

CSC2535 2013

Lecture 8a

Learning Multiplicative
Interactions

Geoffrey Hinton

Two different meanings of
“multiplicative”

•  If we take two density models and multiply together their
probability distributions at each point in data-space, we
get a “product of experts”.
–  The product of two Gaussian experts is a Gaussian.

•  If we take two variables and we multiply them together to
provide input to a third variable we get a “multiplicative
interaction”.
–  The distribution of the product of two Gaussian-

distributed variables is NOT Gaussian distributed. It is
a heavy-tailed distribution. One Gaussian determines
the standard deviation of the other Gaussian.

–  Heavy-tailed distributions are the signatures of
multiplicative interactions between latent variables.

The heavy-tailed world

•  The prediction errors for financial time-series are
typically heavy-tailed. This is mainly because the
variance is much higher in times of uncertainty.

•  The prediction errors made by a linear dynamical
systems are usually heavy-tailed on real data.
–  Occasional very weird things happen. This violates

the conditions of the central limit theorem.
•  The outputs of linear filters applied to images are heavy-

tailed.
–  Gabor filters nearly always output almost exactly zero.

But occasionally they have large outputs.

Learning multiplicative interactions

•  It is fairly easy to learn multiplicative interactions if all of
the variables are observed.
–  This is possible if we control the variables used to

create a training set (e.g. pose, lighting, identity …)
•  It is also easy to learn energy-based models in which all

but one of the terms in each multiplicative interaction are
observed.
–  Inference is still easy.

•  If more than one of the terms in each multiplicative
interaction are unobserved, the interactions between
hidden variables make inference difficult.
–  Alternating Gibbs can be used if the latent variables

form a bi-partite graph.

Higher order Boltzmann machines
(Sejnowski, ~1986)

•  The usual energy function is quadratic in the states:

•  But we could use higher order interactions:

ijj
ji
i wsstermsbiasE ∑

<

+=−

ijhhj
hji
i wssstermsbiasE ∑+=−

,,

•  Hidden unit h acts as a switch. When h is on, it
switches in the pairwise interaction between unit i
and unit j.
–  Units i and j can also be viewed as switches that

control the pairwise interactions between j and h
or between i and h.

Learning how style and content interact

•  Tenenbaum and Freeman (2000) describe a
model in which a “style” vector and a “content”
vector interact multiplicatively to determine a
datavector (e.g. and image).

•  The outer-product of the style and content
vectors determines a set of coefficients for basis
functions.
– This is not at all like the way a user vector and

a movie vector interact to determine a rating.
The rating is the inner-product.

It is an unfortunate
coincidence that the
number of
components in each
pose vector is equal
to the number of
different pose
vectors.

The model is only
really interesting if
we have less
components per
style or content
vector than style or
content vectors

A higher-order Boltzmann machine with one
visible group and two hidden groups

retina-based features

object-based
features

viewing transform
•  We can view it as a

Boltzmann machine in
which the inputs create
interactions between the
other variables.
–  This type of model is

now called a conditional
random field.

–  Inference can be hard in
this model.

–  Inference is much easier
with two visible groups
and one hidden group

Is this
an I or
an H?

Using higher-order Boltzmann machines to
model image transformations

(Memisevic and Hinton, 2007)

•  A global transformation specifies which pixel
goes to which other pixel.

•  Conversely, each pair of similar intensity pixels,
one in each image, votes for a particular global
transformation.

image(t) image(t+1)

image transformation

Making the reconstruction easier

•  Condition on the first image so that only one visible
group needs to be reconstructed.
– Given the hidden states and the previous image,

the pixels in the second image are conditionally
independent.

image(t) image(t+1)

image transformation

The main problem with 3-way interactions

•  There are far too many of them.
•  We can reduce the number in several straight-

forward ways:
– Do dimensionality reduction on each group before

the three way interactions.
– Use spatial locality to limit the range of the three-

way interactions.
•  A much more interesting approach (which can be

combined with the other two) is to factor the
interactions so that they can be specified with fewer
parameters.
– This leads to a novel type of learning module.

