CSC2535: 2013
Advanced Machine Learning

Image retrieval using multilayer neural networks

Geoffrey Hinton
Overview

• An efficient way to train a multilayer neural network to extract a low-dimensional representation.

• Document retrieval (published work with Russ Salakhutdinov)
 – How to model a bag of words with an RBM
 – How to learn binary codes
 – Semantic hashing: retrieval in no time

• Image retrieval (published work with Alex Krizhevsky)
 – How good are 256-bit codes for retrieval of small color images?
 – Ways to use the speed of semantic hashing for much higher-quality image retrieval (work in progress).
Deep Autoencoders
(with Ruslan Salakhutdinov)

• They always looked like a really nice way to do non-linear dimensionality reduction:
 – But it is very difficult to optimize deep autoencoders using backpropagation.

• We now have a much better way to optimize them:
 – First train a stack of 4 RBM’s
 – Then “unroll” them.
 – Then fine-tune with backprop.
A comparison of methods for compressing digit images to 30 real numbers.
Compressing a document count vector to 2 numbers

We train the autoencoder to reproduce its input vector as its output.

This forces it to compress as much information as possible into the 2 real numbers in the central bottleneck.

These 2 numbers are then a good way to visualize documents.

We need a special type of RBM to model counts.
First compress all documents to 2 numbers using a type of PCA
Then use different colors for different document categories

Yuk!
First compress all documents to 2 numbers. Then use different colors for different document categories.
The replicated softmax model: How to modify an RBM to model word count vectors

- **Modification 1**: Keep the binary hidden units but use “softmax” visible units that represent 1-of-N.
- **Modification 2**: Make each hidden unit use the same weights for all the visible softmax units.
- **Modification 3**: Use as many softmax visible units as there are non-stop words in the document.
 - So it’s actually a family of different-sized RBMs that share weights. It’s not a single generative model.
- **Modification 4**: Multiply each hidden bias by the number of words in the document (not done in our earlier work).
- The replicated softmax model is much better at modeling bags of words than LDA topic models (in NIPS 2009).
The replicated softmax model

All the models in this family have 5 hidden units. This model is for 8-word documents.
Finding real-valued codes for retrieval

- Train an auto-encoder using 10 real-valued units in the code layer.
- Compare with Latent Semantic Analysis that uses PCA on the transformed count vector.
- Non-linear codes are much better.
Retrieval performance on 400,000 Reuters business news stories

Accuracy vs. Number of Retrieved Documents

- Autoencoder-10D
- LSA-50D
- LSA-10D
Finding binary codes for documents

- Train an auto-encoder using 30 logistic units for the code layer.
- During the fine-tuning stage, add noise to the inputs to the code units.
 - The “noise” vector for each training case is fixed. So we still get a deterministic gradient.
 - The noise forces their activities to become bimodal in order to resist the effects of the noise.
 - Then we simply threshold the activities of the 30 code units to get a binary code.
Using a deep autoencoder as a hash-function for finding approximate matches

“supermarket search”
Another view of semantic hashing

• Fast retrieval methods typically work by intersecting stored lists that are associated with cues extracted from the query.

• Computers have special hardware that can intersect 32 very long lists in one instruction.
 – Each bit in a 32-bit binary code specifies a list of half the addresses in the memory.

• Semantic hashing uses machine learning to map the retrieval problem onto the type of list intersection the computer is good at.
How good is a shortlist found this way?

- Russ has only implemented it for a million documents with 20-bit codes --- but what could possibly go wrong?
 - A 20-D hypercube allows us to capture enough of the similarity structure of our document set.
- The shortlist found using binary codes actually improves the precision-recall curves of TF-IDF.
 - Locality sensitive hashing (the fastest other method) is much slower and has worse precision-recall curves.
Semantic hashing for image retrieval

• Currently, image retrieval is typically done by using the captions. Why not use the images too?
 – Pixels are not like words: individual pixels do not tell us much about the content.
 – Extracting object classes from images is hard.
• Maybe we should extract a real-valued vector that has information about the content?
 – Matching real-valued vectors in a big database is slow and requires a lot of storage
• Short binary codes are easy to store and match
A two-stage method

