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Introduction 
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Introduction  

Collaborative filtering – users assign ratings to items  

system uses information from all users to recommend 

previously unseen items that a user might like 
 

One approach to recommendation: predict ratings for all unrated items, 

recommend highest predicted ratings 

 

Critical assumption: missing ratings are missing at random 

 

One way to violate: value of variable affects probability value will be 

missing – bias in observed ratings, and hence learned parameters 

 

Also complementary bias in standard testing procedure – distribution of 

observed data different from distribution of complete data, so estimated 

error on observed test data poor estimate of complete data error 
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Introduction: Survey Sampling Example 

Data  

Variables 

Response 

 Variables 
R 

X Answers to questions. 

Did the respondent  

answer the question? 
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Introduction: Medical Diagnosis Example 

Latent  

Variables 

Data  

Variables 

Response 

 Variables 
R 

X 

Z Diseases 

Symptoms 

Was a test performed to 

check for the symptom? 
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Introduction: Recommender Systems Example 

Latent  

Variables 

Data  

Variables 

Response 

 Variables 
R 

X 

Z 
Preferences and 

Tastes 

Ratings or Purchase 

History  

Did the user rate  

or buy the item? 
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Introduction: Basic Notation 

Number of data cases. 

Number of clusters or hidden units. 

Number of multinomial values. 

Number of classes. 

Number of data dimensions. 
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Missing Data 

Observed Data 

Missing 

Dimensions 

Observed 

Dimensions 

Response Vector 

Data Vector 

Introduction: Notation for Missing Data 

0.3 0.7 0.2 0.9 0.1 

1 1 0 0 1 

5 4 1 

3 2 

0.3 0.7 0.1 

0.2 0.9 
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Theory of Missing Data: Generative Process 

Latent  

Variables 

Data  

Variables 

Response 

 Variables 

Data Model 

R 

X 

Z 

Missing Data 

Model 

R 

X 

Z 

 

q 
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Theory of Missing Data: Factorizations 

Data/Selection Model Factorization: 

• The probability of selection depends on the true values 

of the data variables and latent variables.  

Pattern Mixture Model Factorization: 

• Each response vector defines a different pattern, and 

each pattern has a different distribution over the data.  
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Theory of Missing Data: Classification 

MCAR: 

R 

X 

Z 

 

q 

Missing Completely at Random: 
 

• Response probability is independent of data variables and 

latent variables. 

MCAR Examples: 
 

Send questionnaires to a 

random subset of the population 

or use random digit dialing. 
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Theory of Missing Data: Classification 

Missing at Random: 
 

• Typically written in a short-hand form that looks like a 

statement of probabilistic independence:   

• MAR is actually a different type of condition that requires a 

particular set of symmetries hold in P(r|x,z,): 
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Theory of Missing Data: Classification 

Missing at Random Examples: 

Respondents are not required to provide information 

about their employer if they are not currently 

employed.  
 

Doctor only orders test B if the result of test A was 

negative. If result of test A is positive, result for test B 

is missing.  
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Theory of Missing Data: Classification 

What Does it mean to be Missing at Random?  
 

• MAR is not a statement of independence between 

random variables. MAR requires that particular 

symmetries hold so that P(R=r|X=x) can be determined 

from observed data only.  
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Theory of Missing Data: Classification 

MCAR: 

R 

X 

Z 

 

q 

Not Missing at Random: 
 

• Allows for arbitrary dependence of response probabilities on 

missing data values and latent variables: 

No Simplifications 

An Easy Way to Violate MAR: 
 

• Let the probability that a data 

variable is observed depend on the 

value of that data variable. 
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Theory of Missing Data: Classification 

Not Missing at Random Examples: 

Snowfall reading is likely to be missing if weather 

station is covered with snow.  

Users are more likely to rate or buy items they like 

than items they don’t like. 

Participants in a longitudinal health study for a heart 

medication may die of a heart attack during the study. 
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Theory of Missing Data: Inference 

MCAR/MAR Posterior: 

• When MCAR or MAR holds, the posterior can be greatly 

simplified. Inference for q does not depend on r, , or . 

The missing data can be ignored. 
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Theory of Missing Data: Inference 

NMAR Posterior: 

• When MAR fails to hold, the posterior does not simplify.  

 

• Basing inference on the observed data posterior and 

ignoring the missing data model leads to provably biased 

inference for data model parameters. 
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Multinomial Models: Mixture 

Probability Model: 

  

Properties: 
• Allows for a fixed, finite number of clusters.  
 

• In the multinomial mixture, P(xn|k) is a 

product of discrete distributions. The prior on  

and q is Dirichlet. 
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Multinomial Models: Mixture 

Dirichlet Distribution: 
 

Bayesian mixture modeling becomes much easier when conjugate priors 

are used for the model parameters. The conjugate prior for the mixture 

proportions q is the Dirichlet distribution.   
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Multinomial Models: Mixture 

MAP EM Algorithm: 
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Multinomial Models: Mixture/CPT-v 

Probability Model: 
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Multinomial Models: Mixture/CPT-v 

MAP EM Algorithm (E-Step): 
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Multinomial Models: Mixture/CPT-v 

MAP EM Algorithm (M-Step): 
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Other Models for Missing Data: 

• K-Nearest Neighbors  

• Probabilistic Principal Components Analysis 

• Factor Analysis  

• Mixtures of Gaussians 

• Mixtures of PPCA/FA 

• Probabilistic Matrix Factorization 

• Maximum Margin Matrix Factorization 

• Conditional Restricted Boltzmann Machines  
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Collaborative Filtering:  

Collaborative Prediction Problem 

? 

? 

? 

? 

? ? 
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Collaborative Filtering : Yahoo!  

Data was collected through an online survey of 

Yahoo! Music LaunchCast radio users. 

• 1000 songs selected at random. 
 

• Users rate 10 songs selected at 

random from 1000 songs. 
 

• Answer 16 questions. 
 

• Collected data from 35,000+ 

users. 

 
Image copyright Yahoo! Inc. 2006. Used with permission. 
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Collaborative Filtering: Yahoo!  

User Selected Randomly Selected 
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More Empirical Distributions  
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Collaborative Filtering: Jester 

Jester gauge set of 10 jokes used as complete 

data. Synthetic missing data was added. 

• 15,000 users randomly selected 
 

• Missing data model: v(s) = s(v-3)+0.5 
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Experimental Protocol 

Randomly partition users into 5 blocks of 1080 users 

 

Three sets of ratings: 

1. Observed ratings – all but one of original ratings 

2. Test ratings for user-selected – remaining one 

3. Test ratings for randomly-selected – ten survey 

responses 

 

User-selected items – same distribution as observed 

Randomly selected test items -- MCAR 
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Experimental Protocol 

Weak Generalization 

• Learn on training user observed ratings 

• Evaluate on training user test ratings 

 

Strong Generalization 

• Learn on training user observed ratings 

• Evaluate on test user test ratings 
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Data Sets: User Splits 
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Data Sets: User Splits 
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Collaborative Filtering: Results 

Jester Results: MM vs MM/CPT-v 
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Collaborative Filtering: Results 

Yahoo! Results: MM vs MM/CPT-v+ 
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Collaborative Filtering: Results 

Comparison of Results on Yahoo! Data 
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Application to Ranking 
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Ranking Results 


