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Getting targets when modeling sequences 
 
•  When applying machine learning to sequences, we often want to turn an input 

sequence into an output sequence that lives in a different domain. 
–  E. g. turn a sequence of sound pressures into a sequence of word identities. 

•  When there is no separate target sequence, we can get a teaching signal by trying 
to predict the next term in the input sequence.  
–  The target output sequence is the input sequence with an advance of 1 step. 
–  This seems much more natural than trying to predict one pixel in an image 

from the other pixels, or one patch of an image from the rest of the image. 
–  For temporal sequences there is a natural order for the predictions. 

•  Predicting the next term in a sequence blurs the distinction between supervised 
and unsupervised learning. 
–  It uses methods designed for supervised learning, but it doesn’t require a 

separate teaching signal. 
 



Memoryless models for sequences 

•  Autoregressive models          
Predict the next term in a  
sequence from a fixed number of 
previous terms using “delay taps”. 

•  Feed-forward neural nets        
These generalize autoregressive 
models by using one or more 
layers of non-linear hidden units.   
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Beyond memoryless models 
•  If we give our generative model some hidden state, and if we give 

this hidden state its own internal dynamics, we get a much more 
interesting kind of model. 
–  It can store information in its hidden state for a long time. 
–  If the dynamics is noisy and the way it generates outputs from its 

hidden state is noisy, we can never know its exact hidden state. 
–  The best we can do is to infer a probability distribution over the 

space of hidden state vectors. 
•  This inference is only tractable for two types of hidden state model. 



Linear Dynamical Systems (engineers love them!) 
•  These are generative models. They have a real-

valued hidden state that cannot be observed 
directly.  
–  The hidden state has linear dynamics with 

Gaussian noise and produces the observations 
using a linear model with Gaussian noise.  

–  There may also be driving inputs. 
•  To predict the next output (so that we can shoot 

down the missile) we need to infer the hidden 
state.  
–  A linearly transformed Gaussian is a Gaussian. So 

the distribution over the hidden state given the data 
so far is Gaussian. It can be computed using 
“Kalman filtering”.  
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Hidden Markov Models (computer scientists love them!) 
•  Hidden Markov Models have a discrete one-

of-N hidden state. Transitions between states 
are stochastic and controlled by a transition 
matrix. The outputs produced by a state are 
stochastic.  
–  We cannot be sure which state produced a 

given output. So the state is “hidden”. 
–  It is easy to represent a probability distribution 

across N states with N numbers. 
•  To predict the next output we need to infer the 

probability distribution over hidden states. 
–  HMMs have efficient algorithms for 

inference and learning. 
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A fundamental limitation of HMMs 
•  Consider what happens when a hidden Markov model generates 

data. 
–  At each time step it must select one of its hidden states. So with N 

hidden states it can only remember log(N) bits about what it generated 
so far. 

•  Consider the information that the first half of an utterance contains 
about the second half: 
–  The syntax needs to fit (e.g. number and tense agreement). 
–  The semantics needs to fit. The intonation needs to fit. 
–  The accent, rate, volume, and vocal tract characteristics must all fit. 

•  All these aspects combined could be 100 bits of information that the 
first half of an utterance needs to convey to the second half. 2^100 
is big! 



Recurrent neural networks 
•  RNNs are very powerful, because they 

combine two properties: 
–  Distributed hidden state that allows 

them to store a lot of information 
about the past efficiently. 

–  Non-linear dynamics that allows 
them to update their hidden state in 
complicated ways. 

•  With enough neurons and time, RNNs 
can compute anything that can be 
computed by your computer.  
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Do generative models need to be stochastic? 

•  Linear dynamical systems and 
hidden Markov models are 
stochastic models. 
–  But the posterior probability 

distribution over their 
hidden states given the 
observed data so far is a 
deterministic function of the 
data. 

•  Recurrent neural networks are 
deterministic.  
–  So think of the hidden state 

of an RNN as the 
equivalent of the 
deterministic probability 
distribution over hidden 
states in a linear dynamical 
system or hidden Markov 
model. 



