
Unsupervised Learning of Image Transformations

Roland Memisevic
University of Toronto
roland@cs.toronto.edu

Geoffrey Hinton
University of Toronto
hinton@cs.toronto.edu

Abstract

We describe a probabilistic model for learning rich, dis-
tributed representations of image transformations. The ba-
sic model is defined as a gated conditional random field that
is trained to predict transformations of its inputs using a
factorial set of latent variables. Inference in the model con-
sists in extracting the transformation, given a pair of im-
ages, and can be performed exactly and efficiently.

We show that, when trained on natural videos, the model
develops domain specific motion features, in the form of
fields of locally transformed edge filters. When trained
on affine, or more general, transformations of still images,
the model develops codes for these transformations, and
can subsequently perform recognition tasks that are invari-
ant under these transformations. It can also fantasize new
transformations on previously unseen images. We describe
several variations of the basic model and provide experi-
mental results that demonstrate its applicability to a variety
of tasks.

1. Introduction
Natural images are not random, but show a great deal of

statistical regularity, both at the level of single pixels and at
the level of larger regions. Unsupervised learning has been
used to discover the statistical structure present in images
from training data, and many unsupervised algorithms (such
as PCA, ICA, and many others) are now an essential part
of the standard toolbox for solving recognition, detection,
denoising, and other tasks.

There has been little work on the related, but also more
difficult problem, of discovering structure in the ways im-
ages change. Typical transformations of images in, say
videos, are highly regular and structured, and systems can
profit from discovering, and then exploiting this structure.

How images can be transformed is intricately related to
how images themselves are structured: Natural images, that
are composed of edges and junctions, etc., will typically
show transformations that re-orient or slightly shift these
constituents. This suggests that the statistics of the set of

unordered images should be kept in mind, when trying to
model image transformations, and that the task of learning
about transformations should be tied in with that of learning
image statistics.

In order to learn about image transformations from train-
ing data, we construct a generative model that tries to pre-
dict the current (output) image in a stream of observations
from the previous (input) one. The model contains a set of
latent “mapping” units, that can develop efficient codes for
the observed transformations, analogous to the hidden units
in generative models of still images. In contrast to stan-
dard generative models, however, the filters that the model
learns are conditioned on the previous image in the stream.
The model is thus trained to predict transformed versions of
input images, which forces it to develop efficient encodings
for the encountered transformations. At test time, the trans-
formation can be inferred from a given pair of input-output
images, as the conditional distribution over the latent map-
pings units.

To be able to capture all the potential dependencies be-
tween the transformation, input and output units, the three
types of unit form three-way cliques in the graphical model.
As a result, the task of performing feature extraction is tied
to the task of feature mapping, and both are learned simul-
taneously.

Once a model for transformations has been trained, there
are many potential uses for it. A difficult ongoing problem
in pattern recognition is dealing with invariances. We show
how learning about transformations can greatly improve the
performance in a recognition task in which the class labels
are invariant under these transformations.

1.1. Related work

While there has not been much work on learning to en-
code transformations, the idea of using mapping units to
encode transformations is not new and dates back at least
to [8], which describes an architecture for modeling sim-
ple transformations of letters. However, no learning is per-
formed in the model. A line of research that was inspired
by this approach used mapping units to modulate feature
extraction pathways (see [13]), but without learning.

1

Another early, biologically inspired, architecture for
modeling transformations of images is described in [14].
The model was able to learn some simple synthetic trans-
formations, but no applications were reported.

[3] and [1] constructed systems to model domain-
specific transformations (the first for modeling motion, the
latter for modeling geometric invariances). Both models
were hand-crafted to work in their specific domains, and
not trained to perform feature extraction, but they showed
some interesting results on real-world tasks.

Our model is a type of higher-order Boltzmann machine
[17] and can also be viewed as a conditional version of a re-
stricted Boltzmann machine (RBM). It therefore bears some
resemblances to [5], which used a kind of conditional RBM
in a pixel labelling task. In that model, however, the depen-
dence on the inputs is simply in the form of biases for the
output units, whereas in our model, input, hidden and out-
put units form three-way-cliques, so the effect of an input
unit is to modulate the interaction between transformation
units and output units. As result, filters on the outputs, and
not just the outputs themselves, depend on the inputs, which
is crucial for the task of learning image transformations.

