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How to represent a probability distribution
over several random variables

* There are two different ways represent a
distribution over several random variables:

P(X) =%, X, =x,, Xy =%, Xy = X,)
which we abbreviate as  p(x;, X,, X;, X,)

* Product of conditional probabilities:
p(x;, Xy, X5, x,) = p(x,) p(xs | X)) p(x, | X5, x,) p(x; | X5, X5, X,)
* Global energy function:

| -E(x

p(xy, X;, X3, X4) =E€

1°%2>%3>%4)



Disdvantages and advantages of the
energy-based approach

« To compute the probability of a joint configuration we
need to know the partition function, Z.

— Z has exponentially many terms (for discrete variables)

* To change the the parameters of the energy function so
as to improve the probability of the training data, we
need the derivative of Z with respect to each parameter.

— The exact derivative requires exponential work.

* We can define the energy of a joint configuration of the
variables in almost any way we like and we will still get a
proper distribution

— But it must integrate to less than infinity over all joint
configurations.



Less general distributions over several
random variables

* The simplest distribution is when the variables
do not interact at all:

P(xy, Xy, X3, X4) = p(x1) p(x5) p(x3) p(x4)

This is called a factorial distribution.

There are many other ways to represent a
distribution using a product of conditional
distributions or a sum of local energies that are
more complicated than complete independence,
but less complicated than fully a general
distribution. This is what Graphical Models is all
about.



Three types of graphical model

Directed models use conditional probabilities

— Each conditional probability must be properly
normalized.

Undirected models use energy functions that
are a sum of several terms.

— The terms in the energy function are very
flexible and each variable can be involved in
many different terms without causing
problems. But the partition function is nasty.

Hybrid models (like a “deep belief net”)
combine directed and undirected pieces.



A graphical representation of a set of
conditional probabilities

 Each node represents a
random variable.

a « Each directed edge
b represents an explicit
dependency on a “parent

* For general distributions,

the graph is fully
c connected.

N

p(a,b,c) = p(c|a,b)p(b|a)p(a)



Representing less general distributions

* The structure of a less general
distribution can be represented
by the missing edges.

* |f the directed graph is acyclic
and the distribution of each
node conditional on its parents
IS normalized, the whole
distribution will be consistent .

p(0 = [ [ PG lpay) = ) p(ra) p(r) ey | 31,2, 5) o
S

parents P(Xs | x1,x3) p(xg | X4) p(x7 | X4,X5)



Bayesian polynomial regression

plt]x.x0) = f p(t| x,w)p(W|x,t)dw
test ftrain « The modeled random

variables are tand w

* The inputs, X, are given.
They are not random
variables in the model.

4 N W

O O « The “plate” notation is used
b, for multiple variables with
I N the same dependencies.

ptw) = pw[ ] pe, 1w



Showing dependencies on
deterministic parameters

 \WWe can use a small
, ; solid circle for a
parameter such as:
— Output noise variance
— Input vector for a case

W
2 e O O — Parameter determining
t the prior distribution of

s J the weights.

3
3
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A graphical model of a test prediction

« We represent the fact K '
that a node has been
observed by filling it in. w
. Thg output noise . . \
variance affects both i N

training and test data.

& '( Jo——— 3
o2 A

p(t,t,W|x,x,a,07) :

AA N
= pw|a)p(|zw.o)| | p,|x,.w.0%)



An important fact about acyclic directed
graphical models

 An unobserved node
has no effect on the
distributions of its
parents.
— It only affects the

distributions of its
descendants.

— The direction of the
arrows Is like time:
Causes only affect the
future.




Ancestral sampling

« Start at the top and
sample in order.

* Good for seeing what
the model believes.

Object Position Orientation

Image

What false claims are
made by this model?



Two very different approaches to directed
graphical models

* We can view the higher-level nodes as unobserved
causes that explain the statistical structure of the joint
distribution over the observed variables.

— Missing edges represent qualitative aspects of the
statistical structure.

— The individual conditional probability functions of
the nodes represent quantitative aspects.

 We care a lot about where the edges are and we can
interpret the individual nodes.

— Graphical models evolved from expert systems.



Two very different approaches to directed
graphical models (continued)

« Consider using small lego blocks to model the shape of a
car. All we care about is the shape.

— We do not really believe the car is made of lego.

— The blocks are just “modeling stuff’. This stuff needs to
be able to model any reasonable shape.

— Its probably good if there are many different ways of
modeling the same shape. “Identifiability” is not
important.

 We can adopt a similar approach to modeling a
complicated probability distribution.

— The only role of the latent variables is to model the
density (But with enough data the right model is best!).



An intermediate approach

« We are interested in the values of the latent
variables, but we are not aiming for identifiability.

« We want to use the latent variables for tasks like
object or speech recognition.

