
CSC 2535: 2013
Lecture 11

Non-linear dimensionality reduction

Geoffrey Hinton

Dimensionality reduction: Some
Assumptions

•  High-dimensional data often lies on or near a
much lower dimensional, curved manifold.

•  A good way to represent data points is by their
low-dimensional coordinates.

•  The low-dimensional representation of the data
should capture information about high-
dimensional pairwise distances.

The basic idea of non-parameteric
dimensionality reduction

•  Represent each data-point by a point in a lower
dimensional space.

•  Choose the low-dimensional points so that they optimally
represent some property of the data-points (e.g. the
pairwise distances).
–  Many different properties have been tried.

•  Do not insist on learning a parametric “encoding”
function that maps each individual data-point to its low-
dimensional representative.

•  Do not insist on learning a parametric “decoding”
function that reconstructs a data-point from its low
dimensional representative.

Two types of dimensionality reduction

•  Global methods assume that all pairwise
distances are of equal importance.
– Choose the low-D pairwise distances to fit the

high-D ones (using magnitude or rank order).

•  Local methods assume that only the local
distances are reliable in high-D.
– Put more weight on modeling the local

distances correctly.

Linear methods of reducing dimensionality
•  PCA finds the directions that have the most

variance.
– By representing where each datapoint is along

these axes, we minimize the squared
reconstruction error.

– Linear autoencoders are equivalent to PCA

•  Multi-Dimensional Scaling arranges the low-
dimensional points so as to minimize the
discrepancy between the pairwise distances in the
original space and the pairwise distances in the
low-D space.

Metric Multi-Dimensional Scaling

•  Find low dimensional
representatives, y, for the high-
dimensional data-points, x, that
preserve pairwise distances as well
as possible.

•  An obvious approach is to start with
random vectors for the y’s and then
perform steepest descent by
following the gradient of the cost
function.

•  Since we are minimizing squared
errors, maybe this has something to
do with PCA?
–  If so, we don’t need an iterative

method to find the best
embedding.

2

2

2

||||ˆ
||||

)ˆ(

jiij

jiij

ij
ji

ij

yyd

xxd

ddCost

−=

−=

−=∑
<

Converting metric MDS to PCA
•  If the data-points all lie on a hyperplane, their

pairwise distances are perfectly preserved by
projecting the high-dimensional coordinates onto
the hyperplane.
– So in that particular case, PCA is the right

solution.
•  If we “double-center” the data, metric MDS is

equivalent to PCA.
– Double centering means making the mean

value of every row and column be zero.
– But double centering can introduce spurious

structure.

•  Non-linear autoencoders with extra layers are much more
powerful than PCA but they can be slow to optimize and
they get different, locally optimal solutions each time.

•  Multi-Dimensional Scaling can be made non-linear by
putting more importance on the small distances. A popular
version is the Sammon mapping:

•  Non-linear MDS is also slow to optimize and also gets stuck
in different local optima each time.

Other non-linear methods of reducing
dimensionality

2

||||
||||||||
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−−−
=∑

ji

jiji

ji
Cost

xx
yyxx

high-D
distance

low-D
distance

Problems with Sammon mapping

•  It puts too much emphasis on getting very small
distances exactly right.

•  It produces embeddings that are circular with
roughly uniform density of the map points.

IsoMap: Local MDS without local optima

•  Instead of only modeling local
distances, we can try to
measure the distances along
the manifold and then model
these intrinsic distances.
– The main problem is to find a

robust way of measuring
distances along the manifold.

–  If we can measure manifold
distances, the global
optimisation is easy: It’s just
global MDS (i.e. PCA)

2-D

1-D

If we measure distances
along the manifold,
d(1,6) > d(1,4)

1

4
6

How Isomap measures intrinsic distances

•  Connect each datapoint to its
K nearest neighbors in the
high-dimensional space.

•  Put the true Euclidean
distance on each of these
links.