Recurrent neural networks 
•  What kinds of behaviour can RNNs exhibit? 

–  They can oscillate. Good for motor control? 
–  They can settle to point attractors. Good for retrieving memories? 
–  They can behave chaotically. Bad for information processing? 
–  RNNs could potentially learn to implement lots of small programs 

that each capture a nugget of knowledge and run in parallel, 
interacting to produce very complicated effects. 

•  But the computational power of RNNs makes them very hard to train. 
–  For many years we could not exploit the computational power of 

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech 
recognizer). 



The equivalence between feedforward nets and recurrent 
nets 
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Assume that there is a time 
delay of 1 in using each 
connection. 

The recurrent net is just a 
layered net that keeps 
reusing the same weights. 
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Reminder: Backpropagation with weight 
constraints 

•  It is easy to modify the backprop 
algorithm to incorporate linear 
constraints between the 
weights. 

•  We compute the gradients as 
usual, and then modify the 
gradients so that they satisfy the 
constraints. 
–  So if the weights started off 

satisfying the constraints, 
they will continue to satisfy 
them. 
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Backpropagation through time 

•  We can think of the recurrent net as a layered, feed-forward 
net with shared weights and then train the feed-forward net 
with weight constraints. 

•  We can also think of this training algorithm in the time domain:  
–  The forward pass builds up a stack of the activities of all 

the units at each time step.  
–  The backward pass peels activities off the stack to 

compute the error derivatives at each time step.  
–  After the backward pass we add together the derivatives at 

all the different times for each weight. 



An irritating extra issue 

•  We need to specify the initial activity state of all the hidden and output 
units.  

•  We could just fix these initial states to have some default value like 0.5. 
•  But it is better to treat the initial states as learned parameters. 
•  We learn them in the same way as we learn the weights. 

–  Start off with an initial random guess for the initial states. 
–  At the end of each training sequence, backpropagate through time 

all the way to the initial states  to get the gradient of the error function 
with respect to each initial state. 

–  Adjust the initial states by following the negative gradient. 



Providing input to recurrent networks 
•  We can specify inputs in several 

ways: 
–  Specify the initial states of all 

the units. 
–  Specify the initial states of a 

subset of the units. 
–  Specify the states of the same 

subset of the units at every time 
step.  

•  This is the natural way to 
model most sequential data. 
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Teaching signals for recurrent networks 
•  We can specify targets in several 

ways: 
–  Specify desired final activities of 

all the units 
–  Specify desired activities of all 

units for the last few steps 
•  Good for learning attractors 
•  It is easy to add in extra error 

derivatives as we 
backpropagate. 

–  Specify the desired activity of a 
subset of the units. 

•  The other units are input or 
hidden units. 
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A good toy problem for a recurrent network 
•  We can train a feedforward net to do 

binary addition, but there are obvious 
regularities that it cannot capture 
efficiently. 
–  We must decide in advance the 

maximum number of digits in each 
number. 

–  The processing applied to the 
beginning of a long number does not 
generalize to the end of the long 
number because      it uses different 
weights. 

•  As a result, feedforward nets do not 
generalize well on the binary addition 
task. 
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The algorithm for binary addition 

no carry 
print 1 

carry 
print 1 

no carry 
print 0 

carry 
print 0 
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This is a finite state automaton. It decides what transition to make by looking at the next 
column.    It prints after making the transition. It moves from right to left over the two input 
numbers. 
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A recurrent net for binary addition 
•  The network has two input units 

and one output unit. 
•  It is given two input digits at each 

time step. 
•  The desired output at each time 

step is the output for the column 
that was provided as input two time 
steps ago. 
–  It takes one time step to update 

the hidden units based on the 
two input digits. 

–  It takes another time step for the 
hidden units to cause the 
output. 
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The connectivity of the network 

•  The 3 hidden units are fully 
interconnected in both 
directions. 
–  This allows a hidden 

activity pattern at one 
time step to vote for the 
hidden activity pattern at 
the next time step. 

