CSC2535 Spring 2013

Lecture 2a: Inference in factor graphs

Geoffrey Hinton
Factor graphs: A better graphical representation for undirected models with higher-order factors

- Each potential has its own factor node that is connected to all the terms in the potential.
- Factor graphs are always bipartite.

\[p(x) = \prod_s f_s(x_s) \]

If the potentials are not normalized we need an extra factor of 1/Z.
Representing a third-order term in an undirected model

- The third-order factor is much more visually apparent than the clique of size 3.
- It easy to divide a factor into the product of several simpler factors.
 - This allows additional factorization to be represented.
Converting trees to factor graphs

- When we convert any singly connected graphical model to a factor graph, it remains singly connected.
 - This preserves the simplicity of inference.
- Converting a singly connected directed graph to an undirected graph may not preserve the property of being singly connected.
Computing a marginal in a factor graph with nodes that have discrete values

\[p(x_n) = \sum_{x \setminus x_n} p(x) \]

• To obtain the marginal probability function for \(X_n \) we could consider each possible value of \(X_n \) and sum the joint probability over all possible values of all the other random variables.

 – This would take a time that was exponential in the number of other variables.
Expression trees

\[ab + ac = a(b + c) \]

- We can compute the values of arithmetic expressions in a tree.
- We can do the same thing using probability distributions instead of scalar values.
 - The product operation gets replaced by a pointwise product.
 - The sum operation gets replaced by something more complicated.
Converting a factor graph to an expression tree

To compute a marginal, the factor graph is drawn with the variable of interest at the top.
The messages passed up the tree

• A message is a function that specifies how much it likes each of the possible values of a variable.
 – How much it likes the value is a *probability.

• The message from a variable to a factor is the product of the messages the variable receives from the factors below it.
 – So its a function over the values of the sending variable. It summarizes the relevant aspects of the combined opinions of all the stuff below that variable.

• The message from a factor to a variable is more complicated.
 – It is a function over the values of the receiving variable. It summarizes the relevant aspects of the combined opinions of all the stuff below that factor.
The message from a factor to a variable

• A factor can see the vector of *probabilities for each of the variables below it. It needs to convert these vectors into a vector of *probabilities for the variable above it.

• For each combination of values of the variables below it, the factor node does the following:
 – First it computes the product, P, of the *probabilities that the variables below have for that combination.
 – Then, for each value of the variable above, it multiplies P by the value of the factor to get a function over the values of the variable above it.

• Finally, the factor node adds up these functions over all possible combinations of values of the variables below it.
The messages in math

\[\mu_{x_m \rightarrow f_s}(x_m) = \prod_{s' \in \text{ne}(x_m) \setminus f_s} \mu_{f_{s'} \rightarrow x_m}(x_m) \]

\[\mu_{f_s \rightarrow x_m}(x_m) = \sum_{x_s \setminus x_m} \left(f_s(x_s) \prod_{m' \in \text{ne}(f_s)} \mu_{x_{m'} \rightarrow f_s}(x_{m'}) \right) \]

message
variable
factor
factors below
sum over all combinations of values of variables below
variables below
The messages at the leaf nodes

• For a variable that is only connected to one factor:

\[\mu_{x_m \rightarrow f_s} (x_m) = 1 \]

• For a factor that is only connected to one variable:

\[\mu_{f_s \rightarrow x_m} (x_m) = f_s (x_m) \]
Starting and finishing: Method 1 (only for trees)

- Start by sending messages from all the leaf variables and factors.
- Then send a message whenever all of the messages it depends on are present.
- To get the marginals for all variables, allow messages to flow in both directions.

\[
p^*(x_m) = \prod_{s \in \text{ne}(x_m)} \mu_{f \rightarrow x_m}(x_m), \quad Z = \sum_{x_m} p^*(x_m)
\]
Starting and finishing: Method 2 (works with loops)

• Start by sending a message of 1 from every variable (not just the leaf ones).
• Then compute messages as normal.
• After a time equal to the diameter of the graph this will settle to the right answer (if the graph is singly connected).
 – It wastes a lot of computation if the graph is singly connected.
• It often computes useful answers in loopy graphs!