•  Then approximate the
manifold distance between
any pair of points as the
shortest path in this
“neighborhood graph”.

A

B

Using Isomap to discover the intrinsic
manifold in a set of face images

Linear methods cannot
interpolate properly between
the leftmost and rightmost
images in each row.

This is because the
interpolated images are NOT
averages of the images at
the two ends.

Isomap does not interpolate
properly either because it can
only use examples from the
training set. It cannot create
new images.

But it is better than linear
methods.

Maps that preserve local geometry

•  The idea is to make the local configurations of
points in the low-dimensional space resemble
the local configurations in the high-dimensional
space.

•  We need a coordinate-free way of representing
a local configuration.

•  If we represent a point as a weighted average of
nearby points, the weights describe the local
configuration.

j
j

iji w xx ∑≈

Finding the optimal weights
•  This is easy.
•  Minimize the squared “construction” errors subject to the

sum of the weights being 1.

•  If the construction is done using less neighbors than the
dimensionality of x, there will generally be some
construction error
–  The error will be small if there are as many neighbors

as the dimensionality of the underlying noisy manifold.

1,||||
)(

2

)(
=−= ∑∑∑

iNj
ij

iNj
jij

i
i wwCost

εε

xx

A sensible but inefficient way to use the
local weights

•  Assume a low-dimensional latent space.
–  Each datapoint has latent coordinates .

•  Find a set of latent points that minimize the construction
errors produced by a two-stage process:
–  1. First use the latent points to compute the local

weights that construct from its neighbors.
–  2. Use those weights to construct the high-

dimensional coordinates of a datapoint from the
high-dimensional coordinates of its neighbors.

•  Unfortunately, this is a hard optimization problem.
–  Iterative solutions are expensive because they must

repeatedly measure the construction error in the high-
dimensional space.

ix iy

iy

ix

Local Linear Embedding: A less sensible but
more efficient way to use local weights

•  Instead of using the the latent points plus the other
datapoints to construct each held-out datapoint, do it the
other way around.

•  Use the datapoints to determine the local weights, then
try to construct each latent point from its neighbors.
–  Now the construction error is in the low-dimensional

latent space.
•  We only use the high-dimensional space once to get the

local weights.
–  The local weights stay fixed during the optimization of

the latent coordinates.
–  This is a much easier search.

The convex optimization

•  Find the y’s that minimize the cost subject to the
constraint that the y’s have unit variance on
each dimension.
– Why do we need to impose a constraint on

the variance?

2

)(
|||| ∑∑ −=

iNj
jij

i
i wCost

ε

yy

fixed weights

The collapse problem

•  If all of the latent points are identical, we can construct
each of them perfectly as a weighted average of its
neighbors.
–  The root cause of this problem is that we are

optimizing the wrong thing.
–  But maybe we can fix things up by adding a constraint

that prevents collapse.
•  Insist that the latent points have unit variance on each

latent dimension.
–  This helps a lot, but sometimes LLE can satisfy this

constraint without doing what we really intend.

Failure modes of LLE

•  If the neighborhood graph has
several disconnected pieces,
we can satisfy the unit variance
constraint and still have
collapses.

•  Even if the graph is fully
connected, it may be possible
to collapse all the densely
connected regions and satisfy
the variance constraint by
paying a high cost for a few
outliers.

A typical embedding found by LLE

•  LLE embeddings
often look like this.

•  Most of the data is
close to the center of
the space.

•  A few points are far
from the center to
satisfy the unit
variance constraint.

A comment on LLE

•  It has two very attractive features
–  1. The only free parameters are the dimensionality of

the latent space and the number of neighbors that are
used to determine the local weights.

–  2. The optimization is convex so we don’t need
multiple tries and we don’t need to fiddle with
optimization parameters.

•  It has one bad feature:
–  It is not optimizing the right thing!
–  One consequence is that it does not have any

incentive to keep widely separated datapoints far
apart in the low-dimensional map.

