the nice property that in addition to trying to

maximize the log likelihood of the training data, it tries to find parameters

An Efficient Learning Procedure for Deep Boltzmann Machines 1977

that minimize the Kullback–Leibler divergence between the approximating
and true posteriors. Making the true posterior approximately unimodal,
even if it means sacrificing some log likelihood, could be advantageous
for a system that will use the posterior to control its actions. Having mul-
tiple alternative representations of the same sensory input increases the
likelihood compared with a single explanation of the same quality, but it
makes it more difficult to associate an appropriate action with that sensory
input. Variational inference that uses a factorial distribution to approxi-
mate the posterior helps to eliminate this problem. During learning, if the
posterior given a training input vector is multimodal, the variational in-
ference will lock onto one mode, and learning will make that mode more
probable. Our learning algorithm will therefore tend to find regions in
the parameter space in which the true posterior is dominated by a single
mode.

For simplicity and speed, we approximate the true posterior using a
fully factorized distribution (i.e., the naive mean-field approximation),
Q(h;μ) = ∏U

j=1 q(h j), where q(h j = 1) = μ j and U is the number of hidden
units. The lower bound on the log probability of the data takes the following
form:

log P(v; θ) ≥ 1
2

∑
i,k

Likvivk + 1
2

∑
j,m

Jjmμ jμm +
∑
i, j

Wi jviμ j − logZ(θ)

−
∑

j

[μ j log μ j + (1 − μ j) log (1 − μ j)].

The learning proceeds by first maximizing this lower bound with respect
to the variational parameters μ for fixed θ , which results in the mean-field
fixed-point equations:

μ j ← g

⎛
⎝∑

i

Wi jvi +
∑
m �= j

Jm jμm

⎞
⎠ . (2.11)

This is followed by applying stochastic approximation to update model
parameters θ , which is summarized in algorithm 2.

We emphasize that variational approximations should not be used for es-
timating the data-independent statistics in the Boltzmann machine learning
rule, as attempted in Galland (1991), for two separate reasons. First, a facto-
rial approximation cannot model the highly multimodal, data-independent
distribution that is typically required. Second, the minus sign causes the
parameters to be adjusted so that the true model distribution becomes as
different as possible from the variational approximation.

1978 R. Salakhutdinov and G. Hinton

Algorithm 2: Learning Procedure for a General Boltzmann Machine.
1. Given: a training set of N binary data vectors {v}N

n=1, and M , the number of persistent

Markov chains (i.e., particles).

2. Randomly initialize parameter vector θ0 and M samples: {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}.

3. for t = 0 to T (number of iterations) do

4. // Variational Inference:

5. for each training example vn, n = 1 to N do

6. Randomly initialize μ and run mean-field updates until convergence:

μj ← g
(∑

i Wijvi +
∑

m�=j Jmjμm

)
.

7. Set μn = μ.

8. end for

9. // Stochastic Approximation:

10. for each sample m = 1 to M (number of persistent Markov chains) do

11. Sample (ṽt+1,m, h̃t+1,m) given (ṽt,m, h̃t,m) by running a Gibbs sampler

12. end for

13. // Parameter Update:

14. W t+1 = W t + αt

(
1
N

∑N
n=1 vn(μn)� − 1

M

∑M
m=1 ṽt+1,m(h̃t+1,m)�

)
.

15. J t+1 = J t + αt

(
1
N

∑N
n=1 μn(μn)� − 1

M

∑M
m=1 h̃t+1,m(h̃t+1,m)�

)
.

16. Lt+1 = Lt + αt

(
1
N

∑N
n=1 vn(vn)� − 1

M

∑M
m=1 ṽt+1,m(ṽt+1,m)�

)
.

17. Decrease αt.

18. end for

(see equations 2.4, 2.5)

3 Learning Deep Boltzmann Machines

Algorithm 2 can learn Boltzmann machines with any pattern of connectivity
between the units, but it can be made particularly efficient in deep Boltz-
mann machines that have multiple hidden layers but have connections only
between adjacent layers, as shown in Figure 2. Deep Boltzmann machines
are interesting for several reasons. First, like deep belief networks, DBMs
have the ability to learn internal representations that capture very complex
statistical structure in the higher layers. As has already been demonstrated
for DBNs, this is a promising way of solving object and speech recognition
problems (Bengio, 2009; Bengio & LeCun, 2007; Hinton et al., 2006; Dahl,
Ranzato, Mohamed, & Hinton, 2010; Mohamed, Dahl, & Hinton, 2012).
High-level representations can be built from a large supply of unlabeled
data, and a much smaller supply of labeled data can then be used to fine-
tune the model for a specific discrimination task. Second, again like DBNs,
if DBMs are learned in the right way, there is a very fast way to initialize

An Efficient Learning Procedure for Deep Boltzmann Machines 1979

h(1)

h(2)

h(3)

v

W(3)

W(2)

W(1)

h(1)

h(2)

h(3)

v

W(3)

W(2)

W(1)

MachineBoltzmannDeepNetworkBeliefDeep

Figure 2: (Left) Deep belief network (DBN). The top two layers form an
undirected graph, and the remaining layers form a belief net with directed,
top-down connections (Right) Deep Boltzmann machine (DBM), with both
visible-to-hidden and hidden-to-hidden connections but no within-layer conn-
ections. All the connections in a DBM are undirected.

the states of the units in all layers by simply doing a single bottom-up pass
using twice the weights to compensate for the initial lack of top-down feed-
back. Third, unlike DBNs and many other models with deep architectures
(Ranzato, Huang, Boureau, & LeCun, 2007; Vincent, Larochelle, Bengio,
& Manzagol, 2008; Serre, Oliva, & Poggio, 2007), the approximate in-
ference procedure, after the initial bottom-up pass, can incorporate top-
down feedback. This allows DBMs to use higher-level knowledge to
resolve uncertainty about intermediate-level features, thus creating bet-
ter data-dependent representations and better data-dependent statistics for
learning.3

Let us consider a three-hidden-layer DBM, as shown in Figure 2 (right),
with no within-layer connections. The energy of the state {v, h(1), h(2), h(3)}
is defined as

E(v, h(1), h(2), h(3); θ) =−v�W (1)h(1) − h(1)�W (2)h(2) − h(2)�W (3)h(3),

(3.1)

3For many learning procedures, there is a trade-off between the time taken to infer
the states of the latent variables and the number of weight updates required to learn a
good model. For example, an autoencoder that uses noniterative inference requires more
weight updates than an autoencoder that uses iterative inference to perform a look-ahead
search for a code that is better at reconstructing the data and satisfying penalty terms
(Ranzato, 2009).

1980 R. Salakhutdinov and G. Hinton

where θ = {W (1),W (2),W (3)} are the model parameters, representing
visible-to-hidden and hidden-to-hidden symmetric interaction terms.

The probability that the model assigns to a visible vector v is

P(v; θ) = 1
Z(θ)

∑
h(1),h(2),h(3)

exp (−E(v, h(1), h(2), h(3); θ)). (3.2)

The conditional distributions over the visible and the three sets of hidden
units are given by logistic functions:

p(h(1)

j = 1|v, h(2)) = g

(∑
i

W (1)

i j vi +
∑

m

W (2)

jm h(2)
m

)
, (3.3)

p(h(2)
m = 1|h(1), h(3)) = g

⎛
⎝∑

j

W (2)

jm h(1)

j +
∑

l

W (3)

ml h(3)

l

⎞
⎠ , (3.4)

p(h(3)

l = 1|h(2)) = g

(∑
m

W (3)

ml h(2)
m

)
, (3.5)

p(vi = 1|h(1)) = g

⎛
⎝∑

j

W (1)

i j h(1)

j

⎞
⎠ . (3.6)

The learning procedure for general Boltzmann machines described above
can be applied to DBMs that start with randomly initialized weights, but
it works much better if the weights are initialized sensibly. With small
random weights, hidden units in layers that are far from the data are very
underconstrained, so there is no consistent learning signal for their weights.
With larger random weights, the initialization imposes a strong random
bias on the feature detectors learned in the hidden layers. Even when the
ultimate goal is some unknown discrimination task, it is much better to bias
these feature detectors toward ones that form a good generative model of
the data. We now describe how this can be done.

