CSC2535: Advanced Machine Learning

Lecture 6a
Convolutional neural networks for hand-written
digit recognition

Geoffrey Hinton

The replicated feature approach
(currently the dominant approach for neural networks)

Use many different copies of the same feature
detector with different positions.

The red connections all
have the same weight.
— Could also replicate across scale and orientation

(tricky and expensive) O O

— Replication greatly reduces the number of free ‘
parameters to be learned. O

Use several different feature types, each with its own

map of replicated detectors.

— Allows each patch of image to be represented in
several ways.

Backpropagation with weight constraints

It’s easy to modify the backpropagation

algorithm to incorporate linear

constraints between the weights.

We compute the gradients as usual,
and then modify the gradients so that

they satisfy the constraints.
— So if the weights started off

satisfying the constraints, they will

continue to satisfy them.

To constrain: w;=w,

we need: Aw;=Aw,

0E oE
compute. — and —
dw, oW,
0E OE

for w; and w,

use +
dw; dw,

What does replicating the feature detectors achieve?

« Equivariant activities: Replicated features do not make the neural activities
iInvariant to translation. The activities are equivariant.

representation by | « = « = translated
active neurons - - - - representation

. translated
'mage image

« Invariant knowledge: If a feature is useful in some locations during training,
detectors for that feature will be available in all locations during testing.

Pooling the outputs of replicated feature detectors

« Get a small amount of translational invariance at each level by
averaging four neighboring replicated detectors to give a single
output to the next level.

— This reduces the number of inputs to the next layer of

feature extraction, thus allowing us to have many more
different feature maps.

— Taking the maximum of the four works slightly better.

* Problem: After several levels of pooling, we have lost
information about the precise positions of things.

— This makes it impossible to use the precise spatial
relationships between high-level parts for recognition.

Le Net

Yann LeCun and his collaborators developed a really good recognizer for
handwritten digits by using backpropagation in a feedforward net with:

Many hidden layers
Many maps of replicated units in each layer.
Pooling of the outputs of nearby replicated units.

A wide net that can cope with several characters at once even if they
overlap.

A clever way of training a complete system, not just a recognizer.

This net was used for reading ~10% of the checks in North America.
Look the impressive demos of LENET at http://yann.lecun.com

The architecture of LeNet5

C3: f. maps 16@10x10
S4: f. maps 16@5x5

CS: layer pg: jayer OUTPUT
120 " g T 19

C1: feature maps

INPUT
39y32 6@28x28

S2: . maps
6@14x14

! Full conﬁection - Gaussian

Convolutions Subsampling Convolutions ~ Subsampling Full connection

3 Z
O LSO
>
O 550 2285
n 5 - o o £ 3
o O SS..alu. moth
oz 825 25809
O =) cowm @
=D E g o O+ c &
AN > < & IR
O, 2D 5988
2 328 29s5%
O - o o
Ju_ rV!_ i 7 " 7 ;i
—i vl sl Ol~NiQ]
N [Tg]

VWielIl !
vivisio
IR T S ST
Wil ©f —1-97 wi\i

>0 6—>0 6->0 6->8
q
9->
?
3->
V4
4->
&
5->

>5 6

- <

Wi PREDI AL Nieial N
i el IR el QLN
el et l il wing o]
Wi oiniginidlal L% oyt
<] =lag] o] pl =l el W

Priors and Prejudice

We can put our prior knowledge
about the task into the network by
designing appropriate:

— Connectivity.

— Weight constraints.

— Neuron activation functions

This is less intrusive than hand-
designing the features.

— But it still prejudices the network
towards the particular way of
solving the problem that we had in
mind.

Alternatively, we can use our prior
knowledge to create a whole lot
more training data.

— This may require a lot of work
(Hofman&Tresp, 1993)

— It may make learning take much
longer.

It allows optimization to discover
clever ways of using the multi-layer
network that we did not think of.

— And we may never fully understand
how it does it.

The brute force approach

LeNet uses knowledge about the
iInvariances to design:

— the local connectivity
— the weight-sharing
— the pooling.
This achieves about 80 errors.

