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An apparently crazy idea 

•  Its hard to learn directed models in which 
varaibles have a large number of parents 
because its hard to infer (or sample from) the 
posterior distribution over hidden configurations 
(i.e. the joint distribution of the latent variables). 

•  Crazy idea: do inference wrong. 
– Maybe we can show that learning will still 

work. 



Approximate inference  
•  For models like sigmoid belief nets, it is intractable to 

compute the exact posterior distribution over hidden 
configurations. So what happens if we use a tractable 
approximation to the posterior? 
–  e.g. assume the posterior over hidden configurations 

for each datavector factorizes into a product of 
distributions for each separate hidden cause. 

•  If we use the approximation for learning, there is no 
guarantee that learning will increase the probability that 
the model would generate the observed data. 

•  But maybe we can find a different and sensible objective 
function that is guaranteed to improve at each update of 
the parameters. 



A trade-off between how well the model fits 
the data and the accuracy of inference 

 

 
    This makes it feasible to fit very complicated models, but 

the approximations that are tractable may be poor. 
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Two ways to derive F 

•  We can derive variational free energy as the 
objective function that is minimized by both steps 
of the Expectation and Maximization algorithm 
(EM). 

•  We can also derive it by using Minimum 
Description Length ideas. 



Overview 
 

•  Clustering with K-means and a proof of 
convergence that uses energies. 

•  Clustering with a mixture of Gaussians and a 
proof of convergence that uses free energies. 

 
•  The MDL view of clustering and the bits-back 

argument 
•  The MDL justification for incorrect inference. 
•  The MDL view of SBN’s 
•  The wake-sleep algorithm. 
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Clustering 

•  We assume that the data was generated from a 
number of different classes. The aim is to cluster 
data from the same class together. 
– Why not put each datapoint into a separate 

class? 
•  What is the objective function that is optimized 

by sensible clusterings? 



The k-means algorithm 

•  Assume the data lives in a 
Euclidean space. 

•  Assume we want k classes. 
•  Assume we start with randomly 

located cluster centers 

    The algorithm alternates between 
two steps: 

 
     Assignment step: Assign each 

datapoint to the closest cluster. 
 
     Refitting step: Move each cluster 

center to the center of gravity of 
the data assigned to it. 
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Why K-means converges  

•  Whenever an assignment is changed, the sum 
squared distances of datapoints from their 
assigned cluster centers is reduced. 

•  Whenever a cluster center is moved the sum 
squared distances of the datapoints from their 
currently assigned cluster centers is reduced. 

•  Test for convergence: If the assignments do not 
change in the assignment step, we have 
converged. 



A generative view of clustering 

•  We need a sensible measure of what it means to cluster 
the data well. 
–  This makes it possible to judge different methods.  
–  It may make it possible to decide on the number of 

clusters. 
•  An obvious approach is to imagine that the data was 

produced by a generative model. 
–  Then we can adjust the parameters of the model to 

maximize the probability that it would produce exactly 
the data we observed. 



The mixture of Gaussians generative model 

•  First pick one of the k Gaussians with a probability that is 
called its “mixing proportion”. 

•  Then generate a random point from the chosen 
Gaussian. 

•  The probability of generating the exact data we observed 
is zero, but we can still try to maximize the probability 
density.  
–  Adjust the means of the Gaussians 
–  Adjust the variances of the Gaussians on each 

dimension. 
–  Adjust the mixing proportions of the Gaussians. 



Fitting a mixture of Gaussians 

    The EM algorithm alternates 
between two steps: 

E-step: Compute the posterior 
probability that each Gaussian 
generates each datapoint. 

 
M-step: Assuming that the data 

really was generated this way, 
change the parameters of 
each Gaussian to maximize 
the probability that it would 
generate the data it is 
currently responsible for. 
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The E-step: Computing responsibilities 

•  In order to adjust the 
parameters, we must 
first solve the inference 
problem: Which 
Gaussian generated 
each datapoint? 
–  We cannot be sure, 

so it’s a distribution 
over all possibilities. 

•  Use Bayes theorem to 
get posterior 
probabilities for an axis 
aligned Gaussian. 
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The M-step: Computing new mixing proportions 

•  Each Gaussian gets a 
certain amount of 
posterior probability for 
each datapoint. 

•  The optimal mixing 
proportion to use (given 
these posterior 
probabilities) is just the 
fraction of the data that 
the Gaussian gets 
responsibility for. 
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More M-step: Computing the new means 

•  We just take the center-of 
gravity of the data that 
the Gaussian is 
responsible for. 
–  Just like in K-means, 

except the data is 
weighted by the 
posterior probability of 
the Gaussian. 

–  Guaranteed to lie in 
the convex hull of the 
data 

•  Could be big initial jump 
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More M-step: Computing the new variances 

•  We fit the variance of each Gaussian, i,  on each 
dimension, d,  to the posterior-weighted data 
–  Its more complicated if we use a full-

covariance Gaussian that is not aligned with 
the axes. 
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end skip 



How do we know that the updates improve things? 