•  The input units have 
feedforward connections that 
allow then to vote for the 
next hidden activity pattern. 

3 fully interconnected hidden units 



What the network learns 
•  It learns four distinct patterns of 

activity for the 3 hidden units. 
These patterns correspond to the 
nodes in the finite state 
automaton. 
–  Do not confuse units in a 

neural network with nodes in a 
finite state automaton. Nodes 
are like activity vectors. 

–  The automaton is restricted to 
be in exactly one state at each 
time. The hidden units are 
restricted to have exactly one 
vector of activity at each time. 

•  A recurrent network can emulate 
a finite state automaton, but it is 
exponentially more powerful. With 
N hidden neurons it has 2^N 
possible binary activity vectors     
(but only N^2 weights) 
–  This is important when the 

input stream has two separate 
things going on at once.  

–  A finite state automaton 
needs to square its number of 
states. 

–  An RNN needs to double its   
number of units. 



The backward pass is linear 
•  There is a big difference between the 

forward and backward passes. 
•  In the forward pass we use squashing 

functions (like the logistic) to prevent the 
activity vectors from exploding. 

•  The backward pass, is completely linear. If 
you double the error derivatives at the final 
layer, all the error derivatives will double.  
–  The forward pass determines the slope 

of the linear function used for 
backpropagating through each neuron. 



The problem of exploding or vanishing gradients 

•  What happens to the magnitude of the 
gradients as we backpropagate 
through many layers?  
–  If the weights are  small, the 

gradients shrink exponentially. 
–  If the weights are big the gradients 

grow exponentially. 
•  Typical feed-forward neural nets can 

cope with these exponential effects 
because they only have a few hidden 
layers. 

•  In an RNN trained on long sequences 
(e.g. 100 time steps) the gradients 
can easily explode or vanish. 
–  We can avoid this by initializing 

the weights very carefully. 
•  Even with good initial weights, its very 

hard to detect that the current target 
output depends on an input from 
many time-steps ago. 
–  So RNNs have difficulty dealing 

with long-range dependencies. 



Why the back-propagated gradient blows up 

•  If we start a trajectory within an attractor, small changes in where we 
start make no difference to where we end up. 

•  But if we start almost exactly on the boundary, tiny changes can make a 
huge difference. 



Four effective ways to learn an RNN 

•  Long Short Term Memory                
Make the RNN out of little 
modules that are designed to 
remember values for a long time.  

•  Hessian Free Optimization: Deal 
with the vanishing gradients 
problem by using a fancy 
optimizer that can detect 
directions with a tiny gradient but 
even smaller curvature. 
–  The HF optimizer ( Martens & 

Sutskever, 2011) is good at 
this.  

•  Echo State Networks:  Initialize the 
inputàhidden and hiddenàhidden and 
outputàhidden connections very 
carefully so that the hidden state has a 
huge reservoir of weakly coupled 
oscillators which can be selectively driven 
by the input. 
–  ESNs only need to learn the 

hiddenàoutput connections. 
•  Good initialization with momentum    

Initialize like in Echo State Networks, but 
then learn all of the connections using 
momentum. 



Long Short Term Memory (LSTM) 

•  Hochreiter & Schmidhuber 
(1997) solved the problem of 
getting an RNN to remember 
things for a long time (like 
hundreds of time steps).  

•  They designed a memory cell 
using logistic and linear units 
with multiplicative interactions.  

•  Information gets into the cell 
whenever its “write” gate is on. 

•  The information stays in the 
cell so long as its “keep” gate 
is on. 

•  Information can be read from 
the cell by turning on its “read” 
gate. 



Implementing a memory cell in a neural network 

•  To preserve information for a long time in 
the activities of an RNN, we use a circuit 
that implements an analog memory cell. 
–  A linear unit that has a self-link with a 

weight of 1 will maintain its state. 
–  Information is stored in the cell by 

activating its write gate.  
–  Information is retrieved by activating 

the read gate. 
–  We can backpropagate through this 

circuit because logistics are have nice 
derivatives. 
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Backpropagation through a memory cell 
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Reading cursive handwriting 

•  This is a natural task for an 
RNN. 

