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The origin of variational Bayes 

•  In variational Bayes, we approximate the true 
posterior across parameters by a much simpler, 
factorial distribution. 
– Since we are being Bayesian, we need a prior 

for this posterior distribution. 
•  When we use standard L2 weight decay we are 

implicitly assuming a Gaussian prior with zero 
mean. 
– Could we have a more interesting prior?   



Types of weight penalty 

•  Sometimes it works better to 
use a weight penalty that has 
negligible effect on large 
weights. 

•  We can easily make up a 
heuristic cost function for this. 

•  But we get more insight if we 
view it as the negative log 
probability under a mixture of 
two zero-mean Gaussians 
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Soft weight-sharing 

•  Le Cun showed that networks generalize better 
if we constrain subsets of the weights to be 
equal. 
– This removes degrees of freedom from the 

parameters so it simplifies the model. 
•  But for most tasks we do not know in advance 

which weights should be the same. 
– Maybe we can learn which weights should be 

the same. 



Modeling the distribution of the weights 

•  The values of the weights form a distribution in a one-
dimensional space. 
–  If the weights are tightly clustered, they have high 

probability density under a mixture of Gaussians 
model. 

–  To raise the probability density move each weight 
towards its nearest cluster center. 
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Fitting the weights and the mixture prior 
together 

•  We can alternate between two types of update: 
– Adjust the weights to reduce the error in the 

output and to increase the probability density 
of the weights under the mixture prior. 

– Adjust the means and variances and mixing 
proportions in the mixture prior to fit the 
posterior distribution of the weights better. 

•  This is called “empirical Bayes”. 
•  This automatically clusters the weights. 

– We do not need to specify in advance which 
weights should belong to the same cluster. 

 



A different optimization method 
•  Alternatively, we can just apply conjugate gradient 

descent to all of the parameters in parallel (which is what 
we did). 
–  To keep the variance positive, use the log variances 

in the optimization (these are the natural parameters 
for a scale variable). 

–  To ensure that the mixing proportions of the 
Gaussians sum to 1, use the parameters of a softmax 
in the optimization. 
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The cost function and its derivatives 
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Probability of 
weight i under 
Gaussian j 

negative log probability of desired 
output under a Gaussian whose 
mean is the output of the net 

posterior probability of 
Gaussian j given weight i 



The sunspot prediction problem 

•  Predicting the number of sunspots next year is important 
because they affect weather and communications. 

•  The whole time series has less than 400 points and 
there is no obvious way to get any more data. 
–  So it is worth using computationally expensive 

methods to get good predictions. 
•  The best model produced by statisticians was a 

combination of two linear autoregressive models that 
switched at a particular threshold value. 
–  Heavy-tailed weight decay works better. 
–  Soft weight-sharing using a mixture of Gaussians 

prior works even better. 



The weights learned by the eight hidden units for 
predicting the number of sunspots 

    Rule 3: Low if low 1 or 8 ago & high 2 or 3 ago. 

Rule 4: Low if high 9 ago and low 1 or 3 ago 

              Rule 1: (uses 2 units): High if high last year. 

          Rule 2: High if high 6, 9, or 11 years ago. 
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•  The mixture of five 
Gaussians learned 
for clustering the 
weights. 

  
•  Weights near zero 

are very cheap 
because they have 
high density under 
the empirical prior. 

The Toronto distribution 

the skydome 



•  Predicting 
sunspot 
numbers far 
into the future 
by iterating the 
single year 
predictions. 

•  The net with 
soft weight-
sharing gives 
the lowest 
errors 



The problem with soft weight-sharing 

•  It constructs a sensible empirical prior for the 
weights. 

•  But it ignores the fact that some weights need to 
be coded accurately and others can be very 
imprecise without having much effect on the 
squared error. 

•  A coding framework needs to model the number 
of bits required to code the value of a weight and 
this depends on the precision as well as the 
value. 



Using the variational approach to make 
Bayesian learning efficient 

•  Consider a standard backpropagation network with one 
hidden layer and the squared error function. 