3.1 Greedy Layerwise Pretraining of DBNs. Hinton et al. (2006) intro-
duced a greedy, layer-by-layer unsupervised learning algorithm that con-
sists of learning a stack of RBMs one layer at a time. After greedy learning,
the whole stack can be viewed as a single probabilistic model called a deep
belief network. Surprisingly, this composite model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann machine, but the
lower layers form a directed sigmoid belief network (see Figure 2, left).

An Efficient Learning Procedure for Deep Boltzmann Machines 1981

After learning the first RBM in the stack, the generative model can be
written as

P(v; θ)=
∑
h(1)

P(h(1);W (1))P(v|h(1);W (1)), (3.7)

where P(h(1);W (1)) = ∑
v P(h(1), v;W (1)) is a prior over h(1) that is implic-

itly defined by W (1). Using the same parameters to define both the prior
over h(1) and the likelihood term P(v|h(1)) seems like an odd thing to do for
those who are more familiar with directed graphical models, but it makes
inference much easier and it is only a temporary crutch: the prior over h(1)

defined by W (1) will be thrown away and replaced by a better prior defined
by the weights, W (2), of the next RBM in the stack.

The second RBM in the stack attempts to learn a better overall model by
leaving P(v|h(1);W (1)) fixed and replacing P(h(1);W (1)) by

P(h(1);W (2)) =
∑
h(2)

P(h(1), h(2);W (2)),

where W (2) is initialized at W (1)� and then improved by following the
gradient of a variational lower bound on the log probability of the training
data with respect to W (2). The variational bound was first derived using
coding arguments in Hinton and Zemel (1994). For a data set containing N
training examples, it has the form

N∑
n=1

log P(vn; θ) ≥
∑

n

EQ(h(1)|vn)[log P(vn|h(1);W (1))]

−
∑

n

KL(Q(h(1)|vn)||P(h(1);W (2)))

≥
∑

n

[∑
h(1)

Q(h(1)|vn)[log P(v|h(1);W (1))] + H(Q)

]

+
∑

n

∑
h(1)

Q(h(1)|vn) log P(h(1);W (2)), (3.8)

where H(·) is the entropy functional and Q(h(1)|v) is any approximation
to the posterior distribution over vectors in hidden layer 1 for the DBN
containing hidden layers h(1) and h(2). The approximation we use is the
true posterior over h(1) for the first RBM, Q(h(1)|v) = P(h(1)|v;W (1)). If the
second RBM is initialized to be the same as the first RBM but with its visible
and hidden units interchanged, W (2) = W (1)�, then Q(h(1)|v) defines the
DBN’s true posterior over h(1) and the variational bound is tight. As soon

1982 R. Salakhutdinov and G. Hinton

as W (2) ceases to be identical to W (1)�, Q is no longer the true posterior for
the DBN.

Changing W (2) affects only the last sum in equation 3.8, so maximiz-
ing the bound, summed over all the training cases, with regard to W (2)

amounts to learning a better model of the mixture over all N training cases:
1
N

∑
n Q(h(1)|vn), which we call the aggregated posterior. Each individual

posterior of the first RBM Q(h(1)|vn) is factorial, but the aggregated poste-
rior is typically very far from factorial. Changing W (2) so that the second
RBM becomes a better model of the aggregated posterior over h(1) is then
guaranteed to improve the variational bound for the whole DBN on the log
likelihood of the training data.

This argument can be applied recursively to learn as many layers of fea-
tures as desired. Each RBM in the stack performs exact inference while
it is being learned, but once its implicit prior over its hidden vectors
has been replaced by a better prior defined by the higher-level RBM, the
simple inference procedure ceases to be exact. As the stack gets deeper, the
simple inference procedure used for the earlier layers can be expected to
become progressively less correct. Nevertheless, each time a new layer is
added and learned, the variational bound for the deeper system is better
than the bound for its predecessor. When a third hidden layer is added, for
example, the bound of equation 3.8 is replaced by a bound in which the last
sum,

∑
n

∑
h(1)

Q(h(1)|vn) log P(h(1);W (2)), (3.9)

is replaced by

∑
n

∑
h(1)

Q(h(1)|vn)(EQ(h(2)|h(1))[log P(h(1)|h(2);W (2))]

− KL(Q(h(2)|h(1))||P(h(2);W (3)))). (3.10)

When the second RBM is learned, the log probability of the training data also
improves because the bound starts off tight. For deeper layers, we are still
guaranteed to improve the variational lower bound on the log probability
of the training data, though the log probability itself can decrease. For
these deeper layers, the bound does not start off tight and could therefore
become tighter, allowing the log probability to decrease even though the
bound increases.

The improvement of the bound is guaranteed only if each RBM in the
stack starts with the same weights as the previous RBM and follows the gra-
dient of the log likelihood, using the posterior distributions over the hidden
units of the previous RBM as its data. In practice, we violate this condition by
using gross approximations to the gradient such as contrastive divergence.

An Efficient Learning Procedure for Deep Boltzmann Machines 1983

The real value of deriving the variational bound is to allow us to under-
stand why it makes sense to use the aggregated posterior distributions of
one RBM as the training data for the next RBM and why the combined
model is a deep belief net rather than a deep Boltzmann machine.

3.2 Greedy Layerwise Pretraining of DBMs. Although the simple way
of stacking RBMs leads to a deep belief net, it is possible to modify the pro-
cedure so that stacking produces a deep Boltzmann machine. We start by
giving a crude intuitive argument about how to combine RBMs to get a
deep Boltzmann machine. We then show that a modification of the intu-
itively derived method for adding the top layer is guaranteed to improve a
variational bound. We also show that the procedure we use in practice for
adding intermediate layers fails to achieve the property that is required for
guaranteeing an improvement in the variational bound.

After training the second-layer RBM in a deep belief net, there are
two ways of computing a factorial approximation to the true poste-
rior P(h(1)|v;W (1),W (2)). The obvious way is to ignore the second-layer
RBM and use the P(h(1)|v;W (1)) defined by the first RBM. An alternative
method is to first sample h(1) from P(h(1)|v;W (1)), then sample h(2) from
P(h(2)|h(1);W (2)), and then use the P(h(1)|h(2);W (2)) defined by the second
RBM.4 The second method will tend to overemphasize the prior for h(1)

defined by W (2), whereas the first method will tend to underemphasize this
prior in favor of the earlier prior defined by W (1) that it replaced.

Given these two different approximations to the posterior, it would be
possible to take a geometric average of the two distributions. This can be
done by first performing a bottom-up pass to infer h(2) then using 1/2W

(1)

and 1/2W
(2) to infer h(1) from both v and h(2). Notice that h(2) is inferred

from v, so it is not legitimate to sum the full top-down and bottom-up
influences. This would amount to double-counting the evidence provided
by v and would give a distribution that was much too sharp. Experiments
with trained DBNs confirm that averaging the top-down and bottom-up
inputs works well for inference and adding them works badly.

This reasoning can be extended to a much deeper stack of greedily trained
RBMs. The initial bottom-up inference that is performed in a DBN can be
followed by a stage in which all of the weights are halved and the states
of the units in the intermediate layers are resampled by summing the top-
down and bottom-up inputs to a layer. If we alternate between resampling
the odd-numbered layers and resampling the even-numbered layers, this
corresponds to alternating Gibbs sampling in a deep Boltzmann machine
with the visible units clamped. So after learning a stack of RBMs, we can
either compose them to form a DBN or halve all the weights and compose

4The sampling noise in the second method can be reduced by using a further approx-
imation in which the sampled binary values are replaced by their probabilities.

1984 R. Salakhutdinov and G. Hinton

“RBM”

RBM

“RBM”

v

2W(1) W(1)

h(1)

2W(2) 2W(2)

W(3) 2W(3)

h(1)

h(2)

h(2)

h(3)

W(1)

W(2)

W(3)

Pre-training

Deep Boltzmann Machine

Figure 3: Pretraining a DBM with three hidden layers consists of learning a
stack of RBMs that are then composed to create a DBM. The first and last RBMs
in the stack need to be modified by using weights that are twice as big in one
direction.

them to form a DBM. Moreover, given the way the DBM was created, there
is a very fast way to initialize all of the hidden layers when given a data
vector: simply perform a bottom-up pass using twice the weights of the
DBM to compensate for the lack of top-down input.

