Missing Data Problems and Collaborative Filtering

CSC2535

Richard Zemel & Ben Marlin Department of Computer Science University of Toronto March 23, 2011

CSC2535, Department of Computer Science, University of Toronto

Contents:

Introduction

Notation

Theory Of Missing Data

<u>Factorizations</u> <u>MCAR</u> <u>MAR</u> <u>NMAR</u> <u>Inference and Learning</u>

Multinomial Models

<u>Multinomial Mixture</u> <u>Multinomial Mixture/CPT-v</u> <u>Demo</u>

Collaborative Filtering

<u>Collaborative Prediction</u> <u>Yahoo! Data</u> <u>Jester Data</u> <u>Results</u>

Introduction

CSC2535, Department of Computer Science, University of Toronto

Introduction

Collaborative filtering – users assign ratings to items \rightarrow system uses information from all users to recommend previously unseen items that a user might like

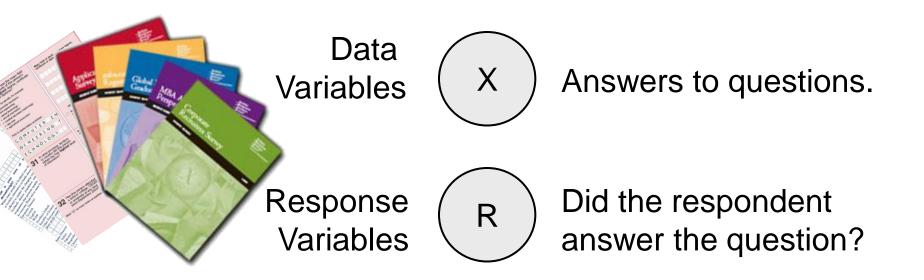
One approach to recommendation: predict ratings for all unrated items, recommend highest predicted ratings

Critical assumption: missing ratings are missing at random

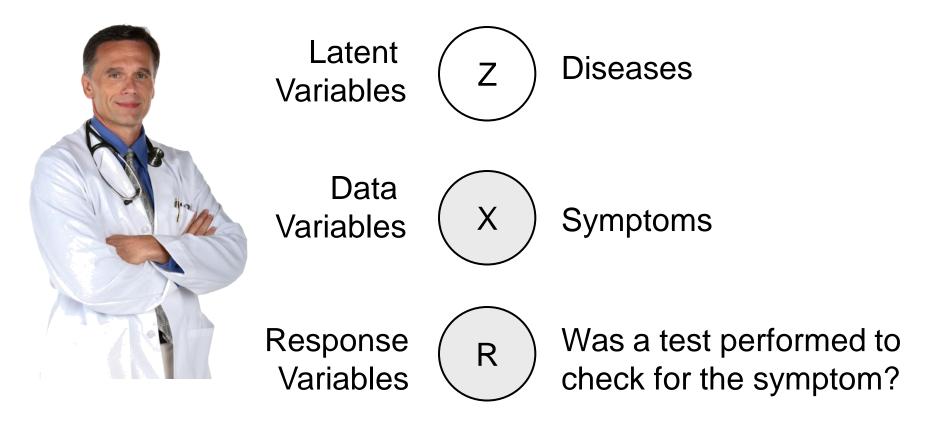
One way to violate: value of variable affects probability value will be missing – bias in observed ratings, and hence learned parameters

<u>Also complementary bias in standard testing procedure – distribution of observed data different from distribution of complete data, so estimated error on observed test data poor estimate of complete data error</u>