Maximum Variance Unfolding

•  This fixes one of the problems of LLE and still manages
to be a convex optimization problem.

•  Use a few neighbors for each datapoint and insist that
the high-dimensional distances between neighbors are
exactly preserved in the low-dimensional space.
–  This is like connecting the points with rods of fixed

lengths.
•  Subject to the rigid rods connecting the low-dimensional

points, maximize their squared separations.
–  This encourages widely separated datapoints to

remain separated in the low-dimensional space.

How to solve many problems in AI

•  1. Map from the data domain to a domain of
feature vectors in which the important
relationships can be modeled by linear
operations.

•  2. Do some linear operations.

•  3. Map the answer back to the data domain.

Modeling relational data

•  Suppose we have a set of facts of the form ARB
–  i.e. The relation R maps A to B as in

Allan has-mother Beatrice
•  We could model the facts using matrix algebra.

– Learn a vector for each object
– Learn a matrix for each relation
– The aim is to make A*R=B

•  This doesnt work because all the vectors learn to
be zero.
– We need A*R to be closer to B than to C.

A discriminative cost function

∑ −

−

=

C

CAR

BAR

ARB
e

ep 2

2

||||

||||

|

Applying the idea to dimensionality reduction

•  0. Compute a big probability table that contains the
probability that each high-dimensional data-point , i,
would pick another data-point , j, as its “neighbor”.

•  1. Use a learned look-up table to convert each high-
dimensional data-point to a 2-D feature vector.

•  2. Multiply by the identity matrix.
•  3. Compare the resulting 2-D feature vector with all the

other 2-D feature vectors to get a predicted distribution
over data-points in the original data-space.

•  Learn the look-up tables so that the probabilities
computed in the 2-D space match the probabilities
computed in the original space.

A probabilistic version of local MDS

•  It is more important to get local distances right
than non-local ones, but getting infinitessimal
distances right is not infinitely important.
– All the small distances are about equally

important to model correctly.
– Stochastic neighbor embedding has a

probabilistic way of deciding if a pairwise
distance is “local”.

Stochastic Neighbor Embedding
•  First convert each high-dimensional similarity

into the probability that one data point will pick
the other data point as its neighbor.

•  To evaluate a map:
– Use the pairwise distances in the low-

dimensional map to define the probability that
a map point will pick another map point as its
neighbor.

– Compute the Kullback-Leibler divergence
between the probabilities in the high-
dimensional and low-dimensional spaces.

A probabilistic local method

•  Each point in high-D has a
conditional probability of
picking each other point as its
neighbor.

•  The distribution over neighbors

is based on the high-D
pairwise distances.
–  If we do not have

coordinates for the
datapoints we can use a
matrix of dissimilarities
instead of pairwise
distances.

High-D Space

i

j k

222

222

|
iikde

k

iijde
ijp

σ

σ

−

−

=

∑probability of picking j
given that you start at i

Throwing away the raw data

•  The probabilities that each points picks other points as
its neighbor contains all of the information we are going
to use for finding the manifold.
–  Once we have the probabilities we do not need

to do any more computations in the high-dimensional
space.

–  The input could be “dissimilarities” between pairs of
datapoints instead of the locations of individual
datapoints in a high-dimensional space.

ijp |

Evaluating an arrangement of the data in a low-dimensional
space

•  Give each datapoint a
location in the low-
dimensional space.
– Evaluate this

representation by
seeing how well the
low-D probabilities
model the high-D
ones.

