
CSC2535: 2013
Advanced Machine Learning

Lecture 3a: The Origin of Variational Bayes

Geoffrey Hinton

The origin of variational Bayes

•  In variational Bayes, we approximate the true
posterior across parameters by a much simpler,
factorial distribution.
– Since we are being Bayesian, we need a prior

for this posterior distribution.
•  When we use standard L2 weight decay we are

implicitly assuming a Gaussian prior with zero
mean.
– Could we have a more interesting prior?

Types of weight penalty

•  Sometimes it works better to
use a weight penalty that has
negligible effect on large
weights.

•  We can easily make up a
heuristic cost function for this.

•  But we get more insight if we
view it as the negative log
probability under a mixture of
two zero-mean Gaussians

0

21
)(

wk
wC

+
=

λ

0

Soft weight-sharing

•  Le Cun showed that networks generalize better
if we constrain subsets of the weights to be
equal.
– This removes degrees of freedom from the

parameters so it simplifies the model.
•  But for most tasks we do not know in advance

which weights should be the same.
– Maybe we can learn which weights should be

the same.

Modeling the distribution of the weights

•  The values of the weights form a distribution in a one-
dimensional space.
–  If the weights are tightly clustered, they have high

probability density under a mixture of Gaussians
model.

–  To raise the probability density move each weight
towards its nearest cluster center.

W à

p(w)

Fitting the weights and the mixture prior
together

•  We can alternate between two types of update:
– Adjust the weights to reduce the error in the

output and to increase the probability density
of the weights under the mixture prior.

– Adjust the means and variances and mixing
proportions in the mixture prior to fit the
posterior distribution of the weights better.

•  This is called “empirical Bayes”.
•  This automatically clusters the weights.

– We do not need to specify in advance which
weights should belong to the same cluster.

A different optimization method
•  Alternatively, we can just apply conjugate gradient

descent to all of the parameters in parallel (which is what
we did).
–  To keep the variance positive, use the log variances

in the optimization (these are the natural parameters
for a scale variable).

–  To ensure that the mixing proportions of the
Gaussians sum to 1, use the parameters of a softmax
in the optimization.

∑
=

j

x

x

i j

i

e

e
π

The cost function and its derivatives

22

22
2

)|()(

),|(log)(
2
1

j

ij

j
i

couti

jji
i j

jcc
cout

w
wjp

iw
cy

ctcy
k

w
C

wptykC

σ

µ

σ

σµπ
σ

−
−

∂

∂
−=

∂

∂

−−=

∑∑

∑ ∑∑

Probability of
weight i under
Gaussian j

negative log probability of desired
output under a Gaussian whose
mean is the output of the net

posterior probability of
Gaussian j given weight i

The sunspot prediction problem

•  Predicting the number of sunspots next year is important
because they affect weather and communications.

•  The whole time series has less than 400 points and
there is no obvious way to get any more data.
–  So it is worth using computationally expensive

methods to get good predictions.
•  The best model produced by statisticians was a

combination of two linear autoregressive models that
switched at a particular threshold value.
–  Heavy-tailed weight decay works better.
–  Soft weight-sharing using a mixture of Gaussians

prior works even better.

The weights learned by the eight hidden units for
predicting the number of sunspots

 Rule 3: Low if low 1 or 8 ago & high 2 or 3 ago.

Rule 4: Low if high 9 ago and low 1 or 3 ago

 Rule 1: (uses 2 units): High if high last year.

 Rule 2: High if high 6, 9, or 11 years ago.

1

1

2

3:

4

fin de siècle

•  The mixture of five
Gaussians learned
for clustering the
weights.

•  Weights near zero

are very cheap
because they have
high density under
the empirical prior.

The Toronto distribution

the skydome

•  Predicting
sunspot
numbers far
into the future
by iterating the
single year
predictions.

•  The net with
soft weight-
sharing gives
the lowest
errors

The problem with soft weight-sharing

•  It constructs a sensible empirical prior for the
weights.

•  But it ignores the fact that some weights need to
be coded accurately and others can be very
imprecise without having much effect on the
squared error.

•  A coding framework needs to model the number
of bits required to code the value of a weight and
this depends on the precision as well as the
value.

Using the variational approach to make
Bayesian learning efficient

•  Consider a standard backpropagation network with one
hidden layer and the squared error function.

