
Geoffrey Hinton

CSC2535 2013: Advanced Machine Learning

Lecture 10
Recurrent neural networks

Getting targets when modeling sequences

•  When applying machine learning to sequences, we often want to turn an input

sequence into an output sequence that lives in a different domain.
–  E. g. turn a sequence of sound pressures into a sequence of word identities.

•  When there is no separate target sequence, we can get a teaching signal by trying
to predict the next term in the input sequence.
–  The target output sequence is the input sequence with an advance of 1 step.
–  This seems much more natural than trying to predict one pixel in an image

from the other pixels, or one patch of an image from the rest of the image.
–  For temporal sequences there is a natural order for the predictions.

•  Predicting the next term in a sequence blurs the distinction between supervised
and unsupervised learning.
–  It uses methods designed for supervised learning, but it doesn’t require a

separate teaching signal.

Memoryless models for sequences

•  Autoregressive models
Predict the next term in a
sequence from a fixed number of
previous terms using “delay taps”.

•  Feed-forward neural nets
These generalize autoregressive
models by using one or more
layers of non-linear hidden units.

input(t-2) input(t-1) input(t)

wt−2

hidden

wt−1

input(t-2) input(t-1) input(t)

Beyond memoryless models
•  If we give our generative model some hidden state, and if we give

this hidden state its own internal dynamics, we get a much more
interesting kind of model.
–  It can store information in its hidden state for a long time.
–  If the dynamics is noisy and the way it generates outputs from its

hidden state is noisy, we can never know its exact hidden state.
–  The best we can do is to infer a probability distribution over the

space of hidden state vectors.
•  This inference is only tractable for two types of hidden state model.

Linear Dynamical Systems (engineers love them!)
•  These are generative models. They have a real-

valued hidden state that cannot be observed
directly.
–  The hidden state has linear dynamics with

Gaussian noise and produces the observations
using a linear model with Gaussian noise.

–  There may also be driving inputs.
•  To predict the next output (so that we can shoot

down the missile) we need to infer the hidden
state.
–  A linearly transformed Gaussian is a Gaussian. So

the distribution over the hidden state given the data
so far is Gaussian. It can be computed using
“Kalman filtering”.

driving
input

hidden

hidden

hidden

output

output

output
time à

driving
input

driving
input

Hidden Markov Models (computer scientists love them!)
•  Hidden Markov Models have a discrete one-

of-N hidden state. Transitions between states
are stochastic and controlled by a transition
matrix. The outputs produced by a state are
stochastic.
–  We cannot be sure which state produced a

given output. So the state is “hidden”.
–  It is easy to represent a probability distribution

across N states with N numbers.
•  To predict the next output we need to infer the

probability distribution over hidden states.
–  HMMs have efficient algorithms for

inference and learning.

output

output

output

time à

A fundamental limitation of HMMs
•  Consider what happens when a hidden Markov model generates

data.
–  At each time step it must select one of its hidden states. So with N

hidden states it can only remember log(N) bits about what it generated
so far.

•  Consider the information that the first half of an utterance contains
about the second half:
–  The syntax needs to fit (e.g. number and tense agreement).
–  The semantics needs to fit. The intonation needs to fit.
–  The accent, rate, volume, and vocal tract characteristics must all fit.

•  All these aspects combined could be 100 bits of information that the
first half of an utterance needs to convey to the second half. 2^100
is big!

Recurrent neural networks
•  RNNs are very powerful, because they

combine two properties:
–  Distributed hidden state that allows

them to store a lot of information
about the past efficiently.

–  Non-linear dynamics that allows
them to update their hidden state in
complicated ways.

•  With enough neurons and time, RNNs
can compute anything that can be
computed by your computer.

input

input

input

hidden

hidden

hidden

output

output

output
time à

Do generative models need to be stochastic?

•  Linear dynamical systems and
hidden Markov models are
stochastic models.
–  But the posterior probability

distribution over their
hidden states given the
observed data so far is a
deterministic function of the
data.

