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Two different meanings of 
“multiplicative”  

•  If we take two density models and multiply together their 
probability distributions at each point in data-space, we 
get a “product of experts”.  
–  The product of  two Gaussian experts is a Gaussian. 

•  If we take two variables and we multiply them together to 
provide input to a third variable we get a “multiplicative 
interaction”. 
–  The distribution of the product of two Gaussian-

distributed variables is NOT Gaussian distributed. It is 
a heavy-tailed distribution. One Gaussian determines 
the standard deviation of the other Gaussian. 

–  Heavy-tailed distributions are the signatures of 
multiplicative interactions between latent variables. 



The heavy-tailed world 

•  The prediction errors for financial time-series are 
typically heavy-tailed. This is mainly because the 
variance is much higher in times of uncertainty. 

•  The prediction errors made by a linear dynamical 
systems are usually heavy-tailed on real data. 
–  Occasional very weird things happen. This violates 

the conditions of the central limit theorem. 
•  The outputs of linear filters applied to images are heavy-

tailed.  
–  Gabor filters nearly always output almost exactly zero. 

But occasionally they have large outputs. 



Learning multiplicative interactions 

•  It is fairly easy to learn multiplicative interactions if all of 
the variables are observed. 
–  This is possible if we control the variables used to 

create a training set (e.g. pose, lighting, identity …)  
•  It is also easy to learn energy-based models in which all 

but one of the terms in each multiplicative interaction are 
observed. 
–  Inference is still easy.  

•  If more than one of the terms in each multiplicative 
interaction are unobserved, the interactions between 
hidden variables make inference difficult. 
–  Alternating Gibbs can be used if the latent variables 

form a bi-partite graph. 



Higher order Boltzmann machines 
(Sejnowski, ~1986) 

•  The usual energy function is quadratic in the states: 

•  But we could use higher order interactions:  
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•  Hidden unit h acts as a switch. When h is on, it 
switches in the pairwise interaction between unit i 
and unit j.  
–  Units i and j can also be viewed as switches that 

control the pairwise interactions between j and h 
or between i and h. 



Learning how style and content interact 

•  Tenenbaum and Freeman (2000) describe a 
model in which a “style” vector and a “content” 
vector interact multiplicatively to determine a 
datavector (e.g. and image). 

•  The outer-product of the style and content 
vectors determines a set of coefficients for basis 
functions. 
– This is not at all like the way a user vector and 

a movie vector interact to determine a rating. 
The rating is the inner-product. 



It is an unfortunate 
coincidence that the 
number of 
components in each 
pose vector is equal 
to the number of 
different pose 
vectors. 

The model is only 
really interesting if 
we have less 
components per 
style or content 
vector than style or 
content vectors 



A higher-order Boltzmann machine with one 
visible group and two hidden groups 

retina-based features 

object-based 
features 

viewing transform 
•  We can view it as a 

Boltzmann machine in 
which the inputs create 
interactions between the 
other variables. 
–  This type of model is 

now called a conditional 
random field.  

–  Inference can be hard in 
this model. 

–  Inference is much easier 
with two visible groups 
and one hidden group 

Is this 
an I or 
an H? 



Using higher-order Boltzmann machines to 
model image transformations  

(Memisevic and Hinton, 2007) 

•  A global transformation specifies which pixel 
goes to which other pixel. 

•  Conversely, each pair of similar intensity pixels, 
one in each image, votes for a particular global 
transformation. 

image(t) image(t+1) 

image transformation 



Making the reconstruction  easier 

•  Condition on the first image so that only one visible 
group needs to be reconstructed.  
– Given the hidden states and the previous image, 

the pixels in the second image are conditionally 
independent. 

image(t) image(t+1) 

image transformation 



The main problem with 3-way interactions 

•  There are far too many of them. 
•  We can reduce the number in several straight-

forward ways: 
– Do dimensionality reduction on each group before 

the three way interactions. 
– Use spatial locality to limit the range of the three-

way interactions. 
•  A much more interesting approach (which can be 

combined with the other two) is to factor the 
interactions so that they can be specified with fewer 
parameters. 
– This leads to a novel type of learning module. 