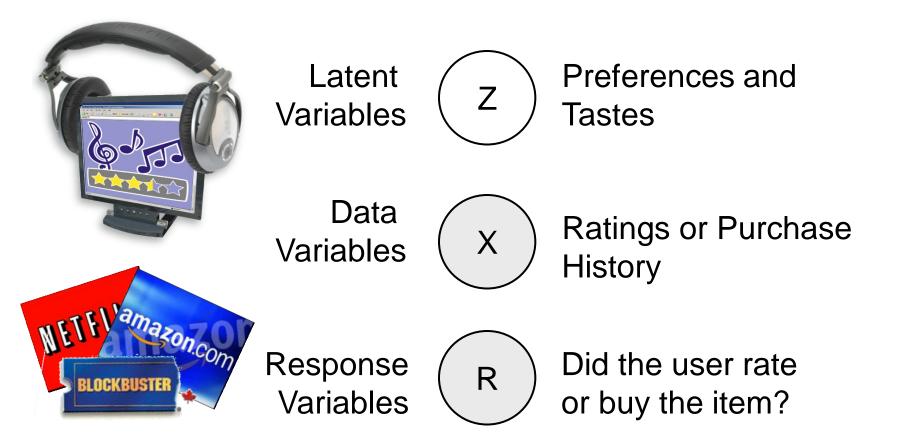
Introduction: Survey Sampling Example



Introduction: Medical Diagnosis Example



Introduction: Recommender Systems Example



Introduction: Basic Notation

N	Number of data cases.
D	Number of data dimensions.
C	Number of classes.
V	Number of multinomial values.
K	Number of clusters or hidden units.

Introduction: Notation for Missing Data

\mathbf{x}_n	0.1 0.9 0.2 0.7 0.3	Data Vector
\mathbf{r}_n	1 0 0 1 1	Response Vector
\mathbf{o}_n	1 4 5	Observed Dimensions
\mathbf{m}_n	2 3	Missing Dimensions
$\mathbf{x}_n^{\mathbf{o}_n}, \mathbf{x}_n^o$	0.1 0.7 0.3	Observed Data
$\mathbf{x}_n^{\mathbf{m}_n}, \mathbf{x}_n^m$	0.9 0.2	Missing Data

Contents:

Introduction

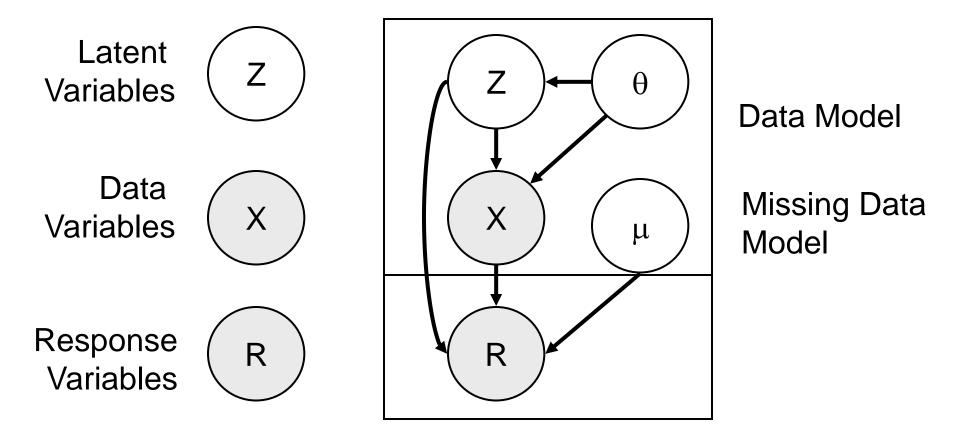
Notation

Theory Of Missing Data

<u>Factorizations</u> <u>MCAR</u> <u>MAR</u> <u>NMAR</u> Inference and Learning <u>Multinomial Models</u> <u>Multinomial Mixture</u> <u>Multinomial Mixture/CPT-v</u> <u>Demo</u>

<u>Collaborative Filtering</u> <u>Collaborative Prediction</u> <u>Yahoo! Data</u> <u>Jester Data</u> Results

Theory of Missing Data: Generative Process



Theory of Missing Data: Factorizations

Data/Selection Model Factorization:

 $P(\mathbf{x}, \mathbf{r}, \mathbf{z}|\theta, \mu) = P(\mathbf{r}|\mathbf{x}, \mathbf{z}, \mu)P(\mathbf{x}, \mathbf{z}|\theta)$

• The probability of selection depends on the true values of the data variables and latent variables.

Pattern Mixture Model Factorization:

$$P(\mathbf{x}, \mathbf{r}, \mathbf{z} | \vartheta, \nu) = P(\mathbf{x}, \mathbf{z} | \mathbf{r}, \vartheta) P(\mathbf{r} | \nu)$$

• Each response vector defines a different pattern, and each pattern has a different distribution over the data.

