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How to represent a probability distribution 
over several random variables 

),,,( 4321 xxxxp

•  There are two different ways represent a 
distribution over several random variables: 

    which we abbreviate as  
 
•  Product of conditional probabilities: 
 
•  Global energy function: 
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Disdvantages and advantages of the 
energy-based approach 

•  To compute the probability of a joint configuration we 
need to know the partition function, Z. 
– Z has exponentially many terms (for discrete variables) 

•  To change the the parameters of the energy function so 
as to improve the probability of the training data, we 
need the derivative of Z with respect to each parameter.  
– The exact derivative requires exponential work. 

•  We can define the energy of a joint configuration of the 
variables in almost any way we like and we will still get a 
proper distribution 
– But it must integrate to less than infinity over all joint 

configurations. 



Less general distributions over several 
random variables 

•  The simplest distribution is when the variables 
do not interact at all: 

 
    This is called a factorial distribution. 
 

 There are many other ways to represent a 
distribution using a product of conditional 
distributions  or a sum of local energies that are 
more complicated than complete independence, 
but  less complicated than fully a general 
distribution. This is what Graphical Models is all 
about.  
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Three types of graphical model 

•  Directed models use conditional probabilities 
– Each conditional probability must be properly 

normalized.  
•  Undirected models use energy functions that 

are a sum of several terms. 
– The terms in the energy function are very 

flexible and each variable can be involved in 
many different terms without causing 
problems.  But the partition function is nasty. 

•  Hybrid models  (like a “deep belief net”) 
combine directed and undirected pieces. 



A graphical representation of a set of 
conditional probabilities 

•  Each node represents a 
random variable. 

•  Each directed edge 
represents an explicit 
dependency on a “parent” 

•  For general distributions, 
the graph is fully 
connected. 
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Representing less general distributions 

•  The structure of a less general 
distribution can be represented 
by the missing edges. 

•  If the directed graph is acyclic 
and the distribution of each 
node conditional on its parents 
is normalized, the whole 
distribution will be consistent . 
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Bayesian polynomial regression 

•  The modeled random 
variables are  t and w 

•  The inputs, x, are given. 
They are not random 
variables in the model.  

•  The “plate” notation is used 
for multiple variables with 
the same dependencies. 
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Showing dependencies on 
deterministic parameters 

•  We can use a small 
solid circle for a 
parameter such as: 
–  Output noise variance 
–  Input vector for a case 
–  Parameter determining 

the prior distribution of 
the weights. 
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A graphical model of a test prediction 

•  We represent the fact 
that a node has been 
observed by filling it in.  

•  The output noise 
variance affects both 
training and test data. 
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An important fact about acyclic directed 
graphical models 

•  An unobserved node 
has no effect on the 
distributions of its 
parents. 
–  It only affects the 

distributions of its 
descendants. 

–  The direction of the 
arrows is like time: 
Causes only affect the 
future. 



Ancestral sampling 

•  Start at the top and 
sample in order. 

•  Good for seeing what 
the model believes. 

What false claims are 
made by this model? 



Two very different approaches to directed 
graphical models 

•  We can view the higher-level nodes as unobserved 
causes that explain the statistical structure of the joint 
distribution over the observed variables. 
– Missing edges represent qualitative aspects of the 

statistical structure. 
– The individual conditional probability functions of 

the nodes represent quantitative aspects. 
•  We care a lot about where the edges are and we can 

interpret the individual nodes. 
– Graphical models evolved  from expert systems. 



Two very different approaches to directed 
graphical models (continued) 

•  Consider using small lego blocks to model the shape of a 
car.  All we care about is the shape. 
–  We do not really believe the car is made of lego. 
–  The blocks are just “modeling stuff”. This stuff needs to 

be able to model any reasonable shape. 
–   Its probably good if there are many different ways of 

modeling the same shape. “Identifiability” is not 
important. 

•  We can adopt a similar approach to modeling a 
complicated probability distribution. 
–  The only role of the latent variables is to model the 

density (But with enough data the right model is best!). 