— This can be reduced to about
40 errors by using many
different transformations of
the input and other tricks
(Ranzato 2008)

Ciresan et. al. (2010) inject
knowledge of invariances by
creating a huge amount of carefully
designed extra training data:

— For each training image, they
produce many new training
examples by applying many
different transformations.

— They can then train a large,
deep, dumb net on a GPU
without much overfitting.

They achieve about 35 errors.

The errors made by the Ciresan et. al. net

Iqu 59

i |

2.
qﬂl

94
OD
S0

8__,_8

28

4
%

bD
60
=
o

?2

e =

qg
65
?8

98

‘46

16

%8
2.3

9 5
9.
4 2
994 a
6 1
R '1
7 ° '/?
79 17
5 4
{5 ;94

35
jl
' 1
éﬂ
60

The top printed digit is the
right answer. The bottom two
printed digits are the
network’s best two guesses.

The right answer is almost
always in the top 2 guesses.

With model averaging they
can now get about 25 errors.

How to detect a significant drop in the error rate

* |s30errorsin 10,000 test cases significantly better than 40 errors?
— It all depends on the particular errors!

— The McNemar test uses the particular errors and can be much more
powerful than a test that just uses the number of errors.

model1l | modell model1l | modell
wrong rlght wrong rlght
model 2 model 2
wrong wrong
model 2 i 9959 model 2 P 9945
right right

From hand-written digits to 3-D objects

* Recognizing real objects in color photographs downloaded from the web is
much more complicated than recognizing hand-written digits:

— Hundred times as many classes (1000 vs 10)
— Hundred times as many pixels (256 x 256 color vs 28 x 28)
— Two dimensional image of three-dimensional scene.
— Cluttered scenes requiring segmentation
— Multiple objects in each image.
* Will the same type of convolutional neural network work?

The ILSVRC-2012 competition on ImageNet

The dataset has 1.2 million high- + Some of the best existing
resolution training images. computer vision methods were
The classification task: tried on this dataset by leading

_ ‘ » : computer vision groups from
Get the “correct” class in your Oxford, INRIA, XRCE. ...

top 5 bets. There are 1000
classes.

The localization task:

— For each bet, put a box
around the object. Your box
must have at least 50%
overlap with the correct box.

— Computer vision systems
use complicated multi-stage
systems.

— The early stages are
typically hand-tuned by
optimizing a few parameters.

Examples from the test set (with the network’s guesses)

cheetah hand glass
cheet+h bullet tr#in scissor*
leopard passenger car han+ glass
snow leopard subway train f+ing pan
Egyptian cat electric locomotive st+thoscope

University of Toronto (Alex Krizhevsky) + 16.4% 34.1%

Error rates on the ILSVRC-2012 competition

classification

lassification o
classiticatio &localization

University of Tokyo e 26.1% 53.6%
Oxford University Computer Vision Group e 26.9% 50.0%
INRIA (French national research institute in CS) + e 27.0%

XRCE (Xerox Research Center Europe)
University of Amsterdam

29.5%

A neural network for ImageNet

« Alex Krizhevsky (NIPS 2012) * The activation functions were:
developed a very deep — Rectified linear units in every
convolutional neural net of the type hidden layer. These train much
pioneered by Yann Le Cun. Its faster and are more expressive
architecture was: than logistic units.

— 7 hidden layers not counting — Competitive normalization to
some max pooling layers. suppress hidden activities

— The early layers were when nearby units have
convolutional. stronger activities. This helps

— The last two layers were with variations in intensity.

globally connected.

Tricks that significantly improve generalization

Train on random 224x224 patches
from the 256x256 images to get
more data. Also use left-right
reflections of the images.

At test time, combine the
opinions from ten different
patches: The four 224x224
corner patches plus the central
224x224 patch plus the

reflections of those five patches.

Use “dropout” to regularize the
weights in the globally
connected layers (which contain
most of the parameters).

— Dropout means that half of
the hidden units in a layer
are randomly removed for
each training example.

— This stops hidden units from

relying too much on other
hidden units.

Some more examples
of how well the deep
net works for object

container ship

motor scooter

mite container ship motoér scooter ledpard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starflsh drilling platform golfcart Egyptian cat

grille

mushroom

cherry

Madagascar cat

convertible | agaric dalmatiah squirrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

recognition.