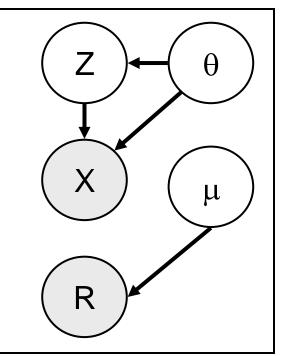
Missing Completely at Random:

 Response probability is independent of data variables and latent variables.

$$P(\mathbf{r}|\mathbf{x}, \mathbf{z}, \mu) = P(\mathbf{r}|\mu)$$

MCAR Examples:

Send questionnaires to a random subset of the population or use random digit dialing.



Missing at Random:

• Typically written in a short-hand form that looks like a statement of probabilistic independence:

$$P(\mathbf{r}|\mathbf{x}, \mathbf{z}, \mu) = P(\mathbf{r}|\mathbf{x}^o, \mu)$$

• MAR is actually a different type of condition that requires a particular set of symmetries hold in $P(r|x,z,\mu)$:

$$P(\mathbf{r}|\mathbf{x}^{o(\mathbf{r})}, \mathbf{x}^{m(\mathbf{r})}, \mathbf{Z}, \mu) = f(\mathbf{r}, \mathbf{x}^{o(\mathbf{r})}, \mu) \dots \text{ for all } \mathbf{x}^{m(\mathbf{r})}$$

Missing at Random Examples:

Respondents are not required to provide information about their employer if they are not currently employed.

Doctor only orders test B if the result of test A was negative. If result of test A is positive, result for test B is missing.

What Does it mean to be Missing at Random?

• MAR is **not** a statement of independence between random variables. MAR requires that particular symmetries hold so that P(R=r|X=x) can be determined from observed data only.

$X \setminus R$	0.0	01	10	11
0 0	α	β	γ	$1 - \alpha - \beta - \gamma$
01	α	δ	γ	$1 - \alpha - \delta - \gamma$
10	α	β	λ	$1 - \alpha - \beta - \lambda$
11	α	δ	λ	$1 - \alpha - \delta - \lambda$

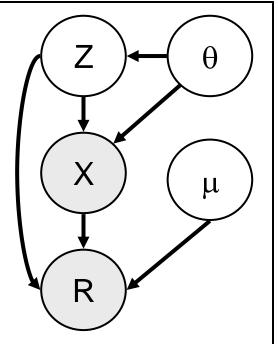
Not Missing at Random:

 Allows for arbitrary dependence of response probabilities on missing data values and latent variables:

$$P(\mathbf{r}|\mathbf{x},\mathbf{z},\mu)$$
 No Simplifications

An Easy Way to Violate MAR:

 Let the probability that a data variable is observed depend on the value of that data variable.



Not Missing at Random Examples:

Snowfall reading is likely to be missing if weather station is covered with snow.

Participants in a longitudinal health study for a heart medication may die of a heart attack during the study.

Users are more likely to rate or buy items they like than items they don't like.

Theory of Missing Data: Inference

MCAR/MAR Posterior:

$$\begin{split} P(\theta|\mathbf{x}^{o},\mathbf{r}) &\propto \int \int \int P(\mathbf{x},\mathbf{z}|\theta) P(\mathbf{r}|\mathbf{x},\mathbf{z},\mu) P(\theta|\omega) P(\mu|\eta) d\mu dZ d\mathbf{x}^{m} \\ &\propto \int f(\mathbf{r},\mathbf{x},\mu) P(\mu|\eta) d\mu \cdot \int \int P(\mathbf{x},\mathbf{z}|\theta) P(\theta|\omega) dZ d\mathbf{x}^{m} \\ &\propto P(\mathbf{x}^{o}|\theta) P(\theta|\omega) \end{split}$$

• When MCAR or MAR holds, the posterior can be greatly simplified. Inference for θ does not depend on r, μ , or η . The missing data can be *ignored*.

Theory of Missing Data: Inference NMAR Posterior:

$$P(\theta|\mathbf{x}^{o},\mathbf{r}) \propto \int \int \int P(\mathbf{x},\mathbf{z}|\theta) P(\mathbf{r}|\mathbf{x},\mathbf{z},\mu) P(\theta|\omega) P(\mu|\eta) d\mu dZ d\mathbf{x}^{m}$$

- When MAR fails to hold, the posterior does not simplify.
- Basing inference on the observed data posterior and ignoring the missing data model leads to provably biased inference for data model parameters.

