
CSC 2535: 2013 
 

Lecture 3b 
 

Approximate inference in  
Energy-Based Models 

Geoffrey Hinton 
 
 



Two types of density model 

      Stochastic generative model 
using directed acyclic graph 
(e.g. Bayes Net) 

 

 
 
 
 
Generation from model is easy 
Inference can be hard 
Learning is easy after inference 
  
 

    Energy-based models that 
associate an energy with each 
data vector 

 
 

 
 
 
 
Generation from model is hard   
Inference can be easy  
Is learning hard? 

∑=
h

hvphpvp )|()()(

∑

∑
−

−

=

gu

guE
h

hvE

e

e
vp

,

),(

),(

)(



Using energies to define probabilities 

•  The probability of a joint 
configuration over both visible 
and hidden units depends on 
the energy of that joint 
configuration compared with 
the energy of all other joint 
configurations. 

•  The probability of a 
configuration of the visible 
units is the sum of the 
probabilities of all the joint 
configurations that contain it. 

∑ −

−

=

gu

guE

hvE

e
ehvp

,

),(

),(
),(

∑

∑
−

−

=

gu

guE
h

hvE

e

e
vp

,

),(

),(

)(

partition 
function 



Density models 

Directed models Energy-Based Models 

Tractable 
posterior 

mixture models,        
sparse bayes nets 
factor analysis  
 

Compute exact 
posterior 

 

 

Intractable 
posterior 
Densely 
connected  
DAG’s 

Markov Chain 
Monte Carlo 

      or 

Minimize 
variational 
free energy 

Stochastic 
hidden units 

Full MCMC 

If the posterior 
over hidden 
variables is 
tractable 

Minimize 
contrastive 
divergence         

Deterministic 
hidden units 
 
Hybrid MCMC 
for the visible 
variables  
       & 
Minimize 
contrastive 
divergence  



How to combine simple density models 
•  Suppose we want to build a model of a 

complicated data distribution by combining 
several simple models. What combination 
rule should we use? 

•  Mixture models take a weighted sum of the 
distributions 
–  Easy to learn 
–  The combination is always vaguer than 

the individual distributions. 
•  Products of Experts multiply the distributions 

together and renormalize. 
–  The product can be much sharper than 

the individual distributions. 
–  A nasty normalization term  is needed to 

convert the product of the individual 
densities into a combined density. 

)()( dpdp
m

mm∑= π

∑∏

∏
=

c m
m

m
m

cp

dp
dp

)(

)(
)(

mixing 
proportion 



A picture of the two combination methods 

Mixture model: 
Scale each 
distribution down 
and add them 
together 

Product model: 
Multiply the two 
densities together 
at every point and 
then renormalize. 



Products of Experts and energies 

•  Products of Experts multiply probabilities together. This 
is equivalent to adding log probabilities. 
–   Mixture models add contributions in the probability 

domain. 
–  Product models add contributions in the log 

probability domain. The contributions are energies. 
•  In a mixture model, the only way a new component can 

reduce the density at a point is by stealing mixing 
proportion. 

•  In a product model, any expert can veto any point by 
giving that point a density of zero (i.e. an infinite energy)  
–  So its important not to have overconfident experts in a 

product model. 
–  Luckily, vague experts work well because their 

product can be sharp. 



How sharp are products of experts? 

•  If each of the M experts is a Gaussian with the 
same variance, the product is a Gaussian with a 
variance of 1/M on each dimension. 

•  But a product of lots of Gaussians is just a 
Gaussian 
– Adding Gaussians allows us to create 

arbitrarily complicated distributions. 
– Multiplying Gaussians doesn’t. 
– So we need to multiply more complicated 
“experts”. 



“Uni-gauss” experts 

•  Each expert is a mixture of a 
Gaussian and a uniform. This 
creates an energy dimple. 

p(x) 

E(x) = - log p(x) 

r
xPxp m

mm
π

π
−

+=
1)|()( Σµ,

Mixing 
proportion 
of Gaussian 

Mean and 
variance of 
Gaussian 

range of 
uniform 

Gaussian  
uniform 



Combining energy dimples 

•  When we combine dimples, we get a sharper distribution 
if the dimples are close and a vaguer, multimodal 
distribution if they are further apart. We can get both 
multiplication and addition of probabilities.  

E(x) = - log p(x) AND 

OR 



Generating from a product of experts 

•  Here is a correct but inefficient way to generate an 
unbiased sample from a product of experts: 
–  Let each expert produce a datavector independently.  
–  If all the experts agree, output the datavector. 
–  If they do not all agree, start again. 