•  The full Bayesian approach to learning is:
–  Start with a prior distribution across all possible

weight vectors
–  Multiply the prior for each weight vector by the

probability of the observed outputs given that weight
vector and then renormalize to get the posterior
distribution.

–  Use this posterior distribution over all possible weight
vectors for making predictions.

•  This is not feasible for large nets. Can we use a tractable
approximation to the posterior?

An independence assumption

•  We can approximate the posterior distribution by
assuming that it is an axis-aligned Gaussian in weight
space.
–  i.e. we give each weight its own posterior variance.
–  Weights that are not very important for minimizing the

squared error will have big variances.
•  This can be interpreted nicely in terms of minimum

description length.
–  Weights with high posterior variances can be

communicated in very few bits
•  This is because we can use lots of entropy to pick a precise

value from the posterior, so we get lots of “bits back”.

Communicating a noisy weight
•  First pick a precise value for the weight from its

posterior.
– We will get back a number of bits equal to the

entropy of the weight
•  We could imagine quantizing with a very small

quantization width to eliminate the infinities.
•  Then code the precise value under the Gaussian

prior.
– This costs a number of bits equal to the cross-

entropy between the posterior and the prior.

() ()dwwQwQdwwPwQ ∫∫ −−−)(log)()(log)(
expected number of
bits to send weight

expected number of
bits back

The cost of communicating a noisy weight

•  If the sender and receiver agree on a prior distribution, P,
for the weights, the cost of communicating a weight with
posterior distribution Q is:

 If the distributions are both Gaussian this cost becomes:

][222
2)(

2
1log)||(

)(
)(log)()||(

QPPQ
PQ

PPQKL

dw
wP
wQwQPQKL

µµσσ
σσ

σ
−+−+=

= ∫

What do noisy weights do to the expected
squared error?

•  Consider a linear neuron
with a single input.
–  Let the weight on this

input be stochastic

•  The noise variance for
the weight gets
multiplied by the
squared input value and
added to the squared
error:

222

2

22222

)(

)(

)(

ww

ww

w

xxtError

ytError

xxxw

xwxy
xwy

σµ

σµ

µ

+−=><

−=

+=><

=><=><

=

Stochastic output of neuron

mean of weight distribution

Extra squared error
caused by noisy weight

How to deal with the non-linearity in the
hidden units

•  The noise on the incoming
connections to a hidden unit is
independent so its variance adds.

•  This Gaussian input noise to a
hidden unit turns into non-Gaussian
output noise, but we can use a big
table to find the mean and variance
of this non-Gaussian noise.

•  The non-Gaussian noise coming
out of each hidden unit is
independent so we can just add up
the variances coming into an output
unit.

2
4wσ

222
321 www σσσ

The mean and variance of the output of a
logistic hidden unit

Gaussian noise in

non-Gaussian
noise out

The forward table

•  The forward table is
indexed by the mean and
the variance of the
Gaussian total input to a
hidden unit.

•  It returns the mean and
variance of the non-
Gaussian output.
–  This non-Gaussian

mean and variance is
all we need to compute
the expected squared
error.

inµ

2
inσ 2

out

out

σ

µ

The backward table

•  The backward table is indexed by the mean and
variance of the total input.

•  It returns four partial derivatives which are all we
need for backpropagating the derivatives of the
squared error to the input àhidden weights.

2

2

2

2
,,,

in

out

in

out

in

out

in

out

σ

σ

σ

µ
µ
σ

µ
µ

∂

∂

∂

∂

∂

∂

∂

∂

Empirical Bayes: Fitting the prior

•  We can now trade off the precision of the weights against the
extra squared error caused by noisy weights.
–  even though the residuals are non-Gaussian we can choose

to code them using a Gaussian.
•  We can also learn the width of the prior Gaussian used for

coding the weights.
•  We can even have a mixture of Gaussians prior

–  This allows the posterior weights to form clusters
•  Very good for coding lots of zero weights precisely without using

many bits.
•  Also makes large weights cheap if they are the same as other large

weights.

Some weights learned by variational bayes

•  It learns a few big positive weights, a few
big negative weights, and lots of zeros. It
has found four “rules” that work well.

output weight

128 input units

Only 105 training cases
to train 521 weights

bias

The learned empirical prior for the weights
•  The posterior for the weights needs to be Gaussian to

make it possible to figure out the extra squared error
caused by noisy weights and the cost of coding the noisy
weights.

•  The learned prior can be a mixture of Gaussians. This
learned prior is a mixture of 5 Gaussians with 14 parameters