There is an annoying problem with this method of pretraining a DBM.
For the intermediate layers, using weights that are half of the weights
learned by the individual RBMs seems fine because when the RBMs are
combined, it can be viewed as taking the geometric mean of the bottom-up
and top-down models, but for the visible layer and the top layer, it is not
legitimate because they receive input only from one other layer. Both the
top and the bottom layers need to be updated when estimating the data-
independent statistics for the DBM, and we cannot use weights that are
bigger in one direction than the other because this does not correspond to
Gibbs sampling in any energy function. So we need to use a special trick
when pretraining the first and last RBMs in the stack.

For the first RBM, we constrain the bottom-up weights to be twice the top-
down weights during the pretraining, as shown in Figure 3. This means that

An Efficient Learning Procedure for Deep Boltzmann Machines 1985

we can halve the bottom-up weights without halving the top-down weights
and still be left with symmetric weights. Conversely, for the last RBM in
the stack, we constrain the top-down weights to be twice the bottom-up
weights. Now we have a stack of RBMs that we can convert to a DBM by
halving all but the first layer top-down weights and the last layer bottom-up
weights.5

Greedily pretraining the weights of a DBM in this way serves two pur-
poses. First, it initializes the weights to reasonable values. Second, it ensures
that there is a fast way of performing approximate inference by a single
bottom-up pass using twice the weights for all but the top-most layer. This
eliminates the need to store the hidden states that were inferred last time
a training case was used (Neal, 1992) or to use simulated annealing from
random initial states of the hidden units (Hinton & Sejnowski, 1983). This
fast approximate inference is used to initialize the mean-field, iterative in-
ference, which then converges much faster than mean field with random
initialization. Since the mean-field inference uses real-valued probabilities
rather than sampled binary states, we also use probabilities rather than
sampled binary states for the initial bottom-up inference.

3.3 A Variational Bound for Greedy Layerwise Pretraining of a DBM
with Two Hidden Layers. The explanation of DBM pretraining given in
the previous section is motivated by the need to end up with a deep network
that has symmetric weights between all adjacent pairs of layers. However,
unlike the pretraining of a DBN, it lacks proof that each time a layer is
added to the DBM, the variational bound for the deeper DBM is better than
the bound for the previous DBM. We now give an explanation of why the
method for training the first RBM in the stack works, and we show that with
a slight modification, the proposed method for training the second layer
RBM is a correct way of improving a variational bound. The main point
of this exercise is to gain a better understanding of how the pretraining
procedures for DBNs and DBMs are related. The apparently unproblematic
method for pretraining the intermediate layers using a symmetric RBM is
actually more problematic than it seems, and we discuss this in section 3.4.

The basic idea for pretraining a DBM is to start by learning a model
in which the prior over hidden vectors, p(h(1);W (1)), is the normalized
product of two identical distributions. Then one of these distributions is
discarded and replaced by the square root of a better prior p(h(1);W (2)) that
has been trained to fit a good approximation to the aggregated posterior of
the first model.

5Of course, when we constrain the weights of an RBM to have different magnitudes
in the two directions, the usual rules for updating the states of the units no longer corre-
spond to alternating Gibbs sampling in any energy function, but the one-step contrastive
divergence learning still works well, for reasons that will be explained later.

1986 R. Salakhutdinov and G. Hinton

v

h(2)

h(1)

W(1)

W(1)

v

h(1)

W(1)

W(2) W(2)

h(1)

h(2a) h(2b)

v

h(1)

h(2)

W(1)

W(2)

d)c)b)a)

Figure 4: Pretraining a deep Boltzmann machine with two hidden layers.
(a) The DBM with tied weights is trained to model the data using one-step
contrastive divergence (see Figure 5). (b) The second hidden layer is removed.
(c) The second hidden layer is replaced by part of the RBM that has been trained
on the aggregated posterior distribution at the first hidden layer of the DBM in
panel a. (d) The resulting DBM with a modified second hidden layer.

v

h(2) = v

h(1)

W(1)

W(1)

Figure 5: Pretraining the DBM with two hidden layers shown in Figure 4a using
one-step contrastive divergence. The second hidden layer is initialized to be the
same as the observed data. The units in the first hidden layer have stochastic
binary states, but the reconstructions of both the visible and second hidden
layer use the unsampled probabilities, so both reconstructions are identical. The
pairwise statistics for the visible layer and the first hidden layer are therefore
identical to the pairwise statistics for the second hidden layer and the first
hidden layer, and this is true for both the data and the reconstructions.

Consider the simple DBM in Figure 4a that has two hidden layers and
tied weights. If we knew what initial state vector to use for h(2), we could
train this DBM using one-step contrastive divergence with mean-field re-
constructions of both the visible states and the states of the top layer, as
shown in Figure 5. So we simply set the initial state vector of the top layer
to be equal to the data, v. Provided we use mean-field reconstructions for
the visible units and the top-layer units, one-step contrastive divergence is
then exactly equivalent to training an RBM with only one hidden layer but
with bottom-up weights that are twice the top-down weights, as prescribed

An Efficient Learning Procedure for Deep Boltzmann Machines 1987

Algorithm 3: Greedy Pretraining Algorithm for a Deep Boltzmann Machine.
1. Train the first-layer “RBM” using one-step contrastive divergence learning with mean-field

reconstructions of the visible vectors. During the learning, constrain the bottom-up weights,

2W (1), to be twice the top-down weights, W (1).

2. Freeze 2W (1) that defines the first layer of features and use samples h(1) from

P (h(1)|v; 2W (1)) as the data for training the second RBM. This is a proper RBM with

weights 2W (2) that are of the same magnitude in both directions. It is also trained us-

ing one-step contrastive divergence learning with mean-field reconstructions of its visible

vectors.

3. Freeze 2W (2) that defines the second layer of features and use the samples h(2)

Pfrom (h(2)|v; 2W (1), 2W (2)) as the data for training the next RBM in the same way

as the previous one.

4. Proceed recursively up to layer L − 1.

5. Train the top-level RBM using one-step contrastive divergence learning with mean-field

reconstructions of its visible vectors. During the learning, constrain the bottom-up weights,

W (L), to be half the top-down weights, 2W (L).

6. Use the weights {W (1), W (2), W (3), ...,W (L)} to compose a deep Boltzmann machine.

in algorithm 3. This way of training the simple DBM with tied weights is un-
likely to maximize the likelihood of the weights, but in practice it produces
surprisingly good models that reconstruct the training data well.

After pretraining, we can use 2W (1) to compute an approximate posterior
Q(h(1)|v) for h(1) from v, and using this approximate posterior, we can get
a variational lower bound on the log probability (see equation 3.8), that the
simple DBM in Figure 4a assigns to the training data:

∑
n

log P(vn) ≥
∑

n

EQ(h(1)|vn)[log P(vn|h(1);W (1))]

−
∑

n

KL(Q(h(1)|vn)||P(h(1);W (1))). (3.11)

We now show how to improve this variational bound.
The model’s marginal distribution over h(1) is the product of two identi-

cal distributions—one defined by an RBM composed of h(1) and v and the
other defined by an identical RBM composed of h(1) and h(2):

P(h(1);W (1)) = 1
Z(W (1))

(∑
v

ev�W (1)h(1)

) (∑
h(2)

eh(2)�W (1)h(1)

)
, (3.12)

1988 R. Salakhutdinov and G. Hinton

where Z(W (1)) is the normalizing constant.6 The idea is to keep one of
these two RBMs and replace the other by the square root of a better prior
P(h(1);W (2)). To do so, we train another RBM with two sets of hidden
units and tied weights, as shown in Figure 4c, to be a better model of the
aggregated variational posterior 1

N

∑
n Q(h(1)|vn;W (1)) of the first model

(see Figure 4a). If the tied weights are initialized at W (2) = W (1)�, then the
higher-level RBM has exactly the same prior over h(1) as the original DBM.
If the RBM is trained by following the gradient of the log likelihood,7 any
change in the weights will ensure that

∑
n

KL(Q(h(1)|vn;W (1))||P(h(1);W (2)))

≤
∑

n

KL(Q(h(1)|vn;W (1))||P(h(1);W (1))). (3.13)

Similar to equation 3.12, the distribution over h(1) defined by the second-
layer RBM is also the product of two identical distributions, one for each set
of hidden units. This implies that taking a square root amounts to simply
keeping one such distribution.