•  Recurrent neural networks are
deterministic.
–  So think of the hidden state

of an RNN as the
equivalent of the
deterministic probability
distribution over hidden
states in a linear dynamical
system or hidden Markov
model.

Recurrent neural networks
•  What kinds of behaviour can RNNs exhibit?

–  They can oscillate. Good for motor control?
–  They can settle to point attractors. Good for retrieving memories?
–  They can behave chaotically. Bad for information processing?
–  RNNs could potentially learn to implement lots of small programs

that each capture a nugget of knowledge and run in parallel,
interacting to produce very complicated effects.

•  But the computational power of RNNs makes them very hard to train.
–  For many years we could not exploit the computational power of

RNNs despite some heroic efforts (e.g. Tony Robinson’s speech
recognizer).

The equivalence between feedforward nets and recurrent
nets

w1 w4

w2 w3
w1 w2 W3 W4

time=0

time=2

time=1

time=3

Assume that there is a time
delay of 1 in using each
connection.

The recurrent net is just a
layered net that keeps
reusing the same weights.

w1 w2 W3 W4

w1 w2 W3 W4

Reminder: Backpropagation with weight
constraints

•  It is easy to modify the backprop
algorithm to incorporate linear
constraints between the
weights.

•  We compute the gradients as
usual, and then modify the
gradients so that they satisfy the
constraints.
–  So if the weights started off

satisfying the constraints,
they will continue to satisfy
them.

21
21

21

21

21

:

:
:

wandwfor
w
E

w
Euse

w
Eand

w
Ecompute

wwneedwe
wwconstrainTo

∂

∂
+

∂

∂

∂

∂

∂

∂

Δ=Δ

=

Backpropagation through time

•  We can think of the recurrent net as a layered, feed-forward
net with shared weights and then train the feed-forward net
with weight constraints.

•  We can also think of this training algorithm in the time domain:
–  The forward pass builds up a stack of the activities of all

the units at each time step.
–  The backward pass peels activities off the stack to

compute the error derivatives at each time step.
–  After the backward pass we add together the derivatives at

all the different times for each weight.

An irritating extra issue

•  We need to specify the initial activity state of all the hidden and output
units.

•  We could just fix these initial states to have some default value like 0.5.
•  But it is better to treat the initial states as learned parameters.
•  We learn them in the same way as we learn the weights.

–  Start off with an initial random guess for the initial states.
–  At the end of each training sequence, backpropagate through time

all the way to the initial states to get the gradient of the error function
with respect to each initial state.

–  Adjust the initial states by following the negative gradient.

Providing input to recurrent networks
•  We can specify inputs in several

ways:
–  Specify the initial states of all

the units.
–  Specify the initial states of a

subset of the units.
–  Specify the states of the same

subset of the units at every time
step.

•  This is the natural way to
model most sequential data.

w1 w2 W3 W4

time

à

w1 w2 W3 W4

w1 w2 W3 W4

Teaching signals for recurrent networks
•  We can specify targets in several

ways:
–  Specify desired final activities of

all the units
–  Specify desired activities of all

units for the last few steps
•  Good for learning attractors
•  It is easy to add in extra error

derivatives as we
backpropagate.

–  Specify the desired activity of a
subset of the units.

•  The other units are input or
hidden units.

w1 w2 W3 W4

w1 w2 W3 W4

w1 w2 W3 W4

A good toy problem for a recurrent network
•  We can train a feedforward net to do

binary addition, but there are obvious
regularities that it cannot capture
efficiently.
–  We must decide in advance the

maximum number of digits in each
number.

–  The processing applied to the
beginning of a long number does not
generalize to the end of the long
number because it uses different
weights.

•  As a result, feedforward nets do not
generalize well on the binary addition
task.

00100110 10100110

11001100

hidden units

The algorithm for binary addition

no carry
print 1

carry
print 1

no carry
print 0

carry
print 0

1
1

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
1

1
1

This is a finite state automaton. It decides what transition to make by looking at the next
column. It prints after making the transition. It moves from right to left over the two input
numbers.