•  The experts generate independently, but because of the 
rejections, their hidden states are not independent in the 
ensemble of accepted cases. 
–  The proportion of rejected attempts implements the 

normalization term. 



Relationship to causal generative models 

•  Consider the relationship between the hidden 
variables of two different experts or latent 
variables: 

Causal            Product      
model             of experts 

Hidden states 
unconditional 
on data 

Hidden states 
conditional on 
data 

independent 
(generation is 
easy) 

independent 
(inference is 
easy) 

dependent 
(rejecting away) 

dependent 
(explaining away) 



Learning a Product of Experts 

∑

∑∏∑

∑∏

∏

∂

∂
−

∂

∂
=

∂

∂

−=

= ∈

c m

mm

m

mm

m

c m
mmm

m
m

c m
mm

Modelsm
mm

cpcpdpdp

cpdpdp

cp

dp
dp

θ
θ

θ
θ

θ
θ

θ

θθθ

θ

θ

θ

)|(log)|()|(log)|(log

)|(log)|(log)|(log

)|(

)|(
)|(

Probability of c 
under existing 
product model 

Sum over all 
possible 
datavectors 

Normalization term to 
make the probabilities 
of all possible 
datavectors sum to 1  

datavector 



Ways to deal with the intractable sum 

•  Set up a Markov Chain that samples from the existing 
model.  
–  The samples can then be used to get a noisy estimate 

of the last term in the derivative 
–  The chain may need to run for a long time before the 

fantasies it produces have the correct distribution. 
•  For uni-gauss experts we can set up a Markov chain by 

sampling the hidden state of each expert. 
–  The hidden state is whether it used the Gaussian or 

the uniform. 
–  The experts’ hidden states can be sampled in parallel 

•  This is a big advantage of products of experts. 



The Markov chain for unigauss experts 

i 

j 

i 

j 

i 

j 

i 

j 

t = 0                 t = 1                  t = 2                               t = infinity 

Each hidden unit has a binary state which is 1 if the unigauss chose its 
Gaussian. Start with a training vector on the visible units. Then alternate 
between updating all the hidden units in parallel and updating all the 
visible units in parallel. 

Update the hidden states by picking from the posterior. 

Update the visible states by picking from the Gaussian you get when you 
multiply together all the Gaussians for the active hidden units. 

a fantasy 



A shortcut 

•  Only run the Markov chain for a few time steps. 
–  This gets negative samples very quickly. 
–  It works well in practice. 

•  Why does it work? 
–  If we start at the data, the Markov chain wanders 

away from them data and towards things that it likes 
more.  

–  We can see what direction it is wandering in after only 
a few steps. It’s a big waste of time to let it go all the 
way to equilibrium. 

–  All we need to do is lower the probability of the 
“confabulations” it produces and raise the probability 
of the data. Then it will stop wandering away.  

•  The learning cancels out once the confabulations and the 
data have the same distribution. 



Good and bad properties of the shortcut 

•  Much less variance because a datavector and its 
confabulation form a matched pair. 

•  If the model is perfect and there is an infinite amount of 
data, the confabulations will be equilibrium samples.  
–  So the shortcut will not cause learning to mess up a 

perfect model. 

 
•  What about regions far from the data that have high density 

under the model? 
–  There is no pressure to raise their energy. 

•  Seems to be very biased 
–  But maybe it is approximately optimizing a different 

objective function. 



Contrastive divergence 

   Aim is to minimize the amount by which a step 
toward equilibrium improves the data distribution. 

)||()||( 1 ∞∞ −= QQKLQPKLCD

Minimize 
Contrastive 
Divergence 

Minimize divergence 
between data 
distribution and 
model’s distribution 

Maximize the 
divergence between 
confabulations and 
model’s distribution  

     data 
distribution 

model’s 
distribution 

distribution after 
one step of 
Markov chain 



Contrastive divergence 

∞

∞

><><

><><

∂

∂
+

∂

∂
−=

∂

∂
−

∂

∂
+

∂

∂
−=

∂

∂
−

∞

∞

QQ

QP

EEQQKL

EEQPKL

θθθ

θθθ

1
)||(

)||(

1

1

11 )||(
Q
QQKLQ

∂

∂

∂

∂
−

∞

θ

changing the 
parameters 
changes the 
distribution of 
confabulations 

Contrastive  
divergence 
makes the 
awkward 
terms cancel 



15 axis-aligned uni-gauss experts fitted to 
24 clusters (one cluster is missing from the grid) 



Fantasies from the model 
(it fills in the missing cluster) 



Energy-Based Models with deterministic 
hidden units 

•  Use multiple layers of 
deterministic hidden units 
with non-linear activation 
functions. 