Contents:

Introduction

Notation

Theory Of Missing Data

<u>Factorizations</u> <u>MCAR</u> <u>MAR</u> <u>NMAR</u> <u>Inference and Learning</u>

Multinomial Models

<u>Multinomial Mixture</u> <u>Multinomial Mixture/CPT-v</u> <u>Demo</u>

Collaborative Filtering

<u>Collaborative Prediction</u> <u>Yahoo! Data</u> <u>Jester Data</u> <u>Results</u>

Multinomial Models: Mixture

Probability Model:

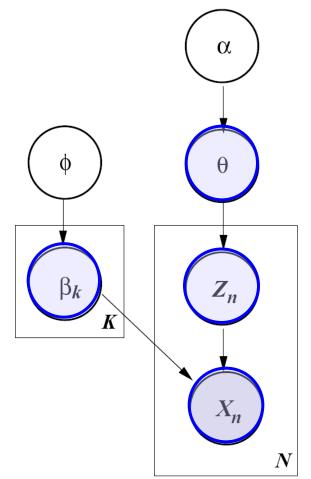
$$P(Z_n = k | \theta) = \theta_k$$

$$P(\mathbf{X}_n = \mathbf{x}_n | Z_n = k, \beta) = P(\mathbf{x}_n | \beta_k$$

$$P(\theta, \beta | \alpha, \phi) = P(\theta | \alpha) \prod_k P(\beta_k | \phi)$$

Properties:

- Allows for a fixed, finite number of clusters.
- In the multinomial mixture, $P(x_n|\beta_k)$ is a product of discrete distributions. The prior on β and θ is Dirichlet.



Multinomial Models: Mixture

Dirichlet Distribution:

Bayesian mixture modeling becomes much easier when conjugate priors are used for the model parameters. The conjugate prior for the mixture proportions θ is the Dirichlet distribution.

$$\begin{split} P(\theta|\alpha) &= \frac{\Gamma(\sum_{k} \alpha_{k})}{\prod_{k} \Gamma(\alpha_{k})} \prod_{k} \theta_{k}^{\alpha_{k}-1} \\ E[\theta_{k}|\alpha] &= \frac{\alpha_{k}}{\sum_{k=1}^{K} \alpha_{k}} \\ P(\theta|\alpha, \mathbf{z}) &= \frac{\Gamma(N + \sum_{k} \alpha_{k})}{\prod_{k} \Gamma(C_{k} + \alpha_{k})} \prod_{k} \theta_{k}^{C_{k}+\alpha_{k}-1} \end{split}$$

Multinomial Models: Mixture

MAP EM Algorithm:

E-Step:
$$q_n(k) \leftarrow \frac{\theta_k \prod_{d=1}^D \prod_{v=1}^V \beta_{vdk}^{[r_{dn}=1][x_{dn}=v]}}{\sum_{k'=1}^K \theta_{k'} \prod_{d=1}^D \prod_{v=1}^V \beta_{vdk'}^{[r_{dn}=1][x_{dn}=v]}}$$

M-Step:
$$\theta_k \leftarrow \frac{\alpha_k - 1 + \sum_{n=1}^N q_n(k)}{N - K + \sum_{k=1}^K \alpha_k}$$

$$\beta_{vdk} \leftarrow \frac{\phi_{vdk} - 1 + \sum_{n=1}^{N} q_n(k) [r_{dn} = 1] [x_{dn} = v]}{\sum_{n=1}^{N} q_n(k) [r_{dn} = 1] - V + \sum_{v=1}^{V} \phi_{vdk}}$$

Multinomial Models: Mixture/CPT-v

Probability Model: α $P(\theta|\alpha) = \mathcal{D}(\theta|\alpha)$ $K \quad D$ 0 θ $P(\beta|\phi) = \prod \prod \mathcal{D}(\beta_{dk}|\phi_{dk})$ k = 1 d = 1 $P(Z_n = k|\theta) = \theta_k$ β_k Z_n $P(\mathbf{X} = \mathbf{x}_n | Z_n = k, \beta) = \prod_{i=1}^{D} \prod_{j=1}^{V} \beta_{vdk}^{[x_{dn} = v]}$ d=1 v=1 X_n $P(\mu|\xi) = \prod \mathcal{B}(\mu_v|\xi_v)$ N