Low-D Space

i

j

k

2

2

|
ikde

k

ijde
ijq −

−

=

∑probability of picking j
given that you start at i

The cost function for a low-dimensional
representation

•  For points where pij is large and qij is small we lose a lot.
–  Nearby points in high-D really want to be nearby in

low-D
•  For points where qij is large and pij is small we lose a

little because we waste some of the probability mass in
the Qi distribution.
–  Widely separated points in high-D have a mild

preference for being widely separated in low-D.

ijq
ijp

i j
ijpQ

i
iPKLCost i

|

|log|)||(∑∑∑ ==

The forces acting on the low-dimensional points

•  Points are pulled towards
each other if the p’s are
bigger than the q’s and
repelled if the q’s are
bigger than the p’s

)()(2 |||| jijiijiji
j

j
i

qpqpCost
−+−−=

∂

∂ ∑ yy
y

i

j

Data from sne paper
Unsupervised
SNE embedding
of the digits 0-4.
Not all the data
is displayed

Picking the radius of the gaussian that
is used to compute the p’s

•  We need to use different radii in different parts of the
space so that we keep the effective number of
neighbors about constant.

•  A big radius leads to a high entropy for the
distribution over neighbors of i.

•  A small radius leads to a low entropy.
•  So decide what entropy you want and then find the

radius that produces that entropy.
•  Its easier to specify 2^entropy

– This is called the perplexity
–  It is the effective number of neighbors.

Symmetric SNE

•  There is a simpler version of SNE which seems
to work about equally well.

•  Symmetric SNE works best if we use different
procedures for computing the p’s and the q’s
– This destroys the nice property that if we

embed in a space of the same dimension as
the data, the data itself is the optimal solution.

Computing the p’s for symmetric SNE

•  Each high dimensional point,
i, has a conditional
probability of picking each
other point, j, as its
neighbor.

•  The conditional distribution

over neighbors is based on
the high-dimensional
pairwise distances.

High-D Space

i

j k

222

222

|
iikd

k

iijd

ij

e

ep
σ

σ

−

−

∑
=

probability of picking j
given that you start at i

Turning conditional probabilities
into pairwise probabilities

 To get a symmetric probability between i and j we sum
the two conditional probabilities and divide by the
number of points (points are not allowed to choose
themselves).

 This ensures that all the pairwise probabilities sum to 1 so

they can be treated as probabilities.

1
,

=∑
ji
ijp

n
pp

p jiij
ij 2

|| +=joint probability of
picking the pair i,j

Evaluating an arrangement of the points in the low-
dimensional space

•  Give each data-point a
location in the low-
dimensional space.
–  Define low-dimensional

probabilities symmetrically.
–  Evaluate the

representation by seeing
how well the low-D
probabilities model the
high-D affinities.

Low-D Space

i

j

k

2

2

kld

lk

ijd

ij
e

eq
−

<

−

∑
=

The cost function for a low-dimensional
representation

•  It’s a single KL instead of the sum of one KL for each
datapoint.

∑
<

==
ji ij

ij
ij q

p
pQPKLCost log|)||(

The forces acting on the low-dimensional points

•  Points are pulled towards
each other if the p’s are
bigger than the q’s and
repelled if the q’s are bigger
than the p’s
–  Its equivalent to having

springs whose stiffnesses
are set dynamically.

)()(2)||(
ijijj

j
i

i
qpQPKL

−−=
∂

∂
∑ yy

y

i

j

extension stiffness

Optimization methods for SNE

•  We get much better global organization if we use
annealing.
– Add Gaussian noise to the y locations after each

update.
– Reduce the amount of noise on each iteration.
– Spend a long time at the noise level at which the

global structure starts to form from the hot plasma
of map points.

•  It also helps to use momentum (especially at the
end).

•  It helps to use an adaptive global step-size.

More optimization tricks for SNE

•  Anneal the perplexity.
– This is expensive because it involves computing

distances in the high-dimensional data-space.
•  Dimension decay

– Use additional dimensions to avoid local optima,
then penalize the squared magnitudes of the map
points on the extra dimensions.

•  Turn up the penalty coefficient until all of the map
points have very small values on those extra
dimensions.

•  Neither of these tricks is a big win in general.

A more interesting variation that uses
the probabilistic foundation of SNE

•  All other dimensionality reduction methods
assume that each data point is represented by
ONE point in the map.

•  But suppose we had several different maps.
– Each map has a representative of each

datapoint and the representative has a mixing
proportion.

– The overall qij is a sum over all maps

Z
d

q
m
qq

m
ij

m
j

m
im

ij
m
ijij

)exp(−
==∑

ππ

A nice dataset for testing “Aspect maps”

•  Give someone a word and ask them to say the
first other word they associate with it.
– Different senses of a word will have different

associations and so they should show up in
different aspect maps.

Two of the 50 aspect maps for
the Florida word association data

The relationship between aspect maps
and clustering

•  If we force all of the locations in each map to be
the same, it’s a form of spectral clustering!

•  Putting a point into a map is not just based on
the affinities it has to the other points in the map.
–  It depends on whether it can find a location in

the map that allows it to mathc the pattern of
affinities.

–  It has a very abstract resemblance to mixtures
of experts vs ordinary mixtures.

A weird behaviour of aspect maps

•  If we use just 2 aspect maps, one of them
collapses all of the map points to the same
location.
–  Its trying to tell us something!

•  It wants to use a uniform background probability
for all pairs

2
11

1
1
N

qq ijij
π

π
−

+=

Why SNE does not have gaps between
classes

•  In the high-dimensional space there are many pairs
of points that are moderately close to each other.
– The low-D space cannot model this. It doesn’t

have enough room around the edges.
•  So there are many pij’s that are modeled by smaller

qij’s.
– This has the effect of lots of weak springs pulling

everything together and crushing different classes
together in the middle of the space.

•  A uniform background model eliminates this effect
and allows gaps between classes to appear.
–  It is quite like Maximum Variance Unfolding

From UNI-SNE to t-SNE

•  Laurens van der Maaten started experimenting
on UNI-SNE and we soon realised that it was
easier to replace the mixture of a Gaussian and
a uniform by an infinite mixture of Gaussians:

•  By using a Gaussian to compute and a
heavy-tailed student’s t to compute we
partially compensate for the different rates of
growth of volume as you move away from a
point in 2-D and in N-D.

21
1

ijd
qij +

∝

ijq
ijp

t-SNE

•  Instead of using a gaussian plus a uniform, why
not use gaussians at many different spatial
scales?
– This sounds expensive, but if we use an

infinite number of gaussians, its actually
cheaper because we avoid exponentiating.

21
1

ij
ij d
q

+
∝

Optimization hacks

•  Reputable hack: Introduce a penalty term that
keeps all the map-points close together.
– Then gradually relax the penalty to break

symmetry slowly.
•  Disreputable hack: Allow the probabilities to add

up to 4.
– This causes the map-points to curdle into

small clusters leaving lots of space for
clusters to move past each other.

– Then make the probabilities add up to 1.

Two other state-of-the-art dimensionality
reduction methods on the 6000 MNIST digits

Isomap Locally Linear Embedding

t-SNE on the 6000 MNIST digits

The COIL20 dataset

Each object is
rotated about
a vertical axis
to produce a
closed one-
dimensional
manifold of
images.

Isomap & LLE for COIL20 dataset

Isomap Locally Linear
Embedding

t-SNE for COIL20 dataset

Show the map of 2000 English words
produced by Joseph Turian using

t-SNE on the feature vectors learned by
Colobert and Weston (ICML 2008)

Using t-SNE to see what you are thinking

Using t-SNE to see how a DBN that recognizes
phonemes deals with speaker variation

•  Current speech recognizers try to preprocess the
input to eliminate differences between speakers.

•  We get very good performance from a DBN
without doing this.
–  Its very difficult to improve the DBN by adding

speaker information.
•  Maybe the DBN is using its hidden layers to get

rid of speaker variation .
– This would explain why speaker information is

not much help.

t-SNE applied to windows of 15 input frames
for 6 speakers saying two sentences

t-SNE applied to the first hidden layer

t-SNE applied to the 8th hidden layer

Some recent developments

•  Miguel Carreira-Perpinan (ICML 2010) showed
that the original SNE cost function can be
rewritten so that it is equivalent to Laplacian
Eigenmaps with an extra repulsion term that
spreads out the map points (like in MVU).

•  This led to a much faster optimization method.
The fast code is now on the t-SNE webpage.

Combining non-parametric dimensionality
reduction with neural networks

•  If we have a smooth objective function that
assigns a value to a set of codes, we can
backpropagate its derivatives through a
feedforward neural net.
– The neural net is like the “encoder” part of an

autoencoder.
•  We could combine this objective function with

the objective of getting good reconstructions
from the codes.

Evaluating the codes found by an
autoencoder

•  Use 3000 images of
handwritten digits from
the USPS training set.
–  Each image is 16x16

and fairly binary.
•  Use a highly non-linear

autoencoder
–  Use logistic output units

and linear code units.
200 units

100 units

20 linear
code units

data

reconstruction

Does code space capture the structure
of the data?

•  We would like the code space to model the
underlying structure of the data.
–  Digits in the same class should get closer together in

code space.
–  Digits of different classes should get further apart.

•  We can use k nearest neighbors to see if this
happens.
–  Hold out each image in turn and try to label it by using

the labels of its k nearest neighbors.
•  In pixel space we get 5.9% errors. In code space

we get about 12% errors. Why doesn’t it work?

How it goes wrong

•  PCA is not powerful
enough to really mangle
the data.

•  Non-linear auto-encoders
can fracture a manifold
into many different
domains.
–  This can lead to very

different codes for nearby
data-points.

A
B

C
A B
C

A
B

C A
C

B

How to fix it

•  We need a regularizer that will make it costly to
fracture the manifold.
– There are many possible regularizers.

•  Stochastic neighbor embedding can be used as
a regularizer.
–  Its like putting springs between the codes to

prevent the codes for similar datapoints from
being too far apart.

How the gradients are combined

200 logistic units

100 logistic units

20 linear
code units

data

reconstruction Forces generated by
springs attaching
this code to the
codes for all the
other data-points.
The stiffness of
each spring is
dynamically set to
be: ijij qp −

Back-propagated
derivatives of
reconstruction
error

How well does it work?

•  Instead of rising from 5.9% to 12%, the hold-
one-out KNN error falls to about 2%
– The strength of the regularizer must be

chosen sensibly.
– The SNE regularizer alone gives about 4.5%

hold-one-out KNN errors.
•  Can we visualize the codes that are produced

using the regularizer?

Learning codes with some pairwise
information about labels

•  If we pair each digit with another of the same
class, there are very nice category boundaries
between digits.

A more efficient version

•  The derivatives that come from the autoencoder
will stop the codes from all collapsing to a point.
– So we don’t need the quadratically expensive

normalization term that is used in computing
the qij’s

•  We should be able to just add attractive forces
between codes that correspond to similar inputs.
– The similarity could be measured in the input

space or it could be based on extra
information (e.g. identity of class labels).

Non-linear Neighborhood Components
Analysis (Salakhutdinov and Hinton, 2007)

•  Use a feed forward neural net to learn codes that make
nearest neighbor classification work well.

•  In code space, we can predict the class of a point by
summing the probabilities assigned to other points of
that class when we use the stochastic neighbor
probabilities.

•  So we do gradient ascent in the log probabilities of
getting the correct class for each point when it is held-out

∑
∈

==
cj

ijpciclassp |))((

What NNCA achieves

•  Linear Discriminant Analysis tries to find a projection of
the data that makes each point be close to other points
of the same class and far from other points of different
classes.
–  This is a bad objective function if the classes form

long curved manifolds

Three manifold

Two manifold

NCA

•  NCA is the linear version of NNCA. It aims to
find projections in which each datapoint is close
to some other datapoints of the same class and
not too close to datapoints of other classes.
– This does not force all points of the same

class to be similar.
–  But it can allow manifolds to become

disconnected.