•  The full Bayesian approach to learning is: 
–  Start with a prior distribution across all possible 

weight vectors  
–  Multiply the prior for each weight vector by the 

probability of the observed outputs given that weight 
vector and then renormalize to get the posterior 
distribution. 

–  Use this posterior distribution over all possible weight 
vectors for making predictions. 

•  This is not feasible for large nets. Can we use a tractable 
approximation to the posterior?  



An independence assumption 

•  We can approximate the posterior distribution by 
assuming that it is an axis-aligned Gaussian in weight 
space. 
–  i.e. we give each weight its own posterior variance. 
–  Weights that are not very important for minimizing the 

squared error will have big variances. 
•  This can be interpreted nicely in terms of minimum 

description length.  
–  Weights with high posterior variances can be 

communicated in very few bits 
•  This is because we can use lots of entropy to pick a precise 

value from the posterior, so we get lots of “bits back”.  
  



Communicating a noisy weight 
•  First pick a precise value for the weight from its 

posterior.  
– We will get back a number of bits equal to the 

entropy of the weight 
•  We could imagine quantizing with a very small 

quantization width to eliminate the infinities. 
•  Then code the precise value under the Gaussian 

prior. 
– This costs a number of bits equal to the cross-

entropy between the posterior and the prior. 

( ) ( )dwwQwQdwwPwQ ∫∫ −−− )(log)()(log)(
expected number of 
bits to send weight 

expected number of 
bits back 



The cost of communicating a noisy weight 

•  If the sender and receiver agree on a prior distribution, P, 
for the weights, the cost of communicating a weight with  
posterior distribution Q is: 

     
    If the distributions are both Gaussian this cost becomes:  
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What do noisy weights do to the expected 
squared error? 

•  Consider a linear neuron 
with a single input. 
–  Let the weight on this 

input be stochastic 

•  The noise variance for 
the weight gets 
multiplied by the 
squared input value and 
added to the squared 
error:  
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How to deal with the non-linearity in the 
hidden units 

•  The noise on the incoming 
connections to a hidden unit is 
independent so its variance adds. 

•  This Gaussian input noise to a 
hidden unit turns into non-Gaussian 
output noise, but we can use a big 
table to find the mean and variance 
of this non-Gaussian noise. 

•  The non-Gaussian noise coming 
out of each hidden unit is 
independent  so we can just add up 
the variances coming into an output 
unit. 
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The mean and variance of the output of a 
logistic hidden unit 

Gaussian noise in 

non-Gaussian 
noise out 



The forward table  

•  The forward table is 
indexed by the mean and 
the variance of the 
Gaussian total input to a 
hidden unit. 

•   It returns the mean and 
variance of the non-
Gaussian output. 
–  This non-Gaussian 

mean and variance is 
all we need to compute 
the expected squared 
error. 
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The backward table  

•  The backward table is indexed by the mean and 
variance of the total input. 

•   It returns four partial derivatives which are all we 
need for backpropagating the derivatives of the 
squared error to the input àhidden weights. 
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Empirical Bayes: Fitting the prior 

•  We can now trade off the precision of the weights against the 
extra squared error caused by noisy weights. 
–  even though the residuals are non-Gaussian we can choose 

to code them using a Gaussian. 
•  We can also learn the width of the prior Gaussian used for 

coding the weights. 
•  We can even have a mixture of Gaussians prior 

–  This allows the posterior weights to form clusters 
•  Very good for coding lots of zero weights precisely without using 

many bits. 
•  Also makes large weights cheap if they are the same as other large 

weights. 



Some weights learned by variational bayes 

•  It learns a few big positive weights, a few 
big negative weights, and lots of zeros. It 
has found four “rules” that work well. 

output weight 

128 input units 

Only 105 training cases 
to train 521 weights 

bias 



The learned empirical prior for the weights 
•  The posterior for the weights needs to be Gaussian to 

make it possible to figure out the extra squared error 
caused by noisy weights and the cost of coding the noisy 
weights. 

•  The learned prior can be a mixture of Gaussians. This 
learned prior is a mixture of 5 Gaussians with 14 parameters 