 $P(\mathbf{R} = \mathbf{r}_n | \mathbf{X} = \mathbf{x}_n, \mu) = \prod_{d=1}^{D} \prod_{v=1}^{V} \mu_v^{[r_{dn}=1][x_{dn}=v]} (1-\mu_v)^{[r_{dn}=0][x_{dn}=v]}$

Multinomial Models: Mixture/CPT-v

MAP EM Algorithm (E-Step):

$$q_{n}(k) = P(z_{n} = k | \mathbf{x}_{n}^{o}, \mathbf{r}_{n}, \theta, \beta, \mu)$$

$$= \frac{\theta_{k} \prod_{d=1}^{D} \left(\prod_{v=1}^{V} (\beta_{vdk} \mu_{v})^{[x_{dn}=v]} \right)^{[r_{dn}=1]} \left(\sum_{v=1}^{V} \beta_{vdk} (1-\mu_{v}) \right)^{[r_{dn}=0]}}{\sum_{k=1}^{K} \theta_{k} \prod_{d=1}^{D} \left(\prod_{v=1}^{V} (\beta_{vdk} \mu_{v})^{[x_{dn}=v]} \right)^{[r_{dn}=1]} \left(\sum_{v=1}^{V} \beta_{vdk} (1-\mu_{v}) \right)^{[r_{dn}=0]}}$$

$$q_{n}(k, v, d) = P(z_{n} = k, x_{dn} = v | \mathbf{x}_{n}^{o}, \mathbf{r}_{n}, \theta, \beta, \mu)$$

= $q_{n}(k) \left(\frac{\mu_{v} \beta_{vdk}}{\sum_{v'=1}^{V} \mu_{v'} \beta_{v'dk}} \right)^{[r_{dn}=1]} \left(\frac{(1-\mu_{v}) \beta_{vdk}}{\sum_{v'=1}^{V} (1-\mu_{v'}) \beta_{v'dk}} \right)^{[r_{dn}=0]}$

Multinomial Models: Mixture/CPT-v

MAP EM Algorithm (M-Step):

$$\theta_k = \frac{\alpha_k - 1 + \sum_{n=1}^N q_n(k)}{N - K + \sum_{k=1}^K \alpha_k}$$

$$\beta_{vdk} = \frac{\phi_{vdk} - 1 + \sum_{n=1}^{N} q_n(k)[r_{dn} = 1][x_{dn} = v] + q_n(k, v, d)[r_{dn} = 0]}{\sum_{n=1}^{N} q_n(k) - V + \sum_{v=1}^{V} \phi_{vdk}}$$

$$\mu_{v} = \frac{\xi_{1v} - 1 + \sum_{n=1}^{N} \sum_{d=1}^{D} [r_{dn} = 1] [x_{dn} = v]}{\xi_{1v} + \xi_{0v} - 2 + \sum_{n=1}^{N} \sum_{d=1}^{D} [r_{dn} = 1] [x_{dn} = v] + q_{n}(v, d) [r_{dn} = 0]}$$

Other Models for Missing Data:

- K-Nearest Neighbors
- Probabilistic Principal Components Analysis
- Factor Analysis
- Mixtures of Gaussians
- Mixtures of PPCA/FA
- Probabilistic Matrix Factorization
- Maximum Margin Matrix Factorization
- Conditional Restricted Boltzmann Machines

Contents:

Introduction

Notation

Theory Of Missing Data

<u>Factorizations</u> <u>MCAR</u> <u>MAR</u> <u>NMAR</u> <u>Inference and Learning</u>