Factoring three-way interactions

•  If three-way interactions are being used to model a nice
regular multi-linear structure, we may not need cubically
many degrees of freedom.
–  For modelling effects like viewpoint and illumination

many fewer degrees of freedom may be sufficient.
•  There are many ways to factor 3-D interaction tensors.
•  We use factors that correspond to 3-way outer-

products.
–  Each factor only has 3N parameters.
–  By using about N/3 factors we get quadratically many

parameters which is the same as a simple weight
matrix.

Factoring the three-way interactions

[]

[] ∑∑

∑∑

∑∑∑

=−

=−

=−=−

==

==

h
hfhif

i
ijfjfjf

j
jfjif

i
ihfhfhf

f
hfjfifhj

hji
iijhhj

hji
i

wswswsEsE

wswswsEsE

wwwsssEwsssE

)()(

)()(

10

10

,,,,

 factored unfactored

How changing the binary state
of unit j changes the energy
contributed by factor f.

What unit j needs to
know in order to do
Gibbs sampling

A picture of the rank 1 tensor
contributed by factor f

ifw

jfw

hfw

Its a 3-way outer product.

Each layer is a scaled
version of the same rank 1
matrix.

The dynamics

•  The visible and hidden units get weighted input from the
factors and use this input in the usual stochastic way.
–  They have stochastic binary states (or a mean-field

approximation to stochastic binary states).

•  The factors are deterministic and implement a type of
belief propagation. They do not have “states”.
–  Each factor computes three separate sums by adding

up the input it gets from each separate group of units.
–  Then it sends the product of the summed inputs from

two groups to the third group.

Belief propagation

ifw jfw

hfw

f

i j

h

The outgoing message
at each vertex of the
factor is the product of
the weighted sums at
the other two vertices.

A nasty numerical problem
•  In a standard Boltzmann machine the gradient of a

weight on a training case always lies between 1 and -1.
•  With factored three-way interactions, the gradient

contains the product of two sums each of which can be
large, so the gradient can explode.

•  We can keep a running average of each sum over many
training cases and divide the gradient by this average (or
its square). This helps.
–  For any particular weight, we must divide the gradient

by the same quantity on all training cases to
guarantee a positive correlation with the true gradient.

•  Updating the weights on every training case may also
help because we get feedback faster when weights are
blowing up.

receptive
field in
pre-image

receptive
field in
post-image

Showing what a factor learns by alternating
between its pre- and post- fields

pre-image post-image

The factor receptive fields

The network
is trained on
translated
random dot
patterns.

The factor receptive fields

The network
is trained on
translated
random dot
patterns.

The network
is trained on
rotated
random dot
patterns.

The network
is trained on
rotated
random dot
patterns.

How does it perceive two overlaid sparse
dot patterns moving in different directions?

•  First we train a second hidden layer. Each of these units
prefers motion in a different direction.

•  Then we compute the perceived motion by adding up the
preferences of the active units in the second hidden layer.

•  If the two motions are within about 30 degrees it sees a
single average motion.

•  If they are further apart it sees two separate motions.
–  The separate motions are slightly further apart than the

real ones.
–  This is just like human perception and it was not trained

on transparent motion.
–  The training is entirely unsupervised.

An application to modeling motion
capture data

•  Human motion can be captured by placing
reflective markers on the joints
– Use lots of infrared cameras to track the 3-D

positions of the markers

•  Given a skeletal model, the 3-D positions of the
markers can be converted into
– The joint angles
– The 3-D translation of the pelvis
– The roll, pitch and delta yaw of the pelvis

Higher level models

•  Once we have trained the model,
we can add more layers.

•  Treat the hidden activities of the
first CRBM as data for training the
next CRBM.
–  Add “autoregressive”

connections to a layer when it
becomes the visible layer.

•  Adding a second layer makes it
generate more realistic sequences.

i

j

k

 t-2 t-1 t

6	
 earlier	

visible	
 frames	

current	

visible	
 frame	

600	
 hidden	

units	

100	
 style	

features	

style:	
 1-­‐of-­‐N	

Using a style variable to modulate the interactions
(there is additional weight sharing: Taylor&Hinton, ICML 2009)

200 factors