An intermediate approach 

•  We are interested in the values of the latent 
variables, but we are not aiming for identifiability. 

•  We want to use the latent variables for tasks like 
object or speech recognition. 
– We expect the latent variables to be more 

directly related to classes we are interested in 
than the raw sensory inputs. 

– But there may be many different  latent 
variable representations that are equally 
good. 



Two very important types of random 
variable 

•  An analogy: If we start with integers, addition, 
subtraction and multiplication keep us in the 
domain of integers. 

•  If we start with discrete variables, inference 
keeps us in the domain of discrete variables. 

•  If we start with Gaussian variables, inference 
keeps us in the domain of Gaussian variables 
provided the conditional probability models are 
all linear. 



Reducing the number of parameters 

•  For a chain of M nodes each with K states, instead 
of  

•  If the parameters are shared across time, we have: 

•  This is good for modeling stationary sequences. 
–  It is the graphical model that forms the basis of a 

simple Hidden Markov Model. 
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Adding priors to the graphical model of an HMM 

•  To be Bayesian, an 
HMM needs a prior over 
the parameters. 
–  We can use a Dirichlet 

prior. This is conjugate. It 
is equivalent to having 
already seen some data.  

•  An HMM can share the 
prior over the transition 
parameters.  

...observations... 



Replacing conditional probability tables 
by functions 

•  Suppose L=2 
•  We can use a logistic 

sigmoid function to 
reduce the number of 
parameters to M. 

•  This is a good idea if 
the logistic can 
approximate the table 
we want. 

A node with L states 
and M parents each 
with K states requires 
a table of size: 
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Graphical models with  
Gaussian random variables 

•  Engineers use these all the time, but people in AI 
hated real numbers and it took them a long time 
to go beyond discrete variables and look-up 
tables for the interactions.  

•  Replace the discrete distributions by Gaussian 
distributions and make the interactions linear: 
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The joint distribution with Gaussian nodes 

•  Since the log prob is quadratic in x, the joint 
distribution is a multivariate Gaussian. 

•  We can determine the mean and covariance by using  
the symbolic  equivalent of ancestral sampling: 
– Compute the mean and covariance of the Gaussian 

distribution for each node given the means and 
covariances of the distributions of its parents (see 
Bishop). 
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Conditional independence                          
for tail-to-tail nodes  

•  If c has not been observed, 
a and b are, in general, not 
independent. They have a 
common cause. 

•  Once c has been observed, 
a and b can no longer have 
any effect on each other. 
They become independent. 
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The importance of conditional 
independence 

•  Conditional independence makes inference 
much simpler. 
– The probability distributions over the values of 

a variable can be combined by pointwise 
multiplication if  the are sources are 
independent. 

•  The graph structure can be used to read off the 
conditional independencies. 



Conditional independence                  
for head-to-tail nodes 

•  If c is not observed, a 
can influence c and c 
can influence b, so 

 
 
•  If c is observed, the 

value of a can no 
longer influence it, so 
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UNconditional independence                  
for head-to-head nodes 

•  An unobserved 
descendant has no effect. 
So we have 

•  If the descendant (or any 
of its descendants) is 
observed, its value has 
implications for both a and 
b, so 
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Explaining away 

•  Suppose that earthquakes 
are rare 

•  Suppose that trucks hitting 
houses is rare. 

•  Suppose that houses do 
not jump without a cause. 
–  If you observe the house 

jumping, you need to 
assume that one of the 
causes happened. 

–   One cause removes the 
need for the other cause. 

truck hits 
house 

earth-
quake 

house jumps 

The two causes are 
independent in the model, 
but anti-correlated after 
the observation. 



D-separation 

•  a is independent of b if 
and only if all paths 
connecting a and b are 
blocked. 

•  head-to-tail and tail-to-tail 
nodes are blocked when 
observed. 

•  head-to-head nodes are 
blocked when the node 
and all its descendants are 
unobserved.  

cba |||

fba |||



Naive Bayes and D-separation 

•  In this model, a and b are 
not independent when the 
class label c has not been 
observed. 