1
1

A recurrent net for binary addition
•  The network has two input units

and one output unit.
•  It is given two input digits at each

time step.
•  The desired output at each time

step is the output for the column
that was provided as input two time
steps ago.
–  It takes one time step to update

the hidden units based on the
two input digits.

–  It takes another time step for the
hidden units to cause the
output.

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1

1 0 0 0 0 0 0 1
time

The connectivity of the network

•  The 3 hidden units are fully
interconnected in both
directions.
–  This allows a hidden

activity pattern at one
time step to vote for the
hidden activity pattern at
the next time step.

•  The input units have
feedforward connections that
allow then to vote for the
next hidden activity pattern.

3 fully interconnected hidden units

What the network learns
•  It learns four distinct patterns of

activity for the 3 hidden units.
These patterns correspond to the
nodes in the finite state
automaton.
–  Do not confuse units in a

neural network with nodes in a
finite state automaton. Nodes
are like activity vectors.

–  The automaton is restricted to
be in exactly one state at each
time. The hidden units are
restricted to have exactly one
vector of activity at each time.

•  A recurrent network can emulate
a finite state automaton, but it is
exponentially more powerful. With
N hidden neurons it has 2^N
possible binary activity vectors
(but only N^2 weights)
–  This is important when the

input stream has two separate
things going on at once.

–  A finite state automaton
needs to square its number of
states.

–  An RNN needs to double its
number of units.

The backward pass is linear
•  There is a big difference between the

forward and backward passes.
•  In the forward pass we use squashing

functions (like the logistic) to prevent the
activity vectors from exploding.

•  The backward pass, is completely linear. If
you double the error derivatives at the final
layer, all the error derivatives will double.
–  The forward pass determines the slope

of the linear function used for
backpropagating through each neuron.

The problem of exploding or vanishing gradients

•  What happens to the magnitude of the
gradients as we backpropagate
through many layers?
–  If the weights are small, the

gradients shrink exponentially.
–  If the weights are big the gradients

grow exponentially.
•  Typical feed-forward neural nets can

cope with these exponential effects
because they only have a few hidden
layers.

•  In an RNN trained on long sequences
(e.g. 100 time steps) the gradients
can easily explode or vanish.
–  We can avoid this by initializing

the weights very carefully.
•  Even with good initial weights, its very

hard to detect that the current target
output depends on an input from
many time-steps ago.
–  So RNNs have difficulty dealing

with long-range dependencies.

Why the back-propagated gradient blows up

•  If we start a trajectory within an attractor, small changes in where we
start make no difference to where we end up.

•  But if we start almost exactly on the boundary, tiny changes can make a
huge difference.

Four effective ways to learn an RNN

•  Long Short Term Memory
Make the RNN out of little
modules that are designed to
remember values for a long time.

•  Hessian Free Optimization: Deal
with the vanishing gradients
problem by using a fancy
optimizer that can detect
directions with a tiny gradient but
even smaller curvature.
–  The HF optimizer (Martens &

Sutskever, 2011) is good at
this.

•  Echo State Networks: Initialize the
inputàhidden and hiddenàhidden and
outputàhidden connections very
carefully so that the hidden state has a
huge reservoir of weakly coupled
oscillators which can be selectively driven
by the input.
–  ESNs only need to learn the

hiddenàoutput connections.
•  Good initialization with momentum

Initialize like in Echo State Networks, but
then learn all of the connections using
momentum.

Long Short Term Memory (LSTM)

•  Hochreiter & Schmidhuber
(1997) solved the problem of
getting an RNN to remember
things for a long time (like
hundreds of time steps).

•  They designed a memory cell
using logistic and linear units
with multiplicative interactions.

•  Information gets into the cell
whenever its “write” gate is on.

•  The information stays in the
cell so long as its “keep” gate
is on.

•  Information can be read from
the cell by turning on its “read”
gate.