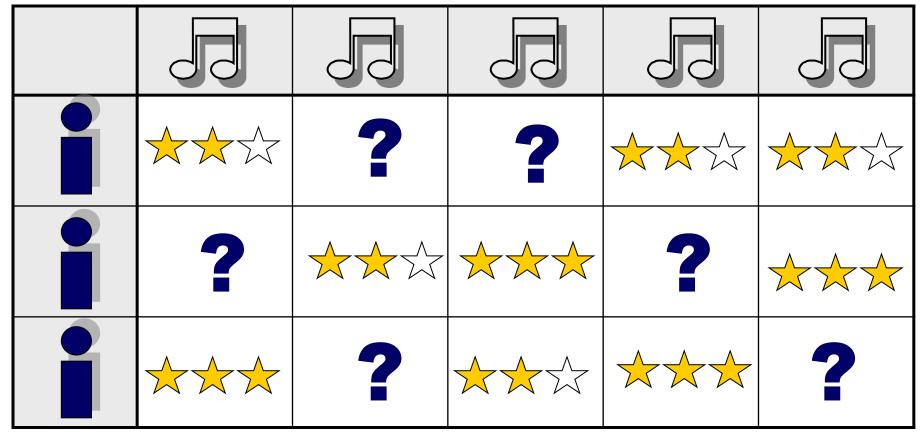
Multinomial Models

<u>Multinomial Mixture</u> <u>Multinomial Mixture/CPT-v</u> <u>Demo</u>

Collaborative Filtering

<u>Collaborative Prediction</u> <u>Yahoo! Data</u> <u>Jester Data</u> <u>Results</u>

Collaborative Filtering: Collaborative Prediction Problem



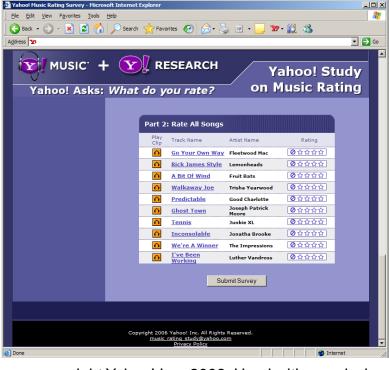
Missing Data Problems and Collaborative Filtering

Collaborative Filtering : Yahoo!

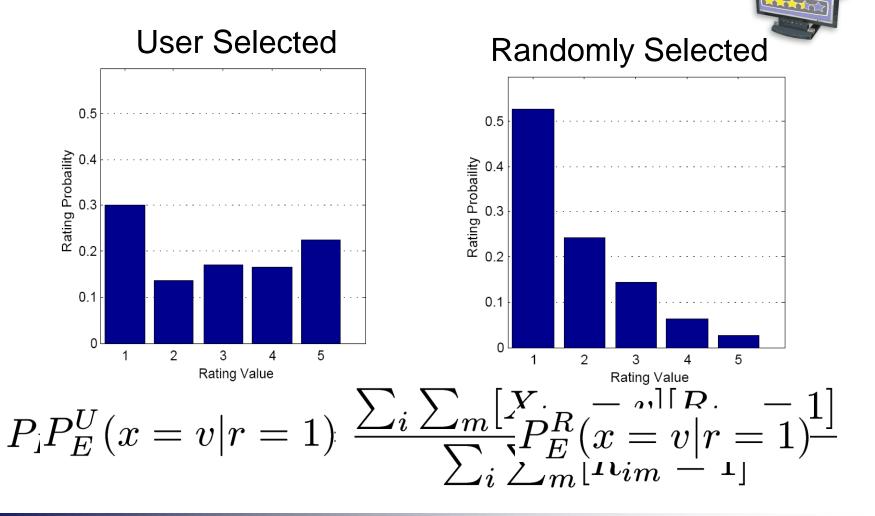
Data was collected through an online survey of Yahoo! Music LaunchCast radio users.

- 1000 songs selected at random.
- Users rate 10 songs selected at random from 1000 songs.
- Answer 16 questions.
- Collected data from 35,000+ users.

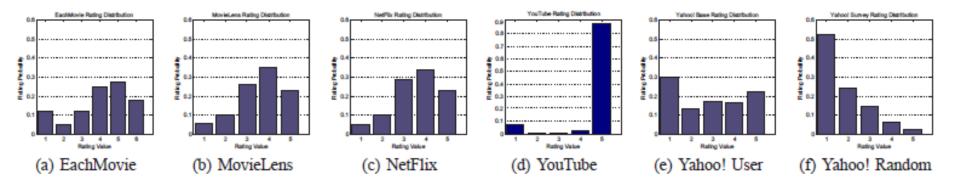
Image copyright Yahoo! Inc.	2006. Used with permission.
inage copyright rando. inc.	