Once the two RBMs are composed to form a two-hidden-layer DBM
model (see Figure 4d), the marginal distribution over h(1) is the geometric
mean of the two probability distributions, P(h(1);W (1)), P(h(1);W (2)), de-
fined by the first- and second-layer RBMs (i.e., the renormalized pairwise
products of the square roots of the two probabilities for each event):

P(h(1);W (1),W (2)) = 1
Z(W (1),W (2))

(∑
v

ev�W (1)h(1)

)(∑
h(2)

eh(1)�W (2)h(2)

)
.

(3.14)

The variational lower bound of equation 3.11 improves because replacing
half of the prior by a better model reduces the Kullback-Leibler divergence
from the variational posterior, as shown in the appendix.

Due to the convexity of asymmetric divergence, this is guaranteed to
improve the variational bound of the training data by at least half as much

6The biases learned for h(1) are shared equally between the two RBMs.
7In practice, we depart from maximum likelihood training is several ways: we use

one-step contrastive divergence to train the second-layer RBM; we use mean-field recon-
structions of its visible units; we do not sample its two sets of hidden units independently.
But the same issue arises with the variational bound for DBNs. That bound also requires
proper maximum likelihood training of the higher-level RBMs. Fortunately, during pre-
training, we typically terminate the learning of each RBM long before it converges, and
in this early regime, contrastive divergence learning is almost always improving the
likelihood, which is all we need.

An Efficient Learning Procedure for Deep Boltzmann Machines 1989

as fully replacing the original prior. It is also guaranteed to loosen the
variational bound by at most half as much as fully replacing the original
prior, assuming that inference is still performed assuming the original prior.

This argument shows that the apparently unprincipled hack of doubling
the weights in one direction to cope with the “end effects” when creating a
two-hidden-layer DBM from a stack of two RBMs can actually be justified
as a way of improving a variational bound, except for the fact that the top
RBM should be trained by maximum likelihood.

3.4 Pretraining Intermediate Hidden Layers. We have not been able
to design a way of adding intermediate hidden layers that is guaranteed to
improve a variational bound, but the scheme we use in algorithm 3 seems
to work well in practice. One difficulty in extending the proof is that for an
intermediate RBM, we need to take the square root of the marginal prior
distribution over its visible units so that we can use it to replace half of the
previous prior of the lower RBM. We also need to take the square root of
the marginal prior distribution over the hidden units of the intermediate
RBM in order to allow the next RBM to replace half of this prior.

Halving the weights of an RBM halves the energy of every joint config-
uration of the hidden and visible units, so it takes the square root of the
joint distribution over pairs of visible and hidden vectors, and it also takes
the square root of the conditional distribution over visible vectors given a
hidden vector (or vice versa), but it does not take the square root of the
marginal prior distributions over the visible or the hidden vectors. This is
most easily seen by considering the ratios of the probabilities of two visible
vectors, vα and vβ . Before halving the weights, their probability ratio in the
marginal distribution over visible vectors is given by

P(vα)

P(vβ)
=

∑
h e−E(v

α
,h)∑

h e−E(v
β
,h)

. (3.15)

In the RBM with halved weights, all of the exponents are halved which
takes the square root of every individual term in each sum, but this does
not take the square root of the ratio of the sums. This argument shows
that the apparently unproblematic idea of halving the weights of all the
intermediate RBMs in the stack is not the right thing to do if we want to
ensure that as each layer is added, the new variational bound is better than
the old one.8

8Removing one of the hidden groups in Figure 4c halves the expected input to the
visible units, but it also halves the entropy of the hidden units. This halves the free energy
of each visible vector, which takes the square root of the marginal prior distribution over
the visible units.

1990 R. Salakhutdinov and G. Hinton

Although we cannot guarantee that a variational bound is improved
when adding intermediate layers, the idea that each new RBM is approxi-
mately replacing half of the prior over the top layer of the previous model
is a useful insight into what is happening during pretraining. It suggests,
for example, that each new layer does less work in a DBM than it does in a
DBN, which replaces all of the prior of the previous RBM. This in turn sug-
gests that in the pretraining phase, DBMs are likely to get less benefit than
DBNs from being very deep. A different method of pretraining DBMs that
distributes the modeling work more evenly over the layers would probably
be helpful.

4 Evaluating Deep Boltzmann Machines

Assessing the generalization performance of DBMs plays an important role
in model selection, model comparison, and controlling model complexity.
In this section we discuss two ways of evaluating the generalization capa-
bilities of DBMs: generative and discriminative.

4.1 Evaluating DBMs as Generative Models. We first focus on eval-
uating generalization performance of DBMs as density models. For many
specific tasks, such as classification or information retrieval, performance of
DBMs can be directly evaluated (see section 4.2). More broadly, however, the
ability of DBMs to generalize can be evaluated by computing the probability
of held-out input vectors, which is independent of any specific application.
An unfortunate limitation of DBMs is that the exact computation of the
probability that the model assigns to a visible vector v is intractable. It re-
quires both an intractable summation over the hidden vectors at all layers
and an intractable computation of the partition function:

P(v; θ) = 1
Z(θ)

∑
h(1),h(2),h(3)

exp (−E(v, h(1), h(2), h(3); θ)). (4.1)

Recently, Salakhutdinov and Murray (2008) showed that a Monte Carlo–
based method, annealed importance sampling (AIS; Neal, 2001), can be
used to efficiently estimate the partition function of an RBM. In this section,
we show how AIS can be used to estimate the partition functions of DBMs.
Together with variational inference, this will allow us to obtain good es-
timates of the lower bound on the log probability of the training and test
data.

Suppose we have two distributions defined on some space X with prob-
ability density functions PA(x) = P∗

A(x)/ZA and PB(x) = P∗
B (x)/ZB. Typically

PA(x) is defined to be some simple distribution, with known partition func-
tion ZA, from which we can easily draw i.i.d. samples. AIS estimates the ra-
tio ZB/ZA by defining a sequence of intermediate probability distributions:

An Efficient Learning Procedure for Deep Boltzmann Machines 1991

P0, P1, . . . , PK, with P0 = PA and PK = PB, which satisfy Pk(x) �= 0 whenever
Pk+1(x) �= 0, k = 0, .., K − 1. For each intermediate distribution, we must be
able to easily evaluate the unnormalized probability P∗

k (x), and we must
also be able to sample x′ given x using a Markov chain transition opera-
tor Tk(x

′ ← x) that leaves Pk(x) invariant. One general way to define this
sequence is to set

Pk(x)∝ P∗
A(x)1−βk P∗

B (x)βk , (4.2)

with 0 = β0 < β1 < · · · < βK = 1 chosen by the user.
Using the special layer-by-layer structure of DBMs, we can derive an ef-

ficient AIS scheme for estimating the model’s partition function. Let us con-
sider a three-hidden-layer Boltzmann Machine (see Figure 3, right) whose
energy is defined as

E(v, h(1), h(2), h(3); θ) =−v�W (1)h(1) − h(1)�W (2)h(2) − h(2)�W (3)h(3).

(4.3)

By summing out the first- and the third-layer hidden units {h(1), h(3)},
we can easily evaluate an unnormalized probability P∗(v, h(2); θ). We can
therefore run AIS on a much smaller state space x = {v, h(2)} with h(1) and
h(3) analytically summed out. The sequence of intermediate distributions,
parameterized by β, is defined as

Pk(v, h(2); θ)

= 1
Zk

P∗
k (v, h(2); θ) = 1

Zk

∑
h(1),h(3)

P∗
k (v, h(1), h(2), h(3); θ)

= 1
Zk

∏
j

(
1 + eβk

(∑
i viW

(1)

i j +∑
m h(2)

m W (2)

jm

)) ∏
l

(
1 + eβk

(∑
m h(2)

m W (3)

ml

))
. (4.4)

We gradually change βk (the inverse temperature) from 0 to 1, annealing
from a simple “uniform” model P0 to the complex deep Boltzmann machine
model PK.

Using equations 3.3 to 3.6, it is straightforward to derive a Gibbs transi-
tion operator Tk({v, h(2)}′ ← {v, h(2)}) that leaves Pk(v, h(2); θ) invariant:

p(h(1)

j = 1|v, h(2))= g

(
βk

(∑
i

W (1)

i j vi +
∑

m

W (2)

jm h(2)
m

))
, (4.5)

p(h(2)
m = 1|h(1), h(3))= g

⎛
⎝βk

⎛
⎝∑

j

W (2)

jm h(1)

j +
∑

l

W (3)

ml h(3)

l

⎞
⎠

⎞
⎠ , (4.6)

1992 R. Salakhutdinov and G. Hinton

Algorithm 4: Annealed Importance Sampling Run.
1. Given a sequence 0 = β0 < β1 < ... < βK = 1. Let x = {v,h(2)}.