•  The input is a sequence of 
(x,y,p) coordinates of the tip of 
the pen, where p indicates 
whether the pen is up or down. 

•  The output is a sequence of 
characters. 

•  Graves & Schmidhuber (2009) 
showed that RNNs with LSTM 
are currently the best systems 
for reading cursive writing. 
–  They used a sequence of 

small images as input 
rather than pen 
coordinates. 



A demonstration of online handwriting recognition by an 
RNN with Long Short Term Memory (from Alex Graves) 

•  The movie that follows shows several different things: 
•  Row 1:  This shows when the characters are recognized. 

–  It never revises its output so difficult decisions are more delayed. 
•  Row 2:  This shows the states of a subset of the memory cells. 

–  Notice how they get reset when it recognizes a character. 
•  Row 3:  This shows the writing. The net sees the x and y coordinates. 

–  Optical input actually works a bit better than pen coordinates. 
•  Row 4:  This shows the gradient backpropagated all the way to the x and 

y inputs from the currently most active character. 
–  This lets you see which bits of the data are influencing the decision. 



SHOW ALEX GRAVES’ MOVIE 



How much can we reduce the error  
by moving in a given direction? 

•  If we choose a direction to move in and we keep                         
going in that direction, how much does the error                    
decrease before it starts rising again?  We assume                             
the curvature is constant (i.e. it’s a quadratic error surface). 
–  Assume the magnitude of the gradient decreases as we 

move down the gradient (i.e. the error surface is convex 
upward). 

•  The maximum error reduction depends on the ratio of the 
gradient to the curvature. So a good direction to move in is one 
with a high ratio of gradient to curvature, even if the gradient 
itself is small. 
–  How can we find directions like these? 

better 
ratio 



Newton’s method 
•  The basic problem with steepest descent on a quadratic error surface 

is that the gradient is not the direction we want to go in. 
–  If the error surface has circular cross-sections, the gradient is fine. 
–  So lets apply a linear transformation that turns ellipses into circles. 

•  Newton’s method multiplies the gradient vector by the inverse of the 
curvature matrix, H:  

 
–  On a real quadratic surface it jumps to the minimum in one step. 
–  Unfortunately, with only a million weights, the curvature matrix has 

a trillion terms and it is totally infeasible to invert it. 

Δw = − ε H (w)−1 dE
dw



Curvature Matrices 
•  Each element in the curvature matrix 

specifies how the gradient in one 
direction changes as we move in 
some other direction. 
–  The off-diagonal terms correspond 

to twists in the error surface. 
•  The reason steepest descent goes 

wrong is that the gradient for one 
weight gets messed up by the 
simultaneous changes to all the other 
weights. 
–  The curvature matrix determines 

the sizes of these interactions. 
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How to avoid inverting a huge matrix 
•  The curvature matrix has too many terms to be of use in a big network.  

–  Maybe we can get some benefit from just using the terms along the 
leading diagonal (Le Cun). But the diagonal terms are only a tiny 
fraction of the interactions (they are the self-interactions).  

•  The curvature matrix can be approximated in many different ways 
–  Hessian-free methods, LBFGS, … 

•  In the HF method, we make an approximation to the curvature matrix 
and then, assuming that approximation is correct, we minimize the error 
using an efficient technique called conjugate gradient.  Then we make 
another approximation to the curvature matrix and minimize again. 
–  For RNNs its important to add a penalty for changing any of the 

hidden activities too much.  



Conjugate gradient 

•  There is an alternative to going to the minimum in one step by 
multiplying by the inverse  of the curvature matrix. 

•  Use a sequence of steps each of which finds the minimum along 
one direction.  

•  Make sure that each new direction is “conjugate” to the previous 
directions so you do not mess up the minimization you already did.   
–  “conjugate” means that as you go in the new direction, you do 

not change the gradients in the previous directions. 