• First, use semantic hashing with 30-bit binary codes to get a long “shortlist” of promising images.
• Then use 256-bit binary codes to do a serial search for good matches.
 – This only requires a few words of storage per image and the serial search can be done using fast bit-operations.
• But how good are the 256-bit binary codes?
 – Do they find images that we think are similar?
Some depressing competition

• Inspired by the speed of semantic hashing, Weiss, Fergus and Torralba (NIPS 2008) used a very fast spectral method to assign binary codes to images.
 – This eliminates the long learning times required by deep autoencoders.
• They claimed that their spectral method gave better retrieval results than training a deep auto-encoder using RBM’s.
 – But they could not get RBM’s to work well for extracting features from RGB pixels so they started from 384 GIST features.
 – This is too much dimensionality reduction too soon.
A comparison of deep auto-encoders and the spectral method using 256-bit codes (Alex Krizhevsky)

• Train auto-encoders “properly”
 – Use Gaussian visible units with fixed variance. Do not add noise to the reconstructions.
 – Use a cluster machine or a big GPU board.
 – Use a lot of hidden units in the early layers.
• Then compare with the spectral method
 – The spectral method has no free parameters.
• Also compare with Euclidean match in pixel space
Krizhevsky’s deep autoencoder

The encoder has about 67,000,000 parameters.

It takes a few GTX 285 GPU days to train on two million images.

There is no theory to justify this architecture.
The next step

• Implement the semantic hashing stage for images.
• Check that a long shortlist still contains many good matches.
 – It works OK for documents, but they are very different from images.
 – Losing some recall may be OK. People don’t miss what they don’t know about.
An obvious extension

• Use a multimedia auto-encoder that represents captions and images in a single code.
 – The captions should help it extract more meaningful image features such as “contains an animal” or “indoor image”

• RBM’s already work much better than standard LDA topic models for modeling bags of words.
 – So the multimedia auto-encoder should be
 + a win (for images)
 + a win (for captions)
 + a win (for the interaction during training)
A less obvious extension

• Semantic hashing gives incredibly fast retrieval but its hard to go much beyond 32 bits.

• We can afford to use semantic hashing several times with variations of the query and merge the shortlists
 – Its easy to enumerate the hamming ball around a query image address in ascending address order, so merging is linear time.

• Apply many transformations to the query image to get transformation independent retrieval.
 – Image translations are an obvious candidate.
Summary

• Restricted Boltzmann Machines provide an efficient way to learn a layer of features without any supervision.
 – Many layers of representation can be learned by treating the hidden states of one RBM as the data for the next.

• This allows us to learn very deep nets that extract short binary codes for unlabeled images or documents.
 – Using 32-bit codes as addresses allows us to get approximate matches at the speed of hashing.

• Semantic hashing is fast enough to allow many retrieval cycles for a single query image.
 – So we can try multiple transformations of the query.
A more interesting extension

- Computer vision uses images of uniform resolution.
 - Multi-resolution images still keep all the high-resolution pixels.
- Even on 32x32 images, people use a lot of eye movements to attend to different parts of the image.
 - Human vision copes with big translations by moving the fixation point.
 - It only samples a tiny fraction of the image at high resolution. The “post-retinal” image has resolution that falls off rapidly outside the fovea.
 - With less “neurons” intelligent sampling becomes even more important.
How to perceive a big picture with a small brain

• Even a human brain cannot afford high-resolution everywhere.
 – By limiting the input we make it possible to use many layers of dense features intelligently.

• For fine discrimination that requires high-resolution in several different places we must integrate over several fixations.

A much better “retina”.

A more human metric for image similarity

• Two images are similar if fixating at point X in one image and point Y in the other image gives similar post-retinal images.

• So use semantic hashing on post-retinal images.
 – The address space is used for post-retinal images and each address points to the whole image that the post-retinal image came from.
 – So we can accumulate similarity over multiple fixations.

• The whole image addresses found after each fixation have to be sorted to allow merging 😞
Starting from a better input representation

• First learn a good model for object recognition that can deal with multiple objects in the same image.
• Then use the outputs of the last hidden layer as the inputs to a deep autoencoder.
• This should work really well.
 – Euclidean distance on the activities in the last hidden layer already works extremely well.
Euclidean nearest neighbors using the 4096 activities in the last hidden layer.