The hardware required for Alex’s net

He uses a very efficient implementation of convolutional nets on two
Nvidia GTX 580 Graphics Processor Units (over 1000 fast little cores)

— GPUs are very good for matrix-matrix multiplies.

— GPUs have very high bandwidth to memory.

— This allows him to train the network in a week.

— It also makes it quick to combine results from 10 patches at test time.

We can spread a network over many cores if we can communicate the
states fast enough.

As cores get cheaper and datasets get bigger, big neural nets will improve
faster than old-fashioned (i.e. pre Oct 2012) computer vision systems.

Finding roads in high-resolution images

Vlad Mnih (ICML 2012) used a
non-convolutional net with local
fields and multiple layers of
rectified linear units to find roads
in cluttered aerial images.

— It takes a large image patch
and predicts a binary road
label for the central 16x16
pixels.

— There is lots of labeled training
data available for this task.

The task is hard for many reasons:
— Occlusion by buildings trees and cars.
— Shadows, Lighting changes
— Minor viewpoint changes

The worst problems are incorrect labels:
— Badly registered maps

— Arbitrary decisions about what counts as a
road.

Big neural nets trained on big image patches
with millions of examples are the only hope.

The best road-finder
on the planet?
*"u‘.)'.s.,"_"‘é:‘

£ . _ -
L i | A -
4 > V' Y .
.-"\" v’L\ e " r
- ’
2 ol R
s

F PS5\
Ak
—

MIXTURE: We can combine
models by averaging their output

Two ways to average models

probabilities:

Model A:
Model B:

Combined

3 .2 5
1 .8 1
2 .5 .3

PRODUCT: We can combine
models by taking the geometric
means of their output
probabilities:

Model A: .3 .2
ModelB: .1 .8

Combined\/03 \/16 \/05 /sum

Dropout: An efficient way to average many large neural
nets (http://arxiv.org/abs/1207.0580)

e Consider a neural net with one hidden
layer.

* Each time we present a training example,
we randomly omit each hidden unit with
probability 0.5.

* So we are randomly sampling from 2*H
different architectures.

— All architectures share weights.

!

ORR00 0RO

T

Dropout as a form of model averaging

We sample from 2~2H models. So only a few of the models ever get
trained, and they only get one training example.
— This is as extreme as bagging can get.

The sharing of the weights means that every model is very strongly
regularized.

— It’s a much better regularizer than L2 or L1 penalties that pull the
weights towards zero.

But what do we do at test time?

 We could sample many different architectures and take the geometric
mean of their output distributions.

* |t better to use all of the hidden units, but to halve their outgoing weights.

— This exactly computes the geometric mean of the predictions of all
2"H models.

What if we have more hidden layers?

 Use dropout of 0.5 in every layer.
* At test time, use the “mean net” that has all the outgoing weights halved.

— This is not exactly the same as averaging all the separate dropped out
models, but it’s a pretty good approximation, and its fast.

e Alternatively, run the stochastic model several times on the same input.
— This gives us an idea of the uncertainty in the answer.

What about the input layer?

* It helps to use dropout there too, but with a higher probability of keeping
an input unit.

— This trick is already used by the “denoising autoencoders” developed
by Pascal Vincent, Hugo Larochelle and Yoshua Bengio.

How well does dropout work?

The record breaking object recognition net developed by Alex Krizhevsky
uses dropout and it helps a lot.

If your deep neural net is significantly overfitting, dropout will usually
reduce the number of errors by a lot.

— Any net that uses “early stopping” can do better by using dropout (at
the cost of taking quite a lot longer to train).

If your deep neural net is not overfitting you should be using a bigger one!

Another way to think about dropout

If a hidden unit knows which other
hidden units are present, it can co-
adapt to them on the training data.
— But complex co-adaptations are
likely to go wrong on new test
data.

— Big, complex conspiracies are
not robust.

If a hidden unit has to work well
with combinatorially many sets of
co-workers, it is more likely to do
something that is individually
useful.

— But it will also tend to do
something that is marginally
useful given what its co-
workers achieve.