2. Gated Boltzmann machines

The basic idea of our model is to predict the next obser-
vation in a stream of observations, and to use hidden vari-
ables to capture the many possible ways in which the next
observation can depend on the previous one.

2.1. The model

To simplify the exposition we consider binary units for
now, that take on values 0 or 1. We show later how to deal
with more general distributions. To model the probability
of an output-image (or patch) y, given an input image (or
patch) x, we consider an energy-function that combines all
components of input and output images To explicitly cap-
ture the many possible ways in which the outputs can de-
pend on the input, we introduce an additional vector of bi-
nary hidden variables h.

A simple energy function that captures all possible cor-
relations between the components of x,y and h is

E(y,h;x) = −
∑
ijk

Wijkxiyjhk, (1)

where Wijk are the components of a three-way parameter-
”tensor” W . that learns from training data to weight the
importances of the possible correlations. The components
xi, yj of x and y can be either pixel intensities or higher-
level descriptors such as the outputs of non-linear filters.
The negative energy −E(y,h;x) captures the compatibil-
ity between the input, output and hidden units.

Note that, in the way that the energy is defined, each hid-
den unit hk can ’blend in’ a slice W··k of W , which defines
a linear mapping from inputs to outputs. Therefore, when
we fix all hidden units, we obtain simply a linear mapping
as transformation, if the output units are linear. However, in
practice we will derive a probability distribution over the set
of hidden units, and then marginalize over all possible map-
pings as we describe below, which gives rise to highly non-
linear and possibly (if we use more than one hidden unit)
compositional mappings.

Using this energy function, we can now define the joint1

distribution p(h,y|x) over outputs and hidden variables by
exponentiating and normalizing:

p(y,h|x) =
1

Z(x)
exp(−E(y,h;x)) (2)

where
Z(x) =

∑
y,h

exp(−E(y,h;x)) (3)

is a normalizing constant, that depends on the input image
x. To obtain the distribution over output images, given the
input, we marginalize and get:

p(y|x) =
∑
h

p(y,h|x) (4)

Note that in practice we cannot actually compute p(y|x)
or Z(x) exactly, since both contain sums over the exponen-
tially large number of all possible hidden unit instantiations
(and output unit instantiations, for Z(x)). In practice, how-
ever we do not actually need to compute any of these quanti-
ties to perform either inference or learning as we shall show.

Inference at test time consists of guessing the transfor-
mation, or equivalently its encoding h, from a given pair of
observed images x and y. But from Eqs. 1 and 2 it follows
easily that

p(hk|x,y) =
1

1 + exp(−
∑

ij Wijkxiyj)
(5)

for every mapping unit hk. This shows that the map-
ping units are independent binary variables given the input-
output image pair, and can be computed efficiently. Simi-
larly, for the distribution over outputs, when input and map-
ping units are given, we get:

p(yj |x,h) =
1

1 + exp(−
∑

ik Wijkxihk)
(6)

In practice, to be able to model affine and not just linear
dependencies, it is useful to add biases to the output and hid-
den units. However, to simplify the notation we drop these,

1We deliberately do not try to model the input, but rather condition
on it, freeing us from many of the independence assumptions that a fully
generative model would need to make to be tractable.

(a) (b)

hk

yjxi

x

h

y

yj

xi

hk

h

x y

Figure 1. Two views of the basic model. (a) Gated regression:
Hidden units can add slices W··k into a blend of linear transforma-
tions. (b) Modulated filters: Input units gate a set of basis func-
tions that learn to reconstruct the output.

and equivalently think of all the hidden and output vectors
as having an additional input that always has an activity of
1 so that the bias is the weight on this input.

Eq. 5 shows that hidden unit probabilities are inferred
using correlations between input- and output components,
which shows that at test time each hidden unit effectively
acts as a kind of Reichhardt detector [15], that uses spatial
pooling to generalize over larger regions and to deal with
noise.