Factoring three-way interactions 

•  If three-way interactions are being used to model a nice 
regular multi-linear structure, we may not need cubically 
many degrees of freedom. 
–  For modelling effects like viewpoint and illumination 

many fewer degrees of freedom may be sufficient. 
•  There are many ways to factor 3-D interaction tensors. 
•  We use factors that correspond to 3-way outer-

products. 
–  Each factor only has 3N parameters. 
–  By using about N/3 factors we get quadratically many 

parameters which is the same as a simple weight 
matrix. 



Factoring the three-way interactions 
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 factored unfactored 

How changing the binary state 
of unit j changes the energy 
contributed by factor f. 

What unit j needs to 
know in order to do 
Gibbs sampling 



A picture of the rank 1 tensor 
contributed by factor f 

ifw

jfw

hfw

Its a 3-way outer product. 
 
Each layer is a scaled 
version of the same rank 1 
matrix.  



The dynamics 

•  The visible and hidden units get weighted input from the 
factors and use this input in the usual stochastic way. 
–  They have stochastic binary states (or a mean-field 

approximation to stochastic binary states). 

•  The factors are deterministic and implement a type of 
belief propagation. They do not have “states”. 
–  Each factor computes three separate sums by adding 

up the input it gets from each separate group of units. 
–  Then it sends the product of the summed inputs from 

two groups to the third group.  



Belief propagation 

ifw jfw

hfw

f

i j

h

The outgoing message 
at each vertex of the 
factor is the product of 
the weighted sums at 
the other two vertices. 



A nasty numerical problem 
•  In a standard Boltzmann machine the gradient of a 

weight on a training case always lies between 1 and -1. 
•  With factored three-way interactions, the gradient  

contains the product of two sums each of which can be 
large, so the gradient can explode. 

•  We can keep a running average of each sum over many 
training cases and divide the gradient by this average (or 
its square). This helps. 
–  For  any particular weight, we must divide the gradient 

by the same quantity on all training cases to 
guarantee a positive correlation with the true gradient. 

•  Updating the weights on every training case may also 
help because we get feedback faster when weights are 
blowing up.  



receptive 
field in    
pre-image 

receptive 
field in  
post-image 

Showing what a factor learns by alternating 
between its pre- and post- fields 

pre-image post-image 



The factor receptive fields 

The network 
is trained on 
translated 
random dot 
patterns. 



The factor receptive fields 

The network 
is trained on 
translated 
random dot 
patterns. 



The network 
is trained on 
rotated 
random dot 
patterns. 



The network 
is trained on 
rotated 
random dot 
patterns. 



How does it perceive two overlaid sparse 
dot patterns moving in different directions? 

•  First we train a second hidden layer. Each of these units 
prefers motion in a different direction. 

•  Then we compute the perceived motion by adding up the 
preferences of the active units in the second hidden layer. 

•  If the two motions are within about 30 degrees it sees a 
single average motion. 

•  If they are further apart it sees two separate motions. 
–  The separate motions are slightly further apart than the 

real ones. 
–  This is just like human perception and it was not trained 

on transparent motion. 
–  The training is entirely unsupervised. 



An application to modeling motion 
capture data 

•  Human motion can be captured by placing 
reflective markers on the joints 
– Use lots of infrared cameras to track the 3-D 

positions of the markers 

•  Given a skeletal model, the 3-D positions of the 
markers can be converted into 
– The joint angles 
– The 3-D translation of the pelvis 
– The roll, pitch and delta yaw of the pelvis 



Higher level models 

•  Once we have trained the model, 
we can add more layers. 

•  Treat the hidden activities of the 
first CRBM as data for training the 
next CRBM. 
–  Add “autoregressive” 

connections to a layer when it 
becomes the visible layer. 

•  Adding a second layer makes it 
generate more realistic sequences. 

i

j

k

  t-2        t-1        t 



6	
  earlier	
  
visible	
  frames	
  

current	
  
visible	
  frame	
  

600	
  hidden	
  
units	
  

100	
  style	
  
features	
  

style:	
  1-­‐of-­‐N	
  

Using a style variable to modulate the interactions     
(there is additional weight sharing:  Taylor&Hinton, ICML 2009) 

200 factors 