•  Once c is observed, a and 
b become independent. 
So for each particular 
class, it is easy to 
combine the effects of 
observing both a and b.  



Combining observations in naive Bayes 

•  The conditional independence makes it easy to 
use Bayes theorem to combine evidence from 
multiple observations: 

•  Learning                is very easy because this 
distribution is only one-dimensional.  
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The Markov Blanket in a directed 
graphical model 

•  The Markov blanket of a node 
is the minimal set of nodes 
that must be observed to 
make this node independent 
of all other nodes. 

•  In a directed model, the 
blanket includes all the 
parents of the node’s children. 
– This is because of 

explaining away. 



Undirected graphical models 
(Markov Random Fields, Energy-based models) 

•  The joint distribution over the random variables is 
defined to be proportional to the product of some 
potential functions defined over subsets of the variables: 

•  Equivalently, the joint distribution is defined via the sum 
of  some energy functions which are each defined over 
subsets of the variables.  
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Representing the relevant subsets 

•  The subsets that are used to define the potential 
functions (i.e. terms in the energy function) are 
represented by cliques in the undirected graph. 
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Using cliques to represent factors 

•  If the factors (i.e. the potential functions or 
energy terms) only involve two nodes, an 
undirected graph is a nice representation. 

•  If the factors involve more than two nodes its not 
nearly such a nice representation. 
– A factor graph is a much nicer representation. 



Conditional independence                           
in an undirected model 

•  This is easier than in a directed model.  
– Observation blocks a node. 
– Two sets of nodes are conditionally independent 

if the observations block all paths between them. 



Conditional independence and 
factorization in undirected graphs 

•  Consider two sets of distributions: 
– The set of distributions consistent with the 

conditional independence relationships 
defined by the undirected graph. 

– The set of distributions consistent with the 
factorization defined by potential functions on 
cliques of the graph. 

•  The Hammersley-Clifford theorem states that 
these two sets of distributions are the same. 



The Markov blanket in an undirected graph 

•  This is simpler than in a 
directed graph because we 
do not have to worry about 
explaining away. 

•  The Markov blanket of a 
node is simply all of the 
directly connected nodes. 



Image denoising with an MRF 

•  The true value of  a pixel is 
x and the measured noisy 
value is y. 

•  We can define an energy 
function on pairs of nodes. 
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A simple, greedy MAP inference procedure 

•  Iterated conditional modes: Visit the unobserved nodes 
sequentially and set each x to whichever of its two 
values has the lowest energy.  
–  This only requires us to look at the Markov blanket, 

i.e. The connected nodes. 
•  It would be better to flip in order of confidence. 



Directed graphs can be more precise about 
independencies than undirected ones 

•  To represent the high-
order interaction in the 
directed graph, the 
undirected graph needs a 
fourth-order clique. 

•  So this graph cannot 
represent any 
independencies. 

•  All the parents of x4 can 
interact to determine the 
distribution over x4.  

•  The directed graph 
represents 
independencies that the 
undirected graph cannot 
model. 



Undirected graphs can be more precise 
about independencies than directed ones 

•  This graph exhibits three independence 
properties that cannot all be exhibited by any 
directed graph. 
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The distributions for which directed and 
undirected graphs can give perfect maps 

•  A graph is a perfect 
map of a distribution if 
its conditional 
independencies are 
exactly  the same asa 
those in the 
distribution. 



Inference in an undirected chain 

•  Assume each node is a K-state discrete variable and each 
potential is a K x K table.   

•  Consider trying to compute the marginal distribution over the 
n’th node by summing over all values of all other nodes. 
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A picture of the computation 
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The recursive expressions for the             
left-branch and right-branch messages 
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Computing more than one marginal 
distribution 

•  First do a complete forward pass and a complete 
backward pass. 

•  Then the marginal for node n is: 

•  The marginal for an adjacent  pair of nodes is: 
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Generalizing the inference procedure to trees 

•  The message passing procedure generalizes 
easily to any graph which is “singly connected”. 
– This includes trees and polytrees. 

•  Each node needs to send out along each link the 
product of the messages it receives on its other 
links. 