2.2. Learning

To train the probabilistic model, we maximize the av-
erage conditional log-likelihood L = 1

N

∑
α log p(yα|xα)

for a set of training pairs (xα,yα). We consider gradient
based optimization for this purpose. By substituting Eqs. 2
and 4, it is easy to show that, similarly as for unconditional
models [7], the gradient of the (negative) log-likelihood for
each training case is the difference of two expectations:

− ∂L

∂Wijk
=

X
α

fi
∂E(yα, h; xα)

∂Wijk

fl
h

−
fi

∂E(y, h; xα)

∂Wijk

fl
h,y

(7)
The first expectation is over the posterior distribution over
mapping units and can be computed efficiently using Eq.
5. The second is an expectation over all possible out-
put/mapping instantiations and is intractable. Note however
that, because of the conditional independences of h given y,
and y given h (see previous section), we can easily sample
from the conditional distributions p(h|x,y) and p(y|x,h).

Gibbs sampling therefore suggests itself as a way to ap-
proximate the intractable term. Moreover, it can be shown
that it is sufficient, and often advantageous, to perform only
very few Gibbs iterations, if we start sampling at the train-
ing data-points themselves. This scheme of optimizing an
undirected graphical model is known as contrastive diver-

gence, and has been applied in several vision applications
before (see [7], [20], [16], for example).

2.3. Two views

Since the model defines a conditional distribution over
outputs, it can be thought of as an autoregressive model.
In particular, Eq. 4 shows that it is a kind of mixture of
experts [10], with a very large number of mixture compo-
nents (exponential in the number of mapping units). Unlike
a normal mixture model, the exponentially many mixture
components share parameters which is what prevents the
model from overfitting. The number of parameters scales
only linearly, not exponentially, with the number of map-
ping units.

Each binary mapping unit hk that is active effectively
’blends’ in a slice W··k of the weight tensor W into the
mixture (see Eq. 1). The model can therefore compose a
given transformation from a set of simpler transformations,
which is crucial for modeling many real-world transforma-
tions. Likewise at test time, the hidden units de-compose an
observed transformation into its basic components by mea-
suring correlations between inputs and outputs. The impor-
tance that hidden unit hk attributes to the correlatedness (or
anti-correlatedness) of a particular pair xi, yj is determined
by Wijk, as can be seen also from from Eq. 5: If Wijk is
positive then a positive correlation between xi and yj will
tend to excite unit hk, and a negative correlation tend to
inhibit it. Importantly, the task of defining the set of ba-
sis transformations that is needed for some specific task at
hand, is considered to be a domain-specific problem, and is
therefore left to be solved by learning.

An alternative view of the model is shown in figure 1 (b):
Each given, fixed input image x defines a bi-partite network
(known as restricted Boltzmann machine, see [9], for exam-
ple), in which input-dependent filters fj =

∑
i Wijkxi are

used to capture spatial correlations in the image. The filters
are input-weighted sums of slices Wi·· of the weight tensor
W .

In other words, the model defines a bipartite conditional
random field over output images and mappings. Instead of
specifying spatial correlations ahead of time, as would be
done for example with a Markov random field, here the pos-
sible correlations are learned from training data and can be
domain-specific, input-dependent, and possibly long-range.

2.4. Gaussian outputs

The model described so far defines a binary distribution
over output and mapping units. However, binary values are
not always the best choice, and it is often desirable to be
able to use more general distributions, for either output or
mapping units. Continuous values for the outputs are espe-
cially useful in image modelling tasks.

Modifying the model in order to deal with continuous
outputs, while keeping the hidden units binary, for exam-
ple, can be achieved straightforwardly, following the same
approach that is used for continuous standard RBMs [9]:
We re-define the energy as:

E(y,h;x) =
1

2ν2

∑
j

(yj −Wy
j)2

− 1
ν

∑
ijk

Wijkxiyjhk −
∑

k

Wh
k hk,

and then define the joint distribution as before (Eq. 2). Now,
while the distribution over hidden units p(h|x,y) remains
the same (because the additional term cancels out after ex-
ponentiating and conditioning), it is straightforward to show
that the distributions over output units yj turns into Gaus-
sians (see [9] for details):

yj |x,h ∼ N(Wy
j + ν

∑
ik

Wijkxihk, ν2) (8)

Since the conditional distribution is a Gaussian that is
independent across components yj , Gibbs sampling is still
straightforward in the model. Note, that the marginal distri-
bution is not Gaussian, but a mixture of exponentially many
Gaussians instead. As before, it is intractable to evaluate
the marginal, so it is fortunate that it does not need to be
to evaluated for either learning or inference. Note also, that
the inputs x are always conditioned on in the model. They
therefore do not need to be treated differently than for the
binary case. Any scaling properties of the inputs can be
absorbed into the weights, and are therefore taken care of
automatically during training, though learning is faster and
more stable if the scales are sensible.