A picture of conjugate gradient 

The gradient in the direction of 
the first step is zero at all points 
on the green line.  
 
So if we move along the green 
line we don’t mess up the 
minimization we already did in 
the first direction. 



What does conjugate gradient achieve? 

•  After N steps, conjugate gradient is guaranteed to find the minimum 
of an N-dimensional quadratic surface. Why? 
–  After many less than N steps it has typically got the error very 

close to the minimum value. 
•  Conjugate gradient can be applied directly to a non-quadratic error 

surface and it usually works quite well (non-linear conjugate grad.) 
•  The HF optimizer uses conjugate gradient for minimization on a 

genuinely quadratic surface where it excels.  
–  The genuinely quadratic surface is the quadratic approximation 

to the true surface.  



Modeling text: Advantages of working with characters 
•  The web is composed of character strings. 
•  Any learning method powerful enough to understand the world by 

reading the web ought to find it trivial to learn which strings make 
words (this turns out to be true, as we shall see). 

•  Pre-processing text to get words is a big hassle 
–  What about morphemes (prefixes, suffixes etc) 
–  What about subtle effects like “sn” words? 
–  What about New York?   
–  What about Finnish 

•  ymmartamattomyydellansakaan ..                           ..                           ..                           ..                           ..                           ..                           ..                           ..                           



An obvious recurrent neural net 
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A sub-tree in the tree of all character strings 

•  If the nodes are implemented as hidden states in an RNN, different 
nodes can share structure because they use distributed representations. 

•  The next hidden representation needs to depend on the conjunction of 
the current character and  the current hidden representation. 
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In an RNN, each 
node is a hidden 
state vector. The 
next character 
must transform this 
to a new node. 
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Multiplicative connections 
•  Instead of using the inputs to the recurrent net to provide additive 

extra input to the hidden units, we could use the current input 
character to choose the whole hidden-to-hidden weight matrix. 
–  But this requires 86x1500x1500 parameters 
–  This could make the net overfit. 

•  Can we achieve the same kind of multiplicative interaction using 
fewer parameters? 
–  We want a different transition matrix for each of the 86 

characters, but we want these 86 character-specific weight 
matrices to share parameters (the characters 9 and 8 should 
have similar matrices). 



Using factors to implement multiplicative interactions 
•  We can get groups a and b to interact multiplicatively by using 

“factors”. 
–  Each factor first computes a weighted sum for each of its input 

groups.  
–  Then it sends the product of the weighted sums to its output group. 
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Using factors to implement a set of basis matrices 
•  We can think about factors 

another way: 
–  Each factor defines a rank 

1 transition matrix from a 
to c. 
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1500	  
hidden	  
units	  

character:	  1-‐of-‐86	  

Using 3-way factors to allow a character to create a whole 
transition matrix 
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Training the character model 
•  Ilya Sutskever used 5 million strings of 100 characters taken from 

wikipedia. For each string he starts predicting at the 11th character. 
•  Using the HF optimizer, it took a month on a GPU board to get a 

really good model. 
•  Ilya’s current best RNN is probably the best single model for 

character prediction (combinations of many models do better). 
•  It works in a very different way from the best other models. 

–  It can balance quotes and brackets over long distances. Models 
that rely on matching previous contexts cannot do this. 



How to generate character strings from the model 

•  Start the model with its default hidden state. 
•  Give it a “burn-in” sequence of characters and let it update its 

hidden state after each character. 
•  Then look at the probability distribution it predicts for the next 

character. 
•  Pick a character randomly from that distribution and tell the net that 

this was the character that actually occurred. 
–  i.e. tell it that its guess was correct, whatever it guessed. 

•  Continue to let it pick characters until bored. 
•  Look at the character strings it produces to see what it “knows”. 



 
He was elected President during the Revolutionary 
War and forgave Opus Paul at Rome. The regime 
of his crew of England, is now Arab women's icons 
in  and the demons that use something between 
the characters‘ sisters in lower coil trains were 
always operated on the line of the ephemerable 
street, respectively, the graphic or other facility for 
deformation of a given proportion of large 
segments at RTUS). The B every chord was a 
"strongly cold internal palette pour even the white 
blade.” 
 



Some completions produced by the model 

•  Sheila thrunges                               (most frequent) 
•  People thrunge   (most frequent next character is space) 
•  Shiela, Thrungelini del Rey                       (first try) 
•  The meaning of life is literary recognition.  (6th try) 

•  The meaning of life is the tradition of the ancient human reproduction: it is 
less favorable to the good boy for when to remove her bigger.                      
(one of the first 10 tries for a model trained for longer). 

 



What does it know? 

•  It knows a huge number of words and a lot about proper names, 
dates, and numbers. 

•  It is good at balancing quotes and brackets. 
–  It can count brackets: none, one, many 

•  It knows a lot about syntax but its very hard to pin down exactly 
what form this knowledge has. 
–  Its syntactic knowledge is not modular. 

•  It knows a lot of weak semantic associations 
–  E.g. it knows Plato is associated with Wittgenstein and 

cabbage is associated with vegetable. 



RNNs for predicting the next word 

•  Tomas Mikolov and his collaborators have recently trained quite large 
RNNs on quite large training sets using BPTT. 
–  They do better than feed-forward neural nets. 
–  They do better than the best other models.  
–  They do even better when averaged with other models.  

•  RNNs require much less training data to reach the same level of 
performance as other models. 

•  RNNs improve faster than other methods as the dataset gets bigger. 
–  This is going to make them very hard to beat. 



The key idea of echo state networks (perceptrons again?) 

•  A very simple way to learn a 
feedforward network is to make 
the early layers random and fixed. 

•  Then we just learn the last layer 
which is a linear model that                               
uses the transformed                  
inputs to predict the                     
target outputs. 
–  A big random                      

expansion of                          
the input vector                    
can help. 

•  The equivalent idea for RNNs is 
to fix the inputàhidden 
connections and the 
hiddenàhidden connections at 
random values and only learn the 
hiddenàoutput connections. 
–  The learning is then very 

simple (assuming linear 
output units). 

–  Its important to set the 
random connections very 
carefully so the RNN does not 
explode or die. 



Setting the random connections in an Echo State 
Network 

•  Set the hiddenàhidden weights 
so that the length of the activity 
vector stays about the same 
after each iteration. 
–  This allows the input to echo 

around the network for a 
long time. 

•  Use sparse connectivity (i.e. set 
most of the weights to zero). 
–  This creates lots of loosely 

coupled oscillators. 

•  Choose the scale of the 
inputàhidden connections very 
carefully. 
–  They need to drive the 

loosely coupled oscillators 
without wiping out the 
information from the past 
that they already contain. 

•  The learning is so fast that we 
can try many different scales for 
the weights and sparsenesses. 
–  This is often necessary. 



A simple example of an echo state network 
INPUT SEQUENCE 
A real-valued time-varying value that specifies the frequency of 
a sine wave. 
 
TARGET OUTPUT SEQUENCE   
A sine wave with the currently specified frequency. 
 
LEARNING METHOD 
Fit a linear model that takes the states of the hidden units as 
input and produces a single scalar output. 



Example from 
Scholarpedia 



The target and predicted outputs after learning 



Beyond echo state networks 
•  Good aspects of ESNs               

Echo state networks can be 
trained very fast because they just 
fit a linear model. 

•  They demonstrate that its very 
important to initialize weights 
sensibly. 

•  They can do impressive modeling 
of one-dimensional time-series. 
–  but they cannot compete 

seriously for high-dimensional 
data like pre-processed 
speech. 

•  Bad aspects of ESNs             
They need many more hidden 
units for a given task than an 
RNN that learns the 
hiddenàhidden weights. 

•  Ilya Sutskever (2012) has 
shown that if the weights are 
initialized using the ESN 
methods, RNNs can be 
trained very effectively. 
–  He uses rmsprop with 

momentum. 