Implementing a memory cell in a neural network

•  To preserve information for a long time in
the activities of an RNN, we use a circuit
that implements an analog memory cell.
–  A linear unit that has a self-link with a

weight of 1 will maintain its state.
–  Information is stored in the cell by

activating its write gate.
–  Information is retrieved by activating

the read gate.
–  We can backpropagate through this

circuit because logistics are have nice
derivatives.

output to
rest of RNN

input from
rest of RNN

read
gate

write
gate

keep
gate

 1.73

Backpropagation through a memory cell

read
1

write
0

keep
1

 1.7

read
0

write
0

 1.7

read
0

write
1

 1.7

 1.7 1.7

keep
1

keep
0

keep
0

time à

Reading cursive handwriting

•  This is a natural task for an
RNN.

•  The input is a sequence of
(x,y,p) coordinates of the tip of
the pen, where p indicates
whether the pen is up or down.

•  The output is a sequence of
characters.

•  Graves & Schmidhuber (2009)
showed that RNNs with LSTM
are currently the best systems
for reading cursive writing.
–  They used a sequence of

small images as input
rather than pen
coordinates.

A demonstration of online handwriting recognition by an
RNN with Long Short Term Memory (from Alex Graves)

•  The movie that follows shows several different things:
•  Row 1: This shows when the characters are recognized.

–  It never revises its output so difficult decisions are more delayed.
•  Row 2: This shows the states of a subset of the memory cells.

–  Notice how they get reset when it recognizes a character.
•  Row 3: This shows the writing. The net sees the x and y coordinates.

–  Optical input actually works a bit better than pen coordinates.
•  Row 4: This shows the gradient backpropagated all the way to the x and

y inputs from the currently most active character.
–  This lets you see which bits of the data are influencing the decision.

SHOW ALEX GRAVES’ MOVIE

How much can we reduce the error
by moving in a given direction?

•  If we choose a direction to move in and we keep
going in that direction, how much does the error
decrease before it starts rising again? We assume
the curvature is constant (i.e. it’s a quadratic error surface).
–  Assume the magnitude of the gradient decreases as we

move down the gradient (i.e. the error surface is convex
upward).

•  The maximum error reduction depends on the ratio of the
gradient to the curvature. So a good direction to move in is one
with a high ratio of gradient to curvature, even if the gradient
itself is small.
–  How can we find directions like these?

better
ratio

Newton’s method
•  The basic problem with steepest descent on a quadratic error surface

is that the gradient is not the direction we want to go in.
–  If the error surface has circular cross-sections, the gradient is fine.
–  So lets apply a linear transformation that turns ellipses into circles.

•  Newton’s method multiplies the gradient vector by the inverse of the
curvature matrix, H:

–  On a real quadratic surface it jumps to the minimum in one step.
–  Unfortunately, with only a million weights, the curvature matrix has

a trillion terms and it is totally infeasible to invert it.

Δw = − ε H (w)−1 dE
dw

Curvature Matrices
•  Each element in the curvature matrix

specifies how the gradient in one
direction changes as we move in
some other direction.
–  The off-diagonal terms correspond

to twists in the error surface.
•  The reason steepest descent goes

wrong is that the gradient for one
weight gets messed up by the
simultaneous changes to all the other
weights.
–  The curvature matrix determines

the sizes of these interactions.

i j k

i

j

k

2

2

kw
E

∂

∂

j

i
w
w

E

∂

∂
∂∂)(

i

j

w
w

E

∂

∂
∂∂)(

How to avoid inverting a huge matrix
•  The curvature matrix has too many terms to be of use in a big network.

–  Maybe we can get some benefit from just using the terms along the
leading diagonal (Le Cun). But the diagonal terms are only a tiny
fraction of the interactions (they are the self-interactions).

•  The curvature matrix can be approximated in many different ways
–  Hessian-free methods, LBFGS, …

•  In the HF method, we make an approximation to the curvature matrix
and then