•  Updating each Gaussian definitely improves the 
probability of generating the data if we generate 
it from the same Gaussians after the parameter 
updates.  
– But we know that the posterior will change 

after updating the parameters.  
•  A good way to show that this is OK is to show 

that there is a single function that is improved by 
both the E-step and the M-step. 
– The function we need is called Free Energy. 



Why EM converges 

•  There is a cost function that is reduced by both the E-step 
and the M-step.  

                 Cost  =  expected energy  –  entropy 
 
•  The expected energy term measures how difficult it is to 

generate each datapoint from the Gaussians it is assigned 
to. It would be happiest assigning each datapoint to the 
Gaussian that generates it most easily (as in K-means). 

•  The entropy term encourages “soft” assignments. It would 
be happiest spreading the assignment probabilities for each 
datapoint equally between all the Gaussians. 



The expected energy of a datapoint 
 
•  The expected energy of datapoint c is the average 

negative log probability of generating the datapoint 
–  The average is taken using the probabilities of 

assigning the datapoint to each Gaussian. We can 
use any probabilities we like.  
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The entropy term 

•  This term wants the assignment probabilities to 
be as uniform as possible. 

•  It fights the expected energy term. 
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The E-step chooses the assignment 
probabilities that minimize the cost function                         
(with the parameters of the Gaussians held fixed) 

•  How do we find assignment probabilities for a datapoint 
that minimize the cost and sum to 1?  

•  The optimal solution to the trade-off between expected 
energy and entropy is to make the probabilities be 
proportional to the exponentiated negative energies: 

•  So using the posterior probabilities as assignment 
probabilities minimizes the cost function! 
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The M-step chooses the parameters that 
minimize the cost function                         

(with the assignment probabilities held fixed) 

•  This is easy. We just fit each Gaussian to the data 
weighted by the assignment probabilities that the 
Gaussian has for the data.  
–  When you fit a Gaussian to data you are maximizing 

the log probability of the data given the Gaussian. 
This is the same as minimizing the energies of the 
datapoints that the Gaussian is responsible for. 

–  If a Gaussian is assigned a probability of 0.7 for a 
datapoint the fitting treats it as 0.7 of an observation. 

•  Since both the E-step and the M-step decrease the 
same cost function, EM converges. 



EM as coordinate descent in Free Energy 

 
•  Think of each different setting of the hidden and visible 

variables as a “configuration”. The energy of the 
configuration has two terms:  
–  The log prob of generating the hidden values  
–  The log prob of generating the visible values from the 

hidden ones 
•  The E-step minimizes F by finding the best distribution 

over hidden configurations for each data point. 
•  The M-step holds the distribution fixed and minimizes F 

by changing the parameters that determine the energy of 
a configuration. 
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The advantage of using F to understand EM 

•  There is clearly no need to use the optimal 
distribution over hidden configurations.  
– We can use any distribution that is convenient 

so long as: 
•  we always update the distribution in a way that 

improves F  
•  We change the parameters to improve F given the 

current distribution. 
•  This is very liberating. It allows us to justify all 

sorts of weird algorithms. 
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An incremental EM algorithm for fitting a 
mixture of Gaussians 

•  The idea of this algorithm is to do “online” fitting of a 
mixture of Gaussians 
–  Look at one datapoint at a time and update the 

parameters after each datapoint. 
•  When we update the parameters of the Gaussians, the 

posteriors change for all datapoints. 
–  The standard EM algorithm would have to update the 

posteriors for all datapoints after any change in the 
parameters 

•  The variational approach allows us to dispense with the 
updates of the posteriors for all of the other datapoints.  
–  Those datapoints will now be using an out-of-date 

posterior, but that’s OK. We can do whatever we like 
to the posteriors so long as it does not increase F. 



Initialization 
 

•  We can start with any initial distribution we like 
across the Gaussians for each datapoint. 
– But it would make sense to do one pass through 

all the data setting the distribution across 
Gaussians to be the posterior  for each 
datapoint. 

•   We also need to initialize some sums over all 
datapoints (lets ignore the variance update). 

∑
∑

∑∑ =

c

cinit
c

ccinit

init
i

c

ccinit

c

cinit

ip

ip
ipip

)|(

)|(
,)|(,)|(

x

xx
µxxx



Updating the parameters 

•  Partial E-step: Look at a single datapoint, d, and 
compute the posterior distribution                      
for d given the current parameters. 

•  M-step: Compute the effect on the parameters of 
changing the distribution for d, whilst keeping all 
the other approximate posteriors for all other 
datapoints fixed. 
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An MDL approach to clustering 

sender receiver 

quantized data perfectly reconstructed data 

         cluster parameters 

 

     code for each datapoint 

 

data-misfit for each datapoint 

center of 
cluster 



How many bits must we send? 

•  Model parameters:  
–  It depends on the priors and how accurately they are 

sent. 
–  Lets ignore these details for now 

•  Codes:  
–  If all n clusters are equiprobable, log n 

•  This is extremely plausible, but wrong! 
–  We can do it in less bits 

•  This is extremely implausible but right. 
•  Data misfits: 

–  If sender & receiver assume a Gaussian distribution 
within the cluster, -log[p(d)|cluster] which depends on 
the squared distance of d from the cluster center. 



