
Geoffrey Hinton

CSC2535: 2013

Lecture 5
Deep Boltzmann Machines

The goal of learning

•  We want to maximize the
product of the probabilities that
the Boltzmann machine
assigns to the binary vectors in
the training set.
–  This is equivalent to

maximizing the sum of the
log probabilities that the
Boltzmann machine
assigns to the training
vectors.

•  It is also equivalent to
maximizing the probability that
we would obtain exactly the N
training cases if we did the
following
–  Let the network settle to its

stationary distribution N
different times with no
external input.

–  Sample the visible vector
once each time.

w2 w3 w4

Why the learning could be difficult

 Consider a chain of units with visible units at the ends

 If the training set consists of (1,0) and (0,1) we want the product of

all the weights to be negative.
 So to know how to change w1 or w5 we must know w3.

hidden

visible
w1 w5

A very surprising fact
•  Everything that one weight needs to know about the other weights

and the data is contained in the difference of two correlations.

∂ log p(v)
∂wij

= sis j v − sis j model

Derivative of log
probability of one
training vector, v
under the model.

Expected value of
product of states at
thermal equilibrium
when v is clamped
on the visible units

Expected value of
product of states at
thermal equilibrium
with no clamping

Δwij ∝ sis j data
− sis j model

Why is the derivative so simple?

−
∂E
∂wij

= si s j

•  The energy is a linear function
of the weights and states, so:

•  The process of settling to
thermal equilibrium propagates
information about the weights.
–  We don’t need backprop.

•  The probability of a global
configuration at thermal
equilibrium is an exponential
function of its energy.
–  So settling to equilibrium

makes the log probability
a linear function of the
energy.

An inefficient way to collect the statistics required for learning
Hinton and Sejnowski (1983)

•  Positive phase: Clamp a data
vector on the visible units and set
the hidden units to random
binary states.
–  Update the hidden units one

at a time until the network
reaches thermal equilibrium
at a temperature of 1.

–  Sample for every
connected pair of units.

–  Repeat for all data vectors in
the training set and average.

•  Negative phase: Set all the
units to random binary states.
–  Update all the units one at

a time until the network
reaches thermal
equilibrium at a
temperature of 1.

–  Sample for every
connected pair of units.

–  Repeat many times (how
many?) and average to get
good estimates.

>< ji ss
>< ji ss

A better way of collecting the statistics

•  If we start from a random state,
it may take a long time to
reach thermal equilibrium.
–  Also, its very hard to tell

when we get there.
•  Why not start from whatever

state you ended up in last time
you saw that datavector?
–  This stored state is called a

“particle”.

Using particles that persist to
get a “warm start” has a big
advantage:
–  If we were at equilibrium

last time and we only
changed the weights a little,
we should only need a few
updates to get back to
equilibrium.

Neal’s method for collecting the statistics (Neal 1992)

•  Positive phase: Keep a set of
“data-specific particles”, one per
training case. Each particle has a
current value that is a
configuration of the hidden units.
–  Sequentially update all the

hidden units a few times in
each particle with the
relevant datavector clamped.

–  For every connected pair of
units, average over all
the data-specific particles.

•  Negative phase: Keep a set of
“fantasy particles”. Each particle
has a value that is a global
configuration.
–  Sequentially update all the

units in each fantasy particle
a few times.

–  For every connected pair of
units, average over all
the fantasy particles.

sis j
sis j Δwij ∝ sis j data

− sis j model

Adapting Neal’s approach to handle mini-batches

•  Neal’s approach does not work
well with mini-batches.
–  By the time we get back to

the same datavector again,
the weights will have been
updated many times.

–  But the data-specific
particle will not have been
updated so it may be far
from equilibrium.

•  A strong assumption about how we
understand the world:
–  When a datavector is clamped,

we will assume that the set of
good explanations (i.e. hidden
unit states) is uni-modal.

–  i.e. we restrict ourselves to
learning models in which one
sensory input vector does not
have multiple very different
explanations.

The simple mean field approximation
•  If we want to get the statistics

right, we need to update the
units stochastically and
sequentially.

•  But if we are in a hurry we can
use probabilities instead of
binary states and update the
units in parallel.

•  To avoid biphasic
oscillations we can
use damped mean field.

prob(si =1) = σ bi + s j wij
j
∑

"

#
$
$

%

&
'
'

pi
t+1 = σ bi + pj

twij
j
∑

"

#
$
$

%

&
'
'

pi
t+1 = λ pi

t + (1−λ)σ bi + pj
twij

j
∑

#

$
%
%

&

'
(
(

An efficient mini-batch learning procedure for
Boltzmann Machines (Salakhutdinov & Hinton 2012)

•  Positive phase: Initialize all the
hidden probabilities at 0.5.
–  Clamp a datavector on the

visible units.
–  Update all the hidden units in

parallel until convergence using
mean field updates.

–  After the net has converged,
record for every connected
pair of units and average this
over all data in the mini-batch.

•  Negative phase: Keep a set
of “fantasy particles”. Each
particle has a value that is a
global configuration.
–  Sequentially update all

the units in each fantasy
particle a few times.

–  For every connected pair
of units, average
over all the fantasy
particles.

sis jpi pj

Making the updates more parallel

•  In a general Boltzmann machine, the stochastic
updates of units need to be sequential.

•  There is a special architecture that allows
alternating parallel updates which are much more
efficient:
–  No connections within a layer.
–  No skip-layer connections.

•  This is called a Deep Boltzmann Machine (DBM)
–  It’s a general Boltzmann machine with a lot of

missing connections. visible

Making the updates more parallel

•  In a general Boltzmann machine, the stochastic
updates of units need to be sequential.

•  There is a special architecture that allows
alternating parallel updates which are much more
efficient:
–  No connections within a layer.
–  No skip-layer connections.

•  This is called a Deep Boltzmann Machine (DBM)
–  It’s a general Boltzmann machine with a lot of

missing connections. visible

? ?

? ?

? ?

? ? ?

Can a DBM learn a good model of the MNIST digits?

Do	
 samples	
 from	
 the	
 model	
 look	
 like	
 real	
 data?	

A puzzle

•  Why can we estimate the “negative phase statistics” well with only
100 negative examples to characterize the whole space of possible
configurations?

–  For all interesting problems the GLOBAL configuration space is
highly multi-modal.

–  How does it manage to find and represent all the modes with
only 100 particles?

The learning raises the effective mixing rate.

•  The learning interacts with the
Markov chain that is being used
to gather the “negative
statistics” (i.e. the data-
independent statistics).
–  We cannot analyse the

learning by viewing it as an
outer loop and the gathering
of statistics as an inner loop.

•  Wherever the fantasy particles
outnumber the positive data, the
energy surface is raised.
–  This makes the fantasies

rush around hyperactively.
–  They move around MUCH

faster than the mixing rate of
the Markov chain defined by
the static current weights.

How fantasy particles move between the model’s modes
•  If a mode has more fantasy particles than

data, the energy surface is raised until
the fantasy particles escape.
–  This can overcome energy barriers

that would be too high for the Markov
chain to jump in a reasonable time.

•  The energy surface is being changed to
help mixing in addition to defining the
model.

•  Once the fantasy particles have filled in a
hole, they rush off somewhere else to
deal with the next problem.
–  They are like investigative journalists.

This minimum will
get filled in by the
learning until the
fantasy particles
escape.

Pre-training a DBM: Combining three RBMs to make a DBM

•  The top and bottom
RBMs must be pre-
trained with the weights
in one direction twice
as big as in the other
direction.
–  This can be

justified!
•  The middle layers do

geometric model
averaging. 1W

2W2

2h

1h

1h

v

2h

h3

2W1

2W2

2W3W3

1W

W2

2h

1h

v

h3
W3

Modeling the joint density of images and captions
(Srivastava and Salakhutdinov, NIPS 2012)

•  Goal: To build a joint density
model of captions and
standard computer vision
feature vectors extracted
from real photographs.
–  This needs a lot more

computation than
building a joint density
model of labels and digit
images!

1. Train a multilayer model of images.
2. Train a separate multilayer model of
word-count vectors.
3. Then add a new top layer that is
connected to the top layers of both
individual models.

–  Use further joint training of the
whole system to allow each
modality to improve the earlier
layers of the other modality.

Modeling the joint density of images and captions
(Srivastava and Salakhutdinov, NIPS 2012)

•  Instead of using a deep belief net, use a deep Boltzmann machine that
has symmetric connections between all pairs of layers.
–  Further joint training of the whole DBM allows each modality to

improve the earlier layers of the other modality.
–  That’s why they used a DBM.
–  They could also have used a DBN and done generative fine-tuning

with contrastive wake-sleep.