Collaborative Filtering: Yahoo!



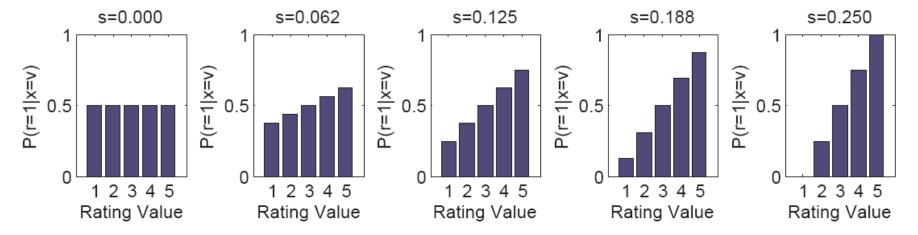
More Empirical Distributions



Collaborative Filtering: Jester

Jester gauge set of 10 jokes used as complete data. Synthetic missing data was added.

- 15,000 users randomly selected
- Missing data model: $\mu_v(s) = s(v-3)+0.5$



Experimental Protocol

Randomly partition users into 5 blocks of 1080 users

Three sets of ratings:

- 1. Observed ratings all but one of original ratings
- 2. Test ratings for user-selected remaining one
- 3. Test ratings for randomly-selected ten survey responses

User-selected items – same distribution as observed Randomly selected test items -- MCAR

Experimental Protocol

Weak Generalization

- Learn on training user observed ratings
- Evaluate on training user test ratings