2.5. Examples

To test the model, we used a database of digitized
television broadcasts. The original database contains
monochrome videos with a frame-size of 128× 128 pixels,
and a frame rate of 25 frames per second. We reduced the
frame-rate by a factor of 2 in our experiments, i.e. we used
only every other frame. Further details about the database
can be found in [19].

Learning synthetic transformations: First, to see
whether the model is able to discover very simple transfor-
mations, we trained it on synthetically generated transfor-
mations of the images. We took random-patches from the
video-database described above (without considering tem-
poral information) and generated sequences by transform-
ing the images with shifts and rotations. We used 20 map-
ping units and trained on images of size 8 × 8 pixels. We
used the pixel intensities themselves (no feature extraction)
for training, but smoothed the images with a Gaussian filter
prior to learning.

Figure 2. 20 basis flowfields learned from synthetic image trans-
formations. The flowfields show, for each input pixel, the strengths
of its positive outgoing connections, using lines whose thicknesses
are proportional to the strengths.

Figure 2 displays resulting “excitatory basis-flow-fields”
for several mapping units, by showing for each mapping
unit hk the strength of the positive connections Wijk, be-
tween pixel i and pixel j, using a line whose thickness is
proportional to the connection strength. We obtain a sim-
ilar plot (but poled in the opposite direction) for negative
connections, showing that the model learns to locally shift
edges. (See below for further results on this.)

Furthermore, the figure shows, that the model infers lo-
cality, i.e. input pixels are connected mostly to nearby pix-
els. The model decomposes the observed transformation
across several mapping units. (Note that this display loses
information, and is used mainly to illustrate the resulting
flow-fields.)

Broadcast videos: To train the model on the actual
videos we cut out pairs of patches of size 22 × 22 pixels
at random positions from adjacent frames. We then trained
the model to predict the second patch in each pair from the
first, as described previously. To speed up training, we used
PCA to reduce the dimensionality prior to training.

A way of visualizing the learned basis flowfields is
shown in figure 3. The figure shows that the model has
developed sets of local, conditional edge-filters. That is,
input pixels have significant weights to output pixels that
are nearby and the weights form an oriented filter. The fact
that the model decides to latch mainly onto edges to infer
information about the observed transformation is not sur-
prising, given that image gradient-information is essential
for inferring information about optical flow. Note however,

Figure 3. A visualization of parts of the learned basis flowfields
Wijk for four different hidden units, hk. For each hidden unit, the
input pixels in a small patch are laid out in a coarse grid. At each
grid location, there is an intensity image that depicts the weights
from that input pixel to all of the output pixels. The intensities
range from black for strong negative weights to white for strong
positive ones. We invert the PCA encoding before showing the
results.

that this information is learned from the database and not
handcoded. No sparsity constraints were used to obtain the
results. The database – being based on broadcast television
– shows many small motions and camera-shifts, and con-
tains motion as a predominant mode of variability.

More interesting than the learned motion edge-features
is the fact that adjacent input-pixels tend to be mapped sim-
ilarly by given mapping units, which shows that the model
has learned to represent mostly global motion within the
22 × 22-patch, and to use spatial pooling to infer informa-
tion about the observed transformation.

Given the learned model, it is straightforward to gener-
ate dense flow-fields, as shown in figure 4. The plots in
the top row of the figure show a pair of two adjacent exam-
ple time-frames cropped randomly from the video-database,
and showing a more or less even right-shift over the whole
patch. To generate the flow-field, at each input-pixel posi-
tion in the center region of the image (we left out a frame of
4 pixels width, where the field cannot be inferred precisely)
an arrow is drawn that shows to which output-pixel it con-
nects the most2 (bottom row of the figure). The resulting

2Note that the restriction to integer flow here is not a restriction of the
model per se – in particular, since the described model was trained on
basis-transformed patches. The flow-field is used mainly for illustration
purposes as described in the main text. The full flow representation is

’max-’flow-field shows that the model infers that there was
a more or less global motion within the patch, even though
corresponding pixel intensities vary considerably between
frames, and there are large homogeneous regions. The rea-
son that the model infers a global motion is that it considers
it to be the most probable, given the observed evidence, and
that such global motions are typical in the dataset, whose
log-probability is what is being optimized during training.