2. Sample x1 from P0(x).

3. for k = 2 : K do

4. Sample xk given xk−1 using Tk−1(xk←xk−1) (see equations 4.5–4.8).

5. end for

6. Compute importance weight using equation 4.4:

w(i) =
P ∗

1 (x1)
P ∗

0 (x1)
P ∗

2 (x2)
P ∗

1 (x2)
· · · P ∗

K−1(x
K−1)

P ∗
K−2(xK−1)

P ∗
K(xK)

P ∗
K−1(xK)

.

p(h(3)

l = 1|h(2)) = g

(
βk

∑
m

W (3)

ml h(2)
m

)
, (4.7)

p(vi = 1|h(1)) = g

⎛
⎝βk

∑
j

W (1)

i j h(1)

j

⎞
⎠ . (4.8)

Algorithm 4 shows a single run of AIS. Note that there is no need to compute
the normalizing constants of any intermediate distributions. After perform-
ing M runs of AIS, the importance weights w(i) can be used to obtain an
estimate of the ratio of partition functions:

ZK

Z0
≈ 1

M

M∑
i=1

w(i) = r̂AIS, (4.9)

where Z0 = 2|V |+|U | is the partition function of the uniform model (e.g.,
β0 = 0) with |V| and |U | denoting the total number of visible and hidden
units, and ZK is the partition function of the DBM model (e.g., βK = 1).

Provided K is kept large, the total amount of computation can be split
in any way between the number of intermediate distributions K and the
number of annealing runs M without adversely affecting the accuracy of
the estimator. The number of AIS runs can be used to control the variance
in the estimate of r̂AIS, as samples drawn from P0 are independent:

Var(r̂AIS) = 1
M

Var(w(i)) ≈ ŝ 2

M
= σ̂ 2, (4.10)

where ŝ 2 is estimated simply from the sample variance of the importance
weights.

An Efficient Learning Procedure for Deep Boltzmann Machines 1993

Finally, once we obtain an estimate of the global partition function Ẑ,
we can estimate, for a given test case v∗, the variational lower bound of
equation 2.10:

log P(v∗; θ) ≥ −
∑

h

Q(h|v∗;μ)E(v∗, h; θ) + H(Q) − logZ(θ)

≈ −
∑

h

Q(h|v∗;μ)E(v∗, h; θ) + H(Q) − log Ẑ,

where we defined h = {h(1), h(2), h(3)}. For each test vector under consid-
eration, this lower bound is maximized with respect to the variational pa-
rameters μ using the mean-field update equations.

Furthermore, by explicitly summing out the states of the hidden units
{h(2), h(3)}, we can obtain a tighter variational lower bound on the log
probability of the test data. Of course, we can also adopt AIS to estimate
P∗(v) = ∑

h(1),h(2),h(3) P∗(v, h(1), h(2), h(3)), and together with an estimate of
the global partition function, we can estimate the true log probability of
the test data. This, however, would be computationally very expensive,
since we would need to perform a separate AIS run for each test case. As
an alternative, we could adopt a variation of the Chib-style estimator, pro-
posed by Murray and Salakhutdinov (2009). In the case of deep Boltzmann
machines, where the posterior over the hidden units tends to be unimodal,
their proposed Chib-style estimator can provide good estimates of log P∗(v)

in a reasonable amount of computer time.
In general, when learning a deep Boltzmann machine with more than

two hidden layers and no within-layer connections, we can explicitly sum
out either odd or even layers. This will result in a better estimate of the
model’s partition function and tighter lower bounds on the log probability
of the test data.

4.2 Evaluating DBMs as Discriminative Models. After learning, the
stochastic activities of the binary features in each layer can be replaced by de-
terministic, real-valued probabilities, and a deep Boltzmann machine with
two hidden layers can be used to initialize a multilayer neural network in
the following way. For each input vector v, the mean-field inference is used
to obtain an approximate posterior distribution Q(h(2)|v). The marginals
q(h(2)

j = 1|v) of this approximate posterior, together with the data, are used
to create an augmented input for this deep multilayer neural network, as
shown in Figure 6. Standard backpropagation of error derivatives can then
be used to discriminatively fine-tune the model.9

9Note that one can also backpropagate through the “unfolded” mean field, as shown
in Figure 6, middle panel. In our experiments, however, this did not improve model
performance.

1994 R. Salakhutdinov and G. Hinton

v

h(1)

h(2)

W(1)

W(2)

...

vvvv

2W(1) W(1)

W(2) W(2)

Q(h(1))

Q(h(2))

y y

Fine-tune Q(h(2))

W(2) W(1)

W(2)

W(3)

Figure 6: (Left) A two-hidden-layer Boltzmann machine. (Right) After learning,
the DBM model is used to initialize a multilayer neural network. The marginals
of approximate posterior q(h(2)

j = 1|v) are used as additional inputs. The net-
work is fine-tuned by backpropagation.

The unusual representation of the input is a by-product of converting
a DBM into a deterministic neural network. In general, the gradient-based
fine-tuning may choose to ignore Q(h(2)|v), that is, drive the first-layer
connections W (2) to zero, which will result in a standard neural network.
Conversely, the network may choose to ignore the input by driving the
first-layer weights W (1) to zero and make its predictions based on only the
approximate posterior. However, the network typically makes use of the
entire augmented input for making predictions.

5 Experimental Results

In our experiments, we used the MNIST and NORB data sets. To speed
up learning, we subdivided data sets into mini-batches, each containing
100 cases, and updated the weights after each mini-batch. The number
of sample particles, used for approximating the model’s expected suf-
ficient statistics, was also set to 100. For the stochastic approximation
algorithm, we always used five full Gibbs updates of the particles. Each
model was trained using 300,000 weight updates. The initial learning rate
was set at 0.005 and was decreased as 10/(2000 + t), where t is the num-
ber of updates so far. For discriminative fine-tuning of DBMs, we used
the method of conjugate gradients on larger mini-batches of 5000 with
three line searches performed for each mini-batch. (Details of pretrain-
ing and fine-tuning, along with details of Matlab code that we used for
learning and fine-tuning deep Boltzmann machines, can be found online at
http://www.utstat.toronto.edu/∼rsalakhu/DBM.html.)

5.1 MNIST. The MNIST digit data set contains 60,000 training and
10,000 test images of 10 handwritten digits (0 to 9), with 28×28 pixels.

An Efficient Learning Procedure for Deep Boltzmann Machines 1995

Table 1: Results of Estimating Partition Functions of an RBM, One Fully Con-
nected BM, and Two DBM Models, Along with the Estimates of the Lower
Bound on the Average Training and Test Log Probabilities.

Estimates Average Log Probability

log Ẑ log (Ẑ ± σ̂) Test Train

RBM 390.76 390.56, 390.92 −86.90 −84.67
Flat BM 198.29 198.17, 198.40 −84.67 −84.35
2-layer BM 356.18 356.06 , 356.29 −84.62 −83.61
3-layer BM 456.57 456.34 , 456.75 −85.10 −84.49

Notes: For all BMs we used 20,000 intermediate distributions. Results were averaged over
100 AIS runs.

Intermediate intensities between 0 and 255 were treated as probabilities,
and each time an image was used, we sampled binary values from these
probabilities independently for each pixel.

In our first experiment, we trained a fully connected flat BM on the
MNIST data set. The model had 500 hidden units and 784 visible units. To
estimate the model’s partition function, we used 20,000 βk spaced uniformly
from 0 to 1. Results are shown in Table 1, where for all models, we used
M = 100 AIS runs (see equation 4.9). The estimate of the lower bound on
the average test log probability was −84.67 per test case, which is slightly
better compared to the lower bound of −85.97, achieved by a carefully
trained two-hidden-layer deep belief network (Salakhutdinov & Murray,
2008).

In our second experiment, we trained two deep Boltzmann machines:
one with two hidden layers (500 and 1000 hidden units) and the other
with three hidden layers (500, 500, and 1000 hidden units), as shown in
Figure 8. To estimate the model’s partition function, we also used 20,000
intermediate distributions spaced uniformly from 0 to 1. Table 1 shows
that the estimates of the lower bound on the average test log probability
were −84.62 and −85.10 for the two- and three-layer Boltzmann machines,
respectively. Observe that although the two DBMs contain about 0.9 and
1.15 million parameters, they do not appear to suffer much from over-
fitting. The difference between the estimates of the training and test log
probabilities was about 1 nat. Figure 7 further shows samples generated
from all three models by randomly initializing all binary states and run-
ning the Gibbs sampler for 100,000 steps. Certainly all samples look like
the real handwritten digits. We also emphasize that without greedy pre-
training, we could not successfully learn good DBM models of MNIST
digits.

To estimate how loose the variational bound is, we randomly sampled
100 test cases, 10 of each class, and ran AIS to estimate the true test log

1996 R. Salakhutdinov and G. Hinton

BM3-layerBM2-layerBMFlatTraining samples

Figure 7: Random samples from the training set, and samples generated from
three Boltzmann machines by running the Gibbs sampler for 100,000 steps. The
images shown are the probabilities of the binary visible units given the binary
states of the hidden units.

4000 units

4000 units

4000 units

Preprocessed
transformation

Stereo pair

Gaussian visible units
(raw pixel data)

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM

3-layer BM 3-layer BM

Figure 8: (Left) The architectures of two deep Boltzmann machines used in
MNIST experiments. (Right) The architecture of deep Boltzmann machine used
in NORB experiments.

probability for the two-layer Boltzmann machine.10 The estimate of the
variational bound was −83.35 per test case with an error estimate
(−83.21,−83.51). The estimate of the true test log probability was −82.86
with an error estimate (−82.68, 83.12). The difference of about 0.5 nats
shows that the bound is rather tight.

For a simple comparison, we also trained several mixture of Bernoullis
models with 10, 100, 500, 1000, and 2000 components. The corresponding
average test log probabilities were −168.95, −142.63, −137.64, −133.21, and

10Note that computationally, this is equivalent to estimating 100 partition functions,
as discussed at the end of section 4.1.

An Efficient Learning Procedure for Deep Boltzmann Machines 1997

Table 2: Classification Error Rates on MNIST Test Set When Only a Small Frac-
tion of Labeled Data Is Available But the Remainder of the 60,000 Training Cases
Is Available Unlabeled.

Two-Layer Nonlinear Linear Stack of
DBM NCA NCA Autoencoders KNN

1% (600) 4.82% 8.81% 19.37% 8.13% 13.74%
5% (3000) 2.72% 3.24% 7.23% 3.54% 7.19%
10% (6000) 2.46% 2.58% 4.89% 2.98% 5.87%
100% (60000) 0.95% 1.00% 2.45% 1.40% 3.09%

−135.78. Compared to DBMs, a mixture of Bernoullis performs very badly.
The difference of about 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the two-hidden-layer Boltz-
mann machine achieves an error rate of 0.95% on the full MNIST test set.
This is, to our knowledge, the best published result on the permutation-
invariant version of the MNIST task.11 The three-layer BM gives a slightly
worse error rate of 1.01%. The flat BM, on the other hand, gives consid-
erably worse error rate of 1.27%. This is compared to 1.4% achieved by
SVMs (Decoste & Schölkopf, 2002), 1.6% achieved by randomly initialized
backpropagation, 1.2% achieved by the deep belief network, described in
Hinton et al. (2006) and Hinton and Salakhutdinov (2006), and 0.97% ob-
tained by using a combination of discriminative and generative fine-tuning
on the same DBN (Hinton, 2007).

To test discriminative performance of DBMs when the number of labeled
examples is small, we randomly sampled 1%, 5%, and 10% of the handwrit-
ten digits in each class and treated them as labeled data. Table 2 shows that
after discriminative fine-tuning, a two-hidden-layer BM achieves error rates
of 4.82%, 2.72%, and 2.46%. Deep Boltzmann machines clearly outperform
regularized nonlinear NCA (Salakhutdinov & Hinton, 2007), linear NCA
(Goldberger, Roweis, Hinton, & Salakhutdinov, 2004), a stack of greedily
pretrained autoencoders (Bengio, Lamblin, Popovici, & Larochelle, 2007),
and K-nearest neighbors, particularly when the number of labeled exam-
ples is only 600. We note that similar to DBMs, both regularized nonlinear
NCA and a stack of autoencoders use an unsupervised pretraining stage
(trained on all 60,000 unlabeled MNIST images), followed by supervised
fine-tuning.

5.2 NORB. Results on MNIST show that deep Boltzmann machines
can significantly outperform many other models on the well-studied but

11In the permutation-invariant version, the pixels of every image are subjected to the
same random permutation, which makes it hard to use prior knowledge about images.

1998 R. Salakhutdinov and G. Hinton

Generated SamplesTraining Samples

Figure 9: Random samples from the training set, and samples generated from
a three-hidden-layer deep Boltzmann machine by running the Gibbs sampler
for 10,000 steps.

relatively simple task of handwritten digit recognition. In this section, we
present results on NORB, which is a considerably more difficult data set
than MNIST. NORB (LeCun, Huang, & Bottou, 2004) contains images of 50
different 3D toy objects with 10 objects in each of five generic classes: cars,
trucks, planes, animals, and humans. Each object is photographed from
different viewpoints and under various lighting conditions. The training
set contains 24,300 stereo image pairs of 25 objects, 5 per class, while the
test set contains 24,300 stereo pairs of the remaining, different 25 objects.
The goal is to classify each previously unseen object into its generic class.
From the training data, 4,300 were set aside for validation.

Each image has 96×96 pixels with integer grayscale values in the range
[0,255]. To speed up experiments, we reduced the dimensionality by using
a foveal representation of each image in a stereo pair. The central 64×64
portion of an image is kept at its original resolution. The remaining 16 pixel-
wide-ring around it is compressed by replacing nonoverlapping square
blocks of pixels in the ring with a single scalar given by the average pixel
value of a block. We split the ring into four smaller ones: the outermost
ring consists of 8×8 blocks, followed by a ring of 4×4 blocks, and finally
two innermost rings of 2×2 blocks. The resulting dimensionality of each
training vector, representing a stereo pair, was 2 × 4488 = 8976. A random
sample from the training data used in our experiments is shown in Figure 9
(left).

To model raw pixel data, we use an RBM with gaussian visible and
binary hidden units. Gaussian RBMs have been previously successfully
applied for modeling greyscale images, such as images of faces (Hinton &

An Efficient Learning Procedure for Deep Boltzmann Machines 1999

Salakhutdinov, 2006). However, learning an RBM with gaussian units can
be slow, particularly when the input dimensionality is quite large. Here we
follow the approach of Nair and Hinton (2009) by first learning a gaussian
RBM and then treating the activities of its hidden layer as “preprocessed”
data. Effectively, the learned low-level RBM acts as a preprocessor that
converts grayscale pixels into a binary representation, which we then use
for learning a deep Boltzmann machine.

The number of hidden units for the preprocessing RBM was set to 4000,
and the model was trained using contrastive divergence learning for 500
epochs. We then trained a two-hidden-layer DBM with each layer contain-
ing 4000 hidden units, as shown in Figure 8 (right). Note that the entire
model was trained in a completely unsupervised way. After the subsequent
discriminative fine-tuning, the “unrolled” DBM achieves a misclassification
error rate of 10.8% on the full test set. This is compared to 11.6% achieved
by SVMs (Bengio & LeCun, 2007), 22.5% achieved by logistic regression,
and 18.4% achieved by the K-nearest neighbors (LeCun et al., 2004). To
show that DBMs can benefit from additional unlabeled training data, we
augmented the training data with additional unlabeled data by applying
simple pixel translations, creating 1,166,400 training instances.12 After learn-
ing a good generative model, the discriminative fine-tuning (using only
the 24,300 labeled training examples without any translation) reduces the
misclassification error to 7.2%. Figure 9 shows samples generated from the
model by running prolonged Gibbs sampling. Note that the model was able
to capture a lot of regularities in this high-dimensional, richly structured
data, including different object classes, various viewpoints, and lighting
conditions.

Finally, we tested the ability of the DBM to perform an image in-painting
task. To this end, we randomly selected 10 objects from the test set and sim-
ulated the occlusion by zeroing out the left half of the image (see Figure 10).
We emphasize that the test objects are different from the training objects
(i.e., the model never sees images of “cowboy,” but it sees other images
belonging to the “person” category). We next sampled the “missing” pixels
conditioned on the nonoccluded pixels of the image using 1000 Gibbs up-
dates. Figure 10 (bottom) shows that the model was able to coherently infer
occluded parts of the test images. In particular, observe that even though the
model never sees an image of the cowboy, it correctly infers that it should
have two legs and two arms.