•  Hidden activities 
contribute additively to 
the global energy, E. 

•  Familiar features help, 
violated constraints hurt. 

∑ −

−

=

c

cE

dE

e
edp )(

)(
)( data 

 j 

k 
Ek 

Ej 



Reminder: 
Maximum likelihood learning is hard 

•  To get high log probability for d we need low 
energy for d and high energy for its main rivals, c 

θθθ ∂

∂
+

∂

∂
−=

∂

∂

−−=

∑

∑ −

)()()()(log

log)()(log )(

cEcpdEdp

edEdp

c

c

cE

To sample from the model use Markov Chain Monte Carlo. But 
what kind of chain can we use when the hidden units are 
deterministic and the visible units are real-valued. 



Hybrid Monte Carlo 
•  We could find good rivals by repeatedly making a random 

perturbation to the data and accepting the perturbation 
with a probability that depends on the energy change. 
–  Diffuses very slowly over flat regions 
–  Cannot cross energy barriers easily 
 

•  In high-dimensional spaces, it is much better to use the 
gradient to choose good directions. 

•  HMC adds a random momentum and then simulates a 
particle moving on an energy surface. 
–  Beats diffusion. Scales well. 
–  Can cross energy barriers. 
–  Back-propagation can give us the gradient of the 

energy surface. 



 
 

Trajectories with different initial momenta 



Simulating the dynamics 

•  The total energy is the sum of 
the potential and kinetic 
energies.  
–  This is called the 

Hamiltonian 

•  The rate of change of position, 
q, equals the velocity, p. 

•  The rate of change of the 
velocity is the negative 
gradient of the potential 
energy, E. 

ii

i

i
i

i

i
i

q
E

q
H

d
dp

p
p
H

d
dq

pEH

∂

∂
−=

∂

∂
−=

=
∂

∂
+=

+= ∑

τ

τ

2
2
1)()( qpq,



A numerical problem 

•  How can we minimize 
numerical errors while 
simulating the dynamics? 

•  We can use the same trick as 
we use for checking if we 
have got the right gradient of 
an objective function 
–  Interpolation works much 

better than extrapolation 
–  So use the gradient at the 

midpoint. This is the 
average gradient over the 
interval if the curvature is 
constant.  

bad estimate 
of the change 
in E 

good estimate 
of the change 
in E 



The leapfrog method for keeping numerical 
errors small. 

•  Update the velocity 
using the initial 
gradient. 

•  Update the position 
using the velocity at 
the midpoint of the 
interval. 

•  Update the velocity 
again using the final 
gradient. 

( )

( ))()()(

)()()(

)()()(

22

2

22

εττετ

τετετ

τττ

εε

ε

εε

+
∂

∂
−+=+

++=+

∂

∂
−=+

q
q
Epp

pqq

q
q
Epp

i
ii

iii

i
ii



Combining the last move of one interval with 
the first move of the next interval 

•  Now we are using the gradient at the midpoint for 
updating both q and p. The updates leapfrog over each 
other.  

( ))()()(

)()()(

2
5.1

2

ετετετ

τετετ

ε

ε

+
∂

∂
−+=+

++=+

q
q
Epp

pqq

i
ii

iii



Dealing with the remaining numerical error 

•  Treat the whole trajectory as a proposed move 
for the Metropolis algorithm. 
–  If the energy increases, only accept with 

probability exp(-increase). 
•  To decide on the size of the steps used for 

simulating the dynamics, look at the reject rate. 
–  If its small, we could have used bigger steps 

and gone further. 
–  If its big, we are wasting too many computed 

trajectories. 



Backpropagation can compute the gradient 
that Hybrid Monte Carlo needs 

1.  Do a forward pass 
computing hidden 
activities. 

2.  Do a backward pass all 
the way to the data to 
compute the derivative 
of the global energy w.r.t 
each component of the 
data vector. 
works with any smooth 
non-linearity data 

 j 

k 
Ek 

Ej 



1.  Start at a datavector, d, and use backprop to compute                      
for every parameter 

2.  Run HMC for many steps with frequent renewal of the 
momentum to get equilibrium sample, c. Each step 
involves a forward and backward pass to get the 
gradient of the energy in dataspace. 

3.  Use backprop to compute 

4.  Update the parameters by : 

The online HMC learning procedure 

θ∂∂ )(dE

)( )()( θθεθ ∂∂+∂∂−=Δ cEdE

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been 
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.