Figure 4. Typical image patch pair from the video database, and
the inferred flow field. Spatial pooling facilitates generalization
and noise suppression.

Note that we do not necessarily advocate using this
method to infer dense flow-fields such as the one shown.
Rather, the flow-information is represented implicitly here
in the form of hidden unit probabilities, and condensing it
to the max-flow field would usually mean that potentially
useful information gets lost. Also, the kinds of transforma-
tions that the model learns are not restricted to motion (as
we show below), and are therefore not necessarily local as
in the example. To make use of the implicitly encoded in-
formation one can use learning on the hidden units (as done
in [3], for example).

2.6. Fields of Gated Experts

Until now we have we have considered a single global
model, that connects each input pixel (or feature) with each
output component, and we have used patches to train the
model on real-world data.

For images that are much larger, connecting all compo-
nents is not going to be tractable. The most simple solution
for video data is to restrict the connections to be local, since
the transformations on these data-sets are typically not very
long-range. In many real-world tasks (albeit not in all) it is

given by the mapping unit activations themselves.

reasonable to assume that the kind of transformations that
occur in one part of the image could occur in principle also
in any other. Besides restricting connections to be local, it
can therefore make sense to also use some kind of weight-
sharing, so that we apply essentially the same model all over
the image, though not necessarily the same particular trans-
formation all over the image.

We therefore define a single patch-model, as before,
but define the distribution over the whole output-images as
the product of distributions over patches centered at each
output-pixel. Each patch (centered at some output-pixel yj)
contains its own set of hidden units hj

k. Formally, we simply
re-define the energy to be

E(y,h;x) = −
∑

s

∑
ijk

Wijkxs
i y

s
jh

s
k, (9)

where s ranges over all sites, and xs
i denotes the (ith) com-

ponent of x in site s (analogously for y and h). Inferring the
hidden unit probabilities at some site s, given the data, can
be performed exactly the same way as before independently
of the other sites, using Eq. 5. When inferring the data dis-
tribution at some site s, given the hiddens, some care needs
to be taken because of overlapping output patches. Learning
can be performed the same way as before using contrastive
divergence.

This approach is the direct conditional analogue to mod-
eling a whole image using patch-wise RBMs as used in [16],
for the non-conditional case. A similar approach for simple
conditional models has also been used by [5].

3. Application and Experiments
Once a model has been trained to recognize and encode

image transformations, it is possible to perform recogni-
tion tasks that are invariant under those transformations, by
defining a corresponding invariant metric with respect to the
model. Since the GBM model is trained entirely from data,
there is no need to provide any knowledge about the possi-
ble transformations to define a metric, (in contrast to many
previous approaches, such as [2]).

An obvious way of computing the distance between two
images, given a trained GBM model, is by measuring how
well the model can transform one image into the other. If it
does a good job at modelling the transformations that occur
in the distribution of image pairs that the data was drawn
from, then we expect the resulting metric to be a good one.

3.1. Learning an invariant metric

A very simple, but as it turns out, very effective, way
of measuring how well the model can transform an input
image x into another image y, is by first inferring the trans-
formation, then applying it, and finally using Euclidean dis-

2 4 6 8 10 12 14

k

0.05

0.10

0.15

0.20

0.25

0.30

e
rr

o
r

ra
te eucl

eucl p+t

td
td p+t

Figure 5. Error rates using k-nearest neighbors.

tance to determine how well the model did. Formally this
amounts to using the following three-step algorithm:

1. Set ĥ = arg maxh p(h|x,y)

2. Set ŷ = arg maxy p(y|x, ĥ)

3. Define d(x,y) = ‖y − ŷ‖,

where d(·, ·) is the resulting distance measure, which is
strictly speaking not a distance since it is not symmetric.
(It could easily be turned into a proper distance by adding
the two opposite non-symmetric versions, but in many ap-
plications symmetry is not actually needed.) Note that both
operations can be performed efficiently because of the inde-
pendence of the conditional distributions.

It is interesting to note that we can interpret the pro-
cedure also as measuring how well the model can recon-
struct an output y under the conditional distribution defined
by the clamped input x, using a one-step reconstruction as
used during contrastive divergence learning. Points that lie
in low-density (and correspondingly high-energy) regions
tend to get ’pulled’ towards higher density regions more
strongly than points that already reside in high density re-
gions, and therefore experience a larger shift in terms of
Euclidean distance.

3.2. Digits

In the task of digit classification, viewpoint invariance
is usually not a central concern because typical datasets are
composed of normalized images. This allows nearest neigh-
bor classification in pixel space to obtain reasonably good
results.

Here we modify the digit classification task by taking
5000 randomly chosen examples from the USPS-dataset
(500 from each class) and generating 15000 extra exam-
ples using random affine transformations (3 for each case).

We consider the problem of predicting 10000 of the trans-
formed digits from the 5000 original training points (for
which we have labels available). The remaining 5000 trans-
formations are (i) left aside to learn transformations in one
experiment, (ii) included in the training-set for classification
in another experiment. The first problem is one of transfer
learning: We are given labels for the unmodified training
cases, but the actual task is to classify cases from a dif-
ferent, but related, test set. The relation between the sets
is provided only implicitly, in the form of correspondences
between digits and their transformations.

Using 100 PCA-features to represent each image, we
trained a GBM with 50 mapping units on the transforma-
tions, by predicting transformed versions of digits from
the originals and vice versa. Figure 5 compares the near-
est neighbor error rates on the 10000 test cases, obtained
from using either the Euclidean distance or the distance
computed using the model of transformations. To compute
nearest neighbors using the non-symmetric distance mea-
sure, we let the training cases be the inputs x in the three-
step algorithm (previous section). In other words, we mea-
sure how well the model can transform prototypes (training
cases) into the query cases.

In task (i) (’eucl’ vs. ’td’ in the plot) Euclidean dis-
tance fails miserably, when transformed digits have to be
predicted from the original dataset, while the transforma-
tion metric does quite well. In task (ii) (’eucl p+t’ vs. ’td
p+t’ in the plot), where transformations are included in the
training set, Euclidean distance improves significantly, but
still does far worse than the transformation metric. The
transformation metric itself gains only little from including
the transformations. The reason is, that most of the avail-
able information resides in the way that the digits can be
transformed, and has therefore already been captured by the
model. Including transformed digits in the training set does
not, therefore, provide a significant advantage and leaving
them out does not entail a significant disadvantage.

3.3. Image transformations

Once we have a way of encoding transformations, we
can also apply these transformation to previously unseen
images. If we obtain the transformation from some ’source’
image pair and apply it to a target image, we are basically
performing an analogy. [6] discuss a model that performs
these ’image analogies’ using a regression-type architec-
ture. An interesting question is, whether it is possible to
perform these analogies using a general purpose generative
model of transformations.

We used a source image-pair as shown in the top row
in figure 6, generated by taking a publicly available image
from the database described in [4], and applying an artistic
filter that produces a canvas-like effect on the image. The
image sizes are 512 × 512 pixels. We trained a field of

gated experts model with 10 hidden units and a patch-size
of 5× 5 pixels. The target image is another image from the
same database and is shown in the row below, along with
its transformation. We obtained the transformation by per-
forming a few hundred Gibbs iterations on the output using
the original image target image as initialization (the one-
step reconstruction works, too, but more iterations can im-
prove the results a little). The blow-up shows that the model
has learned to apply a somewhat regular, canvas-like struc-
ture on the output-image, as observed in the source image.

4. Conclusions
There has been surprisingly little work on the problem of

learning explicit encodings of image transformations, and
one aim of this paper is to draw attention to this approach,
which, we believe, has many potential applications. There
is some resemblance between our approach and the bilin-
ear model of style and content proposed in [18], but the
learning methods are quite different and our approach al-
lows the transformations to be highly non-linear functions
of the data.

There are several interesting directions for future work.
One is to learn mappings of multiple different types of fea-
ture simultaneously. Doing this on multiple scales could
be interesting, especially for motion-analysis. While binary
hidden units amount to using a mixture of exponentially
many experts, in some tasks continuous hidden units could
be more suitable, in which case the model would take the
form of a “continuum of experts” instead. Another interest-
ing problem is the construction of layered architectures in
which mapping units are shared between two adjacent lay-
ers. This allows transformations that are inferred from pixel
intensities to be used to guide feature-extraction, because
features of an image that are easy to predict from features
of the previous image will be preferred.

A possible application of our model is classification
based on very few training cases as suggested, for exam-
ple, in [12]. Potential applications other than dealing with
invariances are video compression, and discriminative, as
well as temporal denoising. While we have considered im-
age transformations in this paper, the model can easily be
trained on more general data types than images, and we are
currently working on applications in other areas.

Standard RBMs are very closely related to autoen-
coder networks [11], and can be used to discover the low-
dimensional manifolds along which real world data is often
distributed. GBMs in turn learn conditional embeddings, by
appropriately modulating the weights of an RBM with input
data. In contrast to previous, non-parametric approaches in
this direction, such as [11], GBMs can be trained on much
larger datasets and easily generalize the learned embeddings
beyond the training data-points, which is what makes them
so useful for discrimination tasks.

Figure 6. Image analogy. Top to bottom: Source image pair used
for training, target image pair, blow-up source image pair, blow-up
target image pair.

References

[1] S. J. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. Technical report,
Berkeley, CA, USA, 2002.

[2] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity
metric discriminatively, with application to face verification.
In CVPR ’05, Washington, DC, USA, 2005. IEEE Computer

Society.
[3] D. J. Fleet, M. J. Black, Y. Yacoob, and A. D. Jepson. Design

and use of linear models for image motion analysis. Int. J.
Comput. Vision, 36(3):171–193, 2000.

[4] C. Grigorescu, N. Petkov, and M. A. Westenberg. Con-
tour detection based on nonclassical receptive field inhibi-
tion. IEEE Transactions on Image Processing, 12(7):729–
739, 2003.

[5] X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multiscale
conditional random fields for image labeling. volume 02, Los
Alamitos, CA, USA, 2004. IEEE Computer Society.

[6] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.
Salesin. Image analogies. In SIGGRAPH ’01, New York,
NY, USA, 2001. ACM Press.

[7] G. E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1771–
1800, 2002.

[8] G. E. Hinton and K. J. Lang. Shape recognition and illusory
conjunctions. In Proc. of the 9th IJCAI, pages 252–259, Los
Angeles, CA, 1985.

[9] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, July 2006.

[10] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of ex-
perts and the em algorithm. Neural Computation, 6(2):181–
214, 1994.

[11] R. Memisevic. Kernel information embeddings. In ICML
’06, pages 633–640, New York, NY, USA, 2006. ACM Press.

[12] E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from
one example through shared densities on transforms. CVPR,
01:1464, 2000.

[13] B. Olshausen. Neural Routing Circuits for Forming Invariant
Representations of Visual Objects. PhD thesis, Computation
and Neural Systems, 1994.

[14] R. P. Rao and D. H. Ballard. Efficient encoding of natural
time varying images produces oriented space-time receptive
fields. Technical report, Rochester, NY, USA, 1997.

[15] W. Reichardt. Movement perception in insects. In W. Re-
ichardt, editor, Processing of optical data by organisms and
by machines. Academic Press, New York, 1969.

[16] S. Roth and M. J. Black. Fields of experts: A framework for
learning image priors. In CVPR ’05, Washington, DC, USA,
2005. IEEE Computer Society.

[17] T. J. Sejnowski. Higher-order boltzmann machines. In AIP
Conference Proceedings 151 on Neural Networks for Com-
puting, pages 398–403, Woodbury, NY, USA, 1987. Ameri-
can Institute of Physics Inc.

[18] J. B. Tenenbaum and W. T. Freeman. Separating style
and content with bilinear models. Neural Computation,
12(6):1247–1283, 2000.

[19] L. van Hateren and J. Ruderman. Independent component
analysis of natural image sequences yields spatio-temporal
filters similar to simple cells in primary visual cortex, 1998.

[20] M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential fam-
ily harmoniums with an application to information retrieval.
In Advances in Neural Information Processing Systems 17.
MIT Press, Cambridge, MA, 2005.