Surprisingly, even though the deep Boltzmann machine contains about
68 million parameters, it significantly outperforms many of the competing
models. Clearly, unsupervised learning helps generalization because it en-
sures that most of the information in the model parameters comes from
modeling the input data. The very limited information in the labels is used

12We thank Vinod Nair for sharing his code for blurring and translating NORB images.

2000 R. Salakhutdinov and G. Hinton

Figure 10: Performance of the three-hidden-layer DBM on the image in-
painting task. (Top) Ten objects randomly sampled from the test set.
(Middle) Partially occluded input images. (Bottom) Inferred images were gene-
rated by running a Gibbs sampler for 1000 steps.

only to slightly adjust the layers of features already discovered by the deep
Boltzmann machine.

6 Discussion

A major difference between DBNs and DBMs is that the procedure for
adding an extra layer to a DBN replaces the whole prior over the previous
top layer, whereas the procedure for adding an extra layer to a DBM replaces
only half of the prior. So in a DBM, the weights of the bottom-level RBM
end up doing much more of the work than in a DBN where the weights are
used only to define p(v|h(1);W1) (in the composite generative model). This
suggests that adding layers to a DBM will give diminishing improvements
in the variational bound much more quickly than adding layers to a DBN.
There is, however, a simple way to pretrain a DBM so that more of the
modeling work is left to the higher layers.

Suppose we train an RBM with one set of hidden units, and four sets of
visible units, and we constrain the four weight matrices (and visible biases)
to be identical.13 Then we use the hidden activities as data to train an RBM
with one set of visible units and four sets of hidden units, again constrained
to have identical weight matrices. Now we can combine the two RBMs into
a DBM with two hidden layers by using one copy of the weight matrix from
the first RBM and three times one of the copies of the weight matrix from
the second RBM. In this DBM, three-fourths of the first RBM’s prior over
the first hidden layer has been replaced by the prior defined by the second
RBM. It remains to be seen whether this makes DBMs work better. It is also
not obvious how this idea can be applied to intermediate hidden layers.

13As before, we use mean-field reconstructions of the four sets of visible units to avoid
modeling the fact that all four sets have the same states in the data.

An Efficient Learning Procedure for Deep Boltzmann Machines 2001

In this article, we have focused on Boltzmann machines with binary
units. The learning methods we have described can be extended to learn
deep Boltzmann machines built with RBM modules that contain real-valued
(Marks & Movellan, 2001), count (Salakhutdinov & Hinton, 2009b), or tab-
ular data provided the distributions are in the exponential family (Welling,
Rosen-Zvi, & Hinton, 2005). However, it often requires additional insights
to get the basic RBM learning module to work well with nonbinary units.
For example, it ought to be possible to learn the variance of the noise model
of the visible units in a Gaussian-Bernoulli RBM, but this is typically very
difficult for reasons explained in Hinton (2010). For modeling the NORB
data, we used fixed variances of 1, which is clearly much too big for data
that have been normalized so that the pixels have a variance of 1. Recent
work shows that gaussian visible units work much better with rectified lin-
ear hidden units (Nair & Hinton, 2010) and using this type of hidden unit
it is straightforward to learn the variance of the noise model of each visible
unit.

7 Summary

We presented a novel combination of variational and Markov chain Monte
Carlo algorithms for training Boltzmann machines. When applied to pre-
trained deep Boltzmann machines with several hidden layers and millions
of weights, this combination is a very effective way to learn good genera-
tive models. We demonstrated the performance of the algorithm using the
MNIST handwritten digits and the NORB stereo images of 3D objects with
highly variable viewpoint and lighting.

A simple variational approximation works well for estimating the data-
dependent statistics because learning based on these estimates encourages
the true posterior distributions over the hidden variables to be close to
their variational approximations. Persistent Markov chains work well for
estimating the data-independent statistics because learning based on these
estimates encourages the persistent chains to explore the state space much
more rapidly than would be predicted by their mixing rates.

Pretraining a stack of RBMs using contrastive divergence can be used
to initialize the weights of a deep Boltzmann machine to sensible values.
The RBMs can then be composed to form a deep Boltzmann machine. The
pretraining ensures that the variational inference can be initialized sensibly
by a single bottom-up pass from the data vector using twice the bottom-up
weights to compensate for the lack of top-down input on the initial pass.

We further showed how annealed importance sampling, along with vari-
ational inference, can be used to estimate a variational lower bound on
the log probability that a deep Boltzmann machine assigns to test data.
This allowed us to directly assess the performance of deep Boltzmann ma-
chines as generative models of data. Finally, we showed how to use a deep
Boltzmann machine to initialize the weights of a feedforward neural

2002 R. Salakhutdinov and G. Hinton

network that can then be discriminatively fine-tuned. These networks give
excellent discriminative performance, especially when there are very few
labeled training data but a large supply of unlabeled data.

Appendix

For clarity of presentation, let p be a shorthand notation for the distribu-
tion P(h(1);W (1)), defined in equation 3.12, and let ph denote an individual
term from this distribution. Similarly, we will let rh denote an individual
term from P(h(1);W (2)), qh denote a term from Q(h(1)|vn;W (1)), and mh de-
note a term from the geometric mean of the two probability distributions
P(h(1);W (1)), P(h(1);W (2)),

mh = p1/2
h r1/2

h

Z
, Z =

∑
h

p1/2
h r1/2

h , (A.1)

which is the renormalized pairwise product of the square roots of the two
probabilities for each event (see equation 3.14). We note that the normalizing
constant Z is equal to 1 if the two distributions p and r are identical, and it
is less than 1 otherwise.

For each case n, given

KL(q||r) ≤ KL(q||p), (A.2)

we want to show that KL(q||m) ≤ KL(q||p):

KL(q||m)=
∑

h

qh log
qh

mh

=
∑

h

qh log qh −
∑

h

qh

(
1
2

log ph + 1
2

log rh

)
+ logZ

≤
∑

h

qh log qh −
∑

h

qh

(
1
2

log ph + 1
2

log ph

)
+ logZ

(follows from equation A.2)

≤
∑

h

qh log qh −
∑

h

qh log ph + logZ

≤
∑

h

qh log qh −
∑

h

qh log ph (since Z ≤ 1)

≤ KL(q||p).

An Efficient Learning Procedure for Deep Boltzmann Machines 2003

The above derivation is a special case of a more general result, provided
in Hinton (2002). It states that the Kullback-Leibler divergence between the
geometric mean of a set of probability distributions Pi and the distribution
Q is smaller than the average of the Kullback-Leibler divergences of the
individual distributions:

KL

(
Q ||

∏
i P

wi
i

Z

)
≤

∑
i

wiKL(Q||Pi), Z =
∑

x

∏
i

P
wi
i (x), (A.3)

where wi are nonnegative and sum to 1. Note that the normalizing constant
Z is 1 if all of the individual distributions are identical. Otherwise, Z < 1,
and the difference between the two sides of the above equation is log(1/Z).

Acknowledgments

This research was supported by NSERC and by gifts from Google and
Microsoft.

References

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Ma-
chine Learning, 2(1), 1–127.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise
training of deep networks. In B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.),
Advances in neural information processing systems, 11 (pp. 153–160). Cambridge,
MA: MIT Press.

Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou,
O. Chapelle, D. DeCoste, & J. Weston (Eds.), Large-scale kernel machines. Cam-
bridge, MA: MIT Press.

Carreira-Perpignan, M. A., & Hinton, G. E. (2005). On contrastive divergence learn-
ing. In R. G. Cowell and Z. Ghahramani (Eds.), Artificial intelligence and statistics.
Society for Artificial Intelligence and Statistics.

Dahl, G. E., Ranzato, M. A., Mohamed, A., & Hinton, G. E. (2010). Phone recognition
with the mean-covariance restricted boltzmann machine. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural
information processing systems, 23 (pp. 469–477). Red Hook, NY: Curran Associates.

Decoste, D., & Schölkopf, B. (2002). Training invariant support vector machines.
Machine Learning, 46(1/3), 161–190.

Desjardins, G., Courville, A., Bengio, Y., Vincent, P., & Delalleau, O. (2010). Tempered
Markov chain Monte Carlo for training of restricted Boltzmann machines. In
Proceedings of the 13th International Workshop on AI and Statistics (pp. 145–152).
Cambridge, MA: MIT Press.

Galland, C. (1991). Learning in deterministic Boltzmann machine networks. Unpublished
doctoral dissertation, University of Toronto.

2004 R. Salakhutdinov and G. Hinton

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 6(6), 721–741.

Goldberger, J., Roweis, S. T., Hinton, G. E., & Salakhutdinov, R. R. (2004). Neighbour-
hood components analysis. In L. K. Saul, Y. Wiess, & L. Bottou (Eds.), Advances
in neural information processing systems, 17 (pp. 513–520). Cambridge, MA: MIT
Press.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8), 1711–1800.

Hinton, G. E. (2007). To recognize shapes, first learn to generate images. In P. Cisek,
T. Drew, & J. F. Kalaska (Eds.), Computational neuroscience: Theoretical insights into
brain function. New York: Elsevier.

Hinton, G. E. (2010). A practical guide to training restricted Boltzmann machines. (Tech.
Rep. 2010-000). Toronto: Machine Learning Group, University of Toronto.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527–1554.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786), 504–507.

Hinton, G. E., & Sejnowski, T. (1983). Optimal perceptual inference. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:
IEEE.

Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length
and Helmholtz free energy. In J. D. Cowan, G. Tessauro, & J. Alspetor (Eds.), Ad-
vances in neural information processing systems, 6 (pp. 3–10). San Francisco: Morgan
Kaufmann.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction
to variational methods for graphical models. In M. I. Jordan (Ed.), Learning in
graphical models. Cambridge, MA: MIT Press.

Kappen, H. J., & Rodriguez, F. B. (1998). Boltzmann machine learning using mean
field theory and linear response correction. In M. Stearns, S. Solla, & D. Cohn
(Eds.), Advances in neural information processing systems, 10 (pp. 280–286). Cam-
bridge, MA: MIT Press.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220, 671–680.

LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning methods for generic object
recognition with invariance to pose and lighting. In Proc. Computer Vision and
Pattern Recognition (pp. 97–104). Piscataway, NJ: IEEE.

Marks, T. K., & Movellan, J. R. (2001). Diffusion networks, product of experts, and
factor analysis. In Proc. Int. Conf. on Independent Component Analysis (pp. 481–485).
New York: Springer.

Mohamed, A., Dahl, G. E., & Hinton, G. E. (2012). Acoustic modeling using deep
belief networks. IEEE Trans. on Audio, Speech, and Language Processing (pp. 14–22).
Piscataway, NJ: IEEE.

Murray, I., & Salakhutdinov, R. R. (2009). Evaluating probabilities under high-
dimensional latent variable models. In D. Köller, D. Schuurmans, Y. Bengio, &
L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 1137–
1144). Cambridge, MA: MIT Press.

An Efficient Learning Procedure for Deep Boltzmann Machines 2005

Nair, V., & Hinton, G. E. (2009). Implicit mixtures of restricted Boltzmann ma-
chines. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances
in neural information processing systems, 21 (pp. 1145–1152). Cambridge, MA: IEEE
Press.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. In Proc. 27th International Conference on Machine Learning (pp. 807–814).
Madison, WI: Omnipress.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence,
56(1), 71–113.

Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11,
125–139.

Neal, R. M., & Hinton, G. E. (1998). A view of the EM algorithm that justifies
incremental, sparse and other variants. In M. I. Jordan (Ed.), Learning in graphical
models (pp. 355–368). Dordrecht: Kluwer Academic Press.

Osindero, S., & Hinton, G. E. (2008). Modeling image patches with a directed hierar-
chy of Markov random fields. In J. C. Platt, D. Köller, Y. Singer, & S. Roweis (Eds.),
Advances in neural information processing systems, 20 (pp. 1121–1128). Cambridge,
MA: MIT Press.

Peterson, C., & Anderson, J. R. (1987). A mean field theory learning algorithm for
neural networks. Complex Systems, 1, 995–1019.

Ranzato, M. A. (2009). Unsupervised learning of feature hierarchies. Unpublished doc-
toral dissertation, New York University.

Ranzato, M. A., Huang, F., Boureau, Y., & LeCun, Y. (2007). Unsupervised learning of
invariant feature hierarchies with applications to object recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:
IEEE.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. Ann. Math.
Stat., 22, 400–407.

Salakhutdinov, R. R. (2009). Learning in Markov random fields using tempered
transitions. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta
(Eds.), Advances in neural information processing systems, 23 (pp. 1598–1606). Red
Hook, NJ: Curran Associates.

Salakhutdinov, R. R., & Hinton, G. E. (2007). Learning a nonlinear embedding by
preserving class neighbourhood structure. In M. Meila & X. Shen (Eds.), Proceed-
ings of the International Conference on Artificial Intelligence and Statistics (Vol. 11,
pp. 412–419). Cambridge, MA: MIT Press.

Salakhutdinov, R. R., & Hinton, G. E. (2009a). Deep Boltzmann machines. In Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics (Vol. 12,
pp. 448–455). Cambridge, MA: MIT Press.

Salakhutdinov, R. R., & Hinton, G. E. (2009b). Replicated softmax: An undirected
topic model. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A.
Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 1607–
1614). Red Hook, NY: Curran Associates.

Salakhutdinov, R. R., Mnih, A., & Hinton, G. E. (2007). Restricted Boltzmann ma-
chines for collaborative filtering. In Z. Ghahramani (Ed.), Proceedings of the In-
ternational Conference on Machine Learning (Vol. 24, pp. 791–798). New York:
ACM.

2006 R. Salakhutdinov and G. Hinton

Salakhutdinov, R. R., & Murray, I. (2008). On the quantitative analysis of deep belief
networks. In Proceedings of the International Conference on Machine Learning (Vol. 25,
pp. 872–879). Madison, WI: Omnipress.

Serre, T., Oliva, A., & Poggio, T. A. (2007). A feedforward architecture accounts for
rapid categorization. Proceedings of the National Academy of Sciences, 104, 6424–
6429.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of
harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed
processing, Vol. 1: Foundations (pp. 194–281). Cambridge, MA: MIT Press.

Tieleman, T. (2008). Training restricted Boltzmann machines using approximations
to the likelihood gradient. In Machine Learning: Proceedings of the Twenty-First
International Conference (pp. 1064–1071). New York: ACM.

Tieleman, T., & Hinton, G. E. (2009). Using fast weights to improve persistent con-
trastive divergence. In Proceedings of the 26th International Conference on Machine
Learning (pp. 1033–1040). New York: ACM.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. (2008). Extracting and compos-
ing robust features with denoising autoencoders. In W. W. Cohen, A. McCallum,
& S. T. Roweis (Eds.), Proceedings of the Twenty-Fifth Annual International Conference
on Machine Learning (Vol. 307, pp. 1096–1103). Madison, WI: Omnipress.

Welling, M. (2009). Herding dynamical weights to learn. In Proceedings of the 26th
Annual International Conference on Machine Learning (pp. 141–148). New York:
ACM.

Welling, M., Rosen-Zvi, M., & Hinton, G. E. (2005). Exponential family harmoniums
with an application to information retrieval. In L. K. Saul, Y. Weiss, & L. Bottou
(Eds.), Advances in neural information processing systems, 17 (pp. 1481–1488). Cam-
bridge, MA: MIT Press.

Williams, C., & Agakov, F. (2002). An analysis of contrastive divergence learning in
Gaussian Boltzmann machines. (Tech. Rep. EDI-INF-RR-0120). Edinburgh: Institute
for Adaptive and Neural Computation, University of Edinburgh.

Younes, L. (1989). Parameter inference for imperfectly observed Gibbsian fields.
Probability Theory Rel. Fields, 82, 625–645.

Younes, L. (1999). On the convergence of Markovian stochastic algorithms with
rapidly decreasing ergodicity rates. Stochastics and Stochastics Reports, 65, 177–
288.

Yuille, A. L. (2004). The convergence of contrastive divergences. In L. K. Saul, Y.
Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17
(pp. 1593–1600). Cambridge, MA: MIT Press.

Zemel, R. S. (1993). A minimum description length framework for unsupervised learning.
Unpublished doctoral dissertation, University of Toronto.

Received November 26, 2011; accepted January 20, 2012.