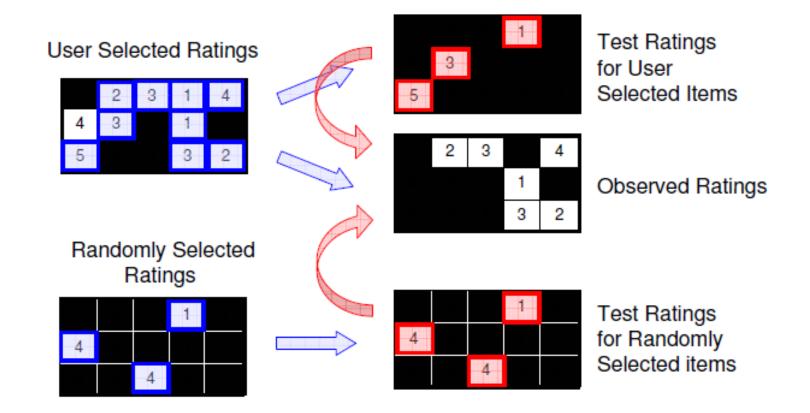
Strong Generalization

- Learn on training user observed ratings
- Evaluate on test user test ratings

Data Sets: User Splits



Data Sets: User Splits



Collaborative Filtering: Results

Jester Results: MM vs MM/CPT-v

0.75

0.7

0.65

0

0.55

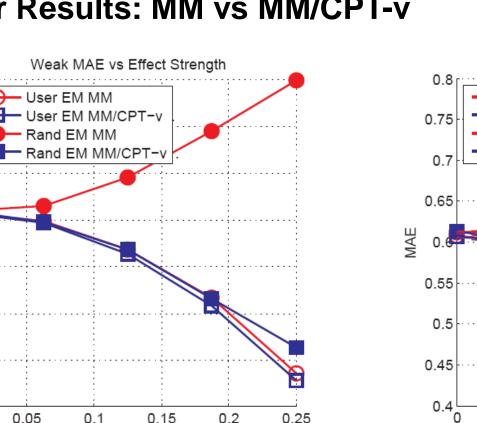
0.5

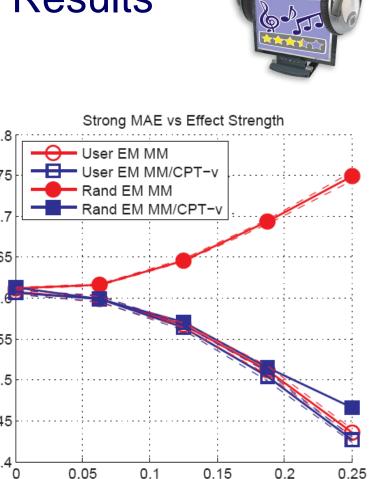
0.45

0.4

0

MAE



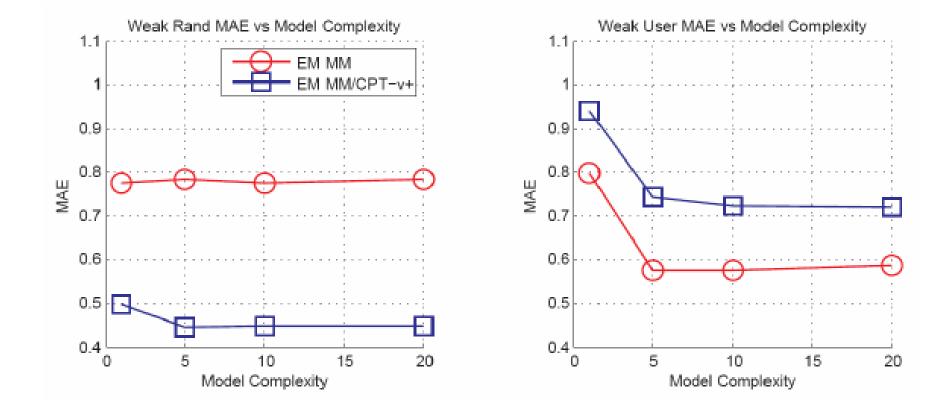


NMAR Effect Strength

NMAR Effect Strength

Collaborative Filtering: Results

Yahoo! Results: MM vs MM/CPT-v+



Collaborative Filtering: Results Comparison of Results on Yahoo! Data

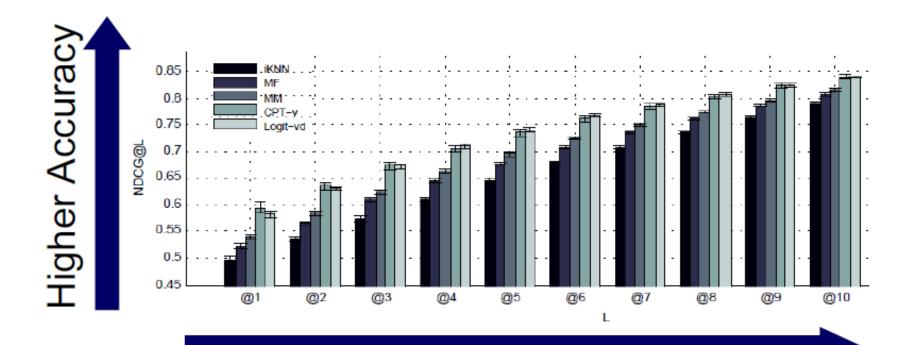
Method	Complexity	Rand MAE	User MAE
EM MM	1	0.7725 ± 0.0024	0.7626 ± 0.0077
EM MM/CPT-v	20	0.5431 ± 0.0012	0.6631 ± 0.0026
EM MM/Logit	5	0.5038 ± 0.0030	0.7029 ± 0.0186
EM MM/CPT-v+	5	0.4456 ± 0.0033	0.7235 ± 0.0059
MCMC DP	N/A	0.7624 ± 0.0063	0.5767 ± 0.0077
MCMC DP/CPT-v	N/A	0.5549 ± 0.0026	0.6670 ± 0.0071
MCMC DP/CPT-v+	N/A	0.4428 ± 0.0027	0.7537 ± 0.0026
CD cRBM	20	0.7179 ± 0.0025	0.5421 ± 0.0081
CD cRBM-v	1	0.4553 ± 0.0031	0.7501 ± 0.0066

Application to Ranking

$$NDCG(n) = \frac{\sum_{i=1}^{T} \frac{2^{x_{ni}^{t}} - 1}{\log(1 + \hat{\pi}(i, n))}}{\sum_{i=1}^{T} \frac{2^{x_{ni}^{t}} - 1}{\log(1 + \pi(i, n))}}$$

- \hat{x}_{ni}^t : mean of posterior predictive distribution for test item i.
- $\hat{\pi}(i,n)$: rank of test item i according to \hat{x}_{ni}^t .
- $\pi(i,n)$: rank of test item i according to x_{ni}^t .

Ranking Results



Longer Recommendation Lists