Using a Gaussian agreed distribution  

•  Assume we need to 
send a value, x, with a 
quantization width of t  

•  This requires a 
number of bits that 
depends on  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been 
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.
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What is the best variance to use? 

•  It is obvious that this is minimized by setting the 
variance of the Gaussian to be the variance of 
the residuals. 
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Sending a value assuming a mixture of two 
equal Gaussians 

•  The point halfway between the two Gaussians should 
cost –log(p(x)) bits where p(x) is its density under the 
blue curve.  
–  But in the MDL story the cost should be –log(p(x)) 

plus one bit to say which Gaussian we are using. 
–  How can we make the MDL story give the right 

answer? 

x 

The blue curve is the 
normalized sum of the 
two Gaussians. 



The bits-back argument  

•  Consider a datapoint that is equidistant from two cluster 
centers.  
–  The sender could code it relative to cluster 0 or 

relative to cluster 1. 
–   Either way, the sender has to send one bit to say 

which cluster is being used. 
•  It seems like a waste to have to send a bit when you don’t 

care which cluster you use. 
•  It must be inefficient to have two different ways of encoding 

the same point. 

Gaussian 0 Gaussian 1 

data 



Using another message to make random decisions 

•  Suppose the sender is also trying to communicate 
another message 
–  The other message is completely independent. 
–  It looks like a random bit stream.  

•  Whenever the sender has to choose between two 
equally good ways of encoding the data, he uses a bit 
from the other message to make the decision 

•  After the receiver has losslessly reconstructed the 
original data, the receiver can pretend to be the sender.  
–  This enables the receiver to figure out the random bit 

in the other message. 
•  So the original message cost one bit less than we 

thought because we also communicated a bit from 
another message.  



The general case 
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What is the best distribution? 
•  The sender and receiver can use any distribution they 

like 
–  But what distribution minimizes the expected 

message length 
•  The minimum occurs when we pick codes using a 

Boltzmann distribution: 

•  This gives the best trade-off between entropy and 
expected energy.  
–  It is how physics behaves when there is a system that 

has many alternative configurations each of which 
has a particular energy (at a temperature of 1). 
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Free Energy 
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The equilibrium free energy of a 
set of configurations is the 
energy that a single 
configuration would have to have 
to have as much probability as 
that entire set.  
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A Canadian example 

•  Ice is a more regular and 
lower energy packing of 
water molecules than 
liquid water. 
–  Lets assume all ice 

configurations have 
the same energy 

•  But there are vastly more 
configurations called 
water.  
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Stochastic MDL using the wrong distribution 
over codes 

•  If we want to communicate the code for a datavector, the 
most efficient method requires us to pick a code 
randomly from the posterior distribution over codes. 
–  This is easy if there is only a small number of possible 

codes. It is also easy if the posterior distribution has a 
nice form (like a Gaussian or a factored distribution) 

–  But what should we do if the posterior is intractable? 
•  This is typical for non-linear distributed representations. 

•  We do not have to use the most efficient coding scheme! 
–  If we use a suboptimal scheme we will get a bigger 

description length. 
•  The bigger description length is a bound on the minimal 

description length. 
•   Minimizing this bound is a sensible thing to do.  

–  So replace the true posterior distribution by a simpler 
distribution. 

•  This is typically a factored distribution. 



Fitting a sigmoid belief net using 
variational inference 

•  For large nets, the true posterior over the hidden 
layers is intractable. 

•  The obvious variational approach is to find the 
best factorial approximation. 
– This requires an iterative inference process 

that adjusts the probability assigned to each 
hidden unit so as to minimize F (with the 
parameters held constant). 

•  Can we avoid this iterative inner loop? 
– What if we were willing to accept a non-

optimal factorial approximation. 



The wake-sleep algorithm for an SBN 

•  Wake phase: Use the 
recognition weights to perform a 
bottom-up pass.  
–  Train the generative weights 

to reconstruct activities in 
each layer from the layer 
above. 

•  Sleep phase: Use the generative 
weights to generate samples 
from the model.  
–  Train the recognition weights 

to reconstruct activities in 
each layer from the layer 
below. 
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•  The recognition weights are initially trained to invert the 
generative model in parts of the space where there is no 
data.  
–  This is wasteful. 

•  The recognition weights follow the gradient of the wrong 
divergence. They minimize  KL(P||Q) but the variational 
bound requires minimization of KL(Q||P). 
–  This leads to incorrect mode-averaging  

•  The true posterior over the top hidden layer is typically 
very far from independent. 
–  So it is very badly modeled by a prior that assumes 

independence. 

The flaws in the wake-sleep algorithm 
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Mode averaging 
•  If we generate from the model, 

half the instances of a 1 at the 
data layer will be caused by a 
(1,0) at the hidden layer and half 
will be caused by a (0,1). 
–  So the recognition weights 

will learn to produce (0.5,0.5)  
–  This represents a distribution 

that puts half its mass on the 
very improbable hidden 
configurations (0,0) & (1,1) 

•  Its much better to just pick one 
mode and pay one bit for 
ignoring the other mode. 
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