— We expect the latent variables to be more
directly related to classes we are interested In
than the raw sensory inputs.

— But there may be many different latent
variable representations that are equally
good.



Two very important types of random
variable

* An analogy: If we start with integers, addition,
subtraction and multiplication keep us in the
domain of integers.

* |f we start with discrete variables, inference
Keeps us in the domain of discrete variables.

 |If we start with Gaussian variables, inference
Keeps us in the domain of Gaussian variables

orovided the conditional probability models are
all linear.




Reducing the number of parameters

 For a chain of M nodes each with K states, instead
of K -1 we have (Ig—l)+(M—l)K(K—l)

start
* |f the parameters are shared across time, we have:

(K-D+K(K-1)=K" -1
* This Is good for modeling stationary sequences.

— It is the graphical model that forms the basis of a
simple Hidden Markov Model.




Adding priors to the graphical model of an HMM

1251 Ho 12371

 To be Bayesian, an
HMM needs a prior over
X1 x3 xu  the parameters.

— We can use a Dirichlet
prior. This is conjugate. It
IS equivalent to having
already seen some data.

...observations...

 An HMM can share the
prior over the transition
parameters.




Replacing conditional probability tables
by functions

B TM e Suppose L=2

* We can use a logistic
sigmoid function to
reduce the number of
parameters to M.

* This is a good idea if

A node with L states the logistic can
and M parents each approximate the table
with K states requires we want.

a table of size: .
(L-1) KM p(y =1|x) =0(w" x)



Graphical models with
Gaussian random variables

* Engineers use these all the time, but people in Al
hated real numbers and it took them a long time
to go beyond discrete variables and look-up
tables for the interactions.

* Replace the discrete distributions by Gaussian
distributions and make the interactions linear:

p('xi|pai)=Nb +EWZJ VA Vi
T jEpa,
) T

Gaussian mean variance




The joint distribution with Gaussian nodes

D
In p(x) = ' In p(x; | pa;)
=1

2

=_22LV X; —(b +E i ] + const(Vv)

=1 ! JEpa;

o~,

» Since the log prob is quadratlc In X, the joint
distribution is a multivariate Gaussian.

* We can determine the mean and covariance by using
the symbolic equivalent of ancestral sampling:

— Compute the mean and covariance of the Gaussian
distribution for each node given the means and

covariances of the distributions of its parents (see
Bishop).



Conditional independence
for tail-to-tail nodes

* If c has not been observed,
a and b are, in general, not
independent. They have a
common cause.

* Once c has been observed,
a and b can no longer have
any effect on each other.
They become independent.

p(a|b,c) = p(a]c)
p(a,b|c)=p(alc)p(b|c)




The importance of conditional
Independence

« Conditional independence makes inference
much simpler.

— The probability distributions over the values of
a variable can be combined by pointwise
multiplication if the are sources are
independent.

* The graph structure can be used to read off the
conditional independencies.



Conditional independence
for head-to-tail nodes

* If cis not observed, a
can influence c and c

a c b can influence b, so
O 'O O p(a,b) = p(a)p(b)

* |f cis observed, the
b value of a can no
-O longer influence it, so

p(a,b|c) = plalc)p(b]c)




UNconditional independence

for head-to-head nodes

b« An unobserved

descendant has no effect.
So we have

p(a,b) = p(a)p(b)

* If the descendant (or any
. . of its descendants) is

observed, its value has
implications for both a and
b, SO

pla,b|c)= pla|c)p(b|c)




Explaining away

« Suppose that earthquakes truck hits earth-
are rare house quake

« Suppose that trucks hitting
houses is rare.

« Suppose that houses do
not jump without a cause.

— If you observe the house house jumps
jumping, you need to
assume that one of the The two causes are
causes happened. independent in the model,
— One cause removes the but anti-correlated after

need for the other cause. the observation.



D-separation

* ais independent of b if
and only if all paths
connecting a and b are
blocked.

 head-to-tail and tail-to-tail
nodes are blocked when
observed.

* head-to-head nodes are
blocked when the node
and all its descendants are
unobserved.




Naive Bayes and D-separation

2 * In this model, a and b are
not independent when the
class label ¢ has not been

a b observed.

* Once c is observed, a and
b become independent.
So for each particular

class, it is easy to
combine the effects of

observing both a and b.




Combining observations in naive Bayes

p(a,b) = p(a)p(b)
p(a,b|c) = plalc)p(b|c)

* The conditional independence makes it easy to
use Bayes theorem to combine evidence from
multiple observations:

p(c|a,b) x p(c)p(a,b|c)
x p(c)p(a|c)p(b|c)

« Learning p(a|c) is very easy because this
distribution is only one-dimensional.



The Markov Blanket in a directed
graphical model

 The Markov blanket of a node
IS the minimal set of nodes
that must be observed to
make this node independent
of all other nodes.

* |n a directed model, the
blanket includes all the
parents of the node’s children.

— This is because of
explaining away.




Undirected graphical models
(Markov Random Fields, Energy-based models)

* The joint distribution over the random variables is
defined to be proportional to the product of some
potential functions defined over subsets of the variables:

p0=—rcter 2= 3 ]rexo
C x C

» Equivalently, the joint distribution is defined via the sum
of some energy functions which are each defined over
subsets of the variables.

1
—2E<xc>

p(X) = —exp

~ , Where E(x )=-Ing-(Xc)




Representing the relevant subsets

« The subsets that are used to define the potential
functions (i.e. terms in the energy function) are
represented by cliques in the undirected graph.

{x19x2}9 {x29x3}9 {x3,x4},
{x4,x2}, {xlax?;}a

{x19x29x3}9 {x29x39'x4}

The cliques represented
by this graph




Using cliques to represent factors

* If the factors (i.e. the potential functions or
energy terms) only involve two nodes, an
undirected graph is a nice representation.

« If the factors involve more than two nodes its not
nearly such a nice representation.

— A factor graph is a much nicer representation.



Conditional independence
In an undirected model

 This is easier than in a directed model.
— Observation blocks a node.

— Two sets of nodes are conditionally independent
If the observations block all paths between them.



Conditional independence and
factorization in undirected graphs

 Consider two sets of distributions:

— The set of distributions consistent with the
conditional independence relationships
defined by the undirected graph.

— The set of distributions consistent with the
factorization defined by potential functions on
cliques of the graph.

« The Hammersley-Clifford theorem states that
these two sets of distributions are the same.



The Markov blanket in an undirected graph

* This is simpler than in a
directed graph because we
do not have to worry about
explaining away.

« The Markov blanket of a

node is simply all of the
directly connected nodes.




Image denoising with an MRF

* The true value of a pixel is
X and the measured noisy

< value isy.
 We can define an energy
function on pairs of nodes.

E(x,y) = hEx -8 Y X, +n2<x - 3)

<]

(x; —yl-) = xl- -2x,y; +yi so we could use —X;;

1)

bias iIrrelevant



A simple, greedy MAP inference procedure

e |terated conditional modes: Visit the unobserved nodes
sequentially and set each x to whichever of its two

values has the lowest energy.
— This only requires us to look at the Markov blanket,

l.e. The connected nodes.
|t would be better to flip in order of confidence.




Directed graphs can be more precise about
iIndependencies than undirected ones

T T3 Z1 xs3

xIo T2

T, Xy

« All the parents of x4 can « To represent the high-

interact to determine the order interaction in the
distribution over x4. directed graph, the

+ The directed graph undirected graph needs a
represents fourth-order Cquue.
Independencies that the « So this graph cannot
undirected graph cannot represent any

model. Independencies.



Undirected graphs can be more precise
about independencies than directed ones

C
P , A{ B0
C|lD|AUB
A|B|CUD
D

* This graph exhibits three independence
properties that cannot all be exhibited by any
directed graph.



The distributions for which directed and
undirected graphs can give perfect maps

* A graph is a perfect
map of a distribution if
its conditional
Independencies are
exactly the same asa
those in the
distribution.




Inference in an undirected chain

p(X) = B €01 2 (X105 %0 ) 3 (X5 X3 )o@y v (Xy_15 X )

« Assume each node is a K-state discrete variable and each
potential is a K x K table.

« Consider trying to compute the marginal distribution over the
n'th node by summing over all values of all other nodes.

p(x,) = EE EE p(x)

= left branch term x right branch term







The recursive expressions for the
nt-branch messages

left-branch and rig

U (xn) = E Cn-1.n (xn—l > X ) .
Xn-1

E @3 (x5,X3)
%%

= E Pn-1,n (xn—l ) xn) Ue (xn-l)
Xn-1

1“[3’ (xn) = E ¢n,n+1 (xnﬂxn+1 )
Xn+l

- E ¢n,n+1 (xnﬂxn+1) 1“/3 (xn+1)
Xn+l

E ON-1,N (Xy_1>Xy)
XN

E @12 (X1,%;)




Computing more than one marginal
distribution

* First do a complete forward pass and a complete
backward pass.

« Then the marginal for node n is:
1
p(xn) = E/ua(xn) xu/)’(xn)

* The marginal for an adjacent pair of nodes is:

1
p(xn—lﬂxn)=;1ua(xn-l) gﬂn—l,n(xn—l,xn) ﬂ/j(xn)



Generalizing the inference procedure to trees

 The message passing procedure generalizes
easily to any graph which is “singly connected”.

— This includes trees and polytrees.

« Each node needs to send out along each link the
product of the messages it receives on its other
links.