θ∂∂ )(cE



The shortcut 
•  Instead of taking the negative samples from the equilibrium 

distribution, use slight corruptions of the datavectors. Only add random 
momentum once, and only follow the dynamics for a few steps. 
–  Much less variance because a datavector and its confabulation 

form a matched pair. 
–  Gives a very biased estimate of the gradient of the log likelihood. 
–  Gives a good estimate of the gradient of the contrastive divergence 

(i.e. the amount by which F falls during the brief HMC.) 

•  Its very hard to say anything about what this method does to the log 
likelihood because it only looks at rivals in the vicinity of the data.  

•  Its hard to say exactly what this method does to the contrastive 
divergence because the Markov chain defines what we mean by 
“vicinity”, and the chain keeps changing as the parameters change. 
–  But its works well empirically, and it can be proved to work well in 

some very simple cases.  



A simple 2-D dataset  

The true data is uniformly distributed within the 4 squares. 
The blue dots are samples from the model. 



The network for the 4 squares task 

Each hidden unit 
contributes an 
energy equal to 
its activity times 
a learned scale. 

2 input units 

20 logistic units 

3 logistic 
units 

E 



























A different kind of hidden structure 
 
Data is often characterized by saying which directions have 

high variance. But we can also capture structure by finding 
constraints that are Frequently Approximately Satisfied. If 
the constrints are linear they represent directions of low 
variance. 

 
Violations of FAS constraints reduce the probability of a data 

vector. If a constraint already has a big violation, violating 
it more does not make the data vector much worse (i.e. 
assume the distribution of violations is heavy-tailed.)   

 
 



Frequently Approximately Satisfied 
constraints 

•  The intensities in a typical 
image satisfy many different 
linear constraints very 
accurately,  and violate a 
few constraints by a lot. 

•  The constraint violations fit 
a heavy-tailed distribution. 

•  The negative log 
probabilities of constraint 
violations can be used as 
energies. 

Violation  
0 

Gauss 

Cauchy 

e
n
e
r
g
y 

- + 

On a smooth 
intensity 
patch the 
sides balance 
the middle 

- 



Frequently Approximately Satisfied 
constraints 

Violation  
0 

Gauss 

Cauchy 

e
n
e
r
g
y 

The energy contributed by a violation is the 
negative log probability of the violation 

what is the best line? 

Gauss 

Cauchy 



Learning the constraints on an arm  

02222 =−Δ+Δ+Δ lzyx

3-D arm with 4 
links and 5 joints 

linear 

squared 
outputs 

Energy for non-
zero outputs 

For each link: 

zyx ΔΔΔ
+  _ 

2l−

222111 zyxzyx



4.19 
4.66    
-7.12 
13.94  
-5.03 
 

-4.24  
-4.61     
7.27   
-13.97  
5.01 

Biases of 
top-level 
units 

Mean total 
input from 
layer below 

Coordinates 
of joint 5 

Coordinates 
of joint 4 

Negative 
weight 
Positive 
weight 

 

Weights of a 
top-level unit 

 

Weights of a 
hidden unit 



Superimposing constraints 

•  A unit in the second layer could represent a 
single constraint.  

•  But it can model the data just as well by 
representing a linear combination of constraints. 

0

0

2
45

2
45

2
45

2
45

2
34

2
34

2
34

2
34

=−Δ+Δ+Δ

=−Δ+Δ+Δ

blzbybxb

alzayaxa



Dealing with missing inputs 

•  The network learns the constraints even if 10% of the 
inputs are missing. 
–  First fill in the missing inputs randomly 
–  Then use the back-propagated energy derivatives to 

slowly change the filled-in values until they fit in with 
the learned constraints. 

•  Why don’t the corrupted inputs interfere with the  learning 
of the constraints? 
–  The energy function has a small slope when the 

constraint is violated by a lot.  
–  So when a constraint is violated by a lot it does not 

adapt. 
•  Don’t learn when things don’t make sense.  



Learning constraints from natural images 
(Yee-Whye Teh) 

•  We used 16x16 image patches and a single 
layer of 768 hidden units (3 x over-complete). 

•  Confabulations are produced from data by 
adding random momentum once and simulating 
dynamics for 30 steps. 

•  Weights are updated every 100 examples. 

•  A small amount of weight decay helps. 



A random subset of 768 basis functions 



The distribution of all 768 learned basis functions 



How to learn a topographic map 

image 

Linear filters 

Global    connectivity 

Local    connectivity 

The outputs of the linear 
filters are squared and 
locally pooled. This makes 
it cheaper to put filters that 
are violated at the same 
time next to each other. 

Cost of first 
violation 

Cost of second 
violation 

Pooled  
squared 
filters  





Feature 
detectors 
learned by a 
neural net 
exposed to 
patches of 
color images. 
 
The only built 
in structure is 
some local 
connectivity 
between 
hidden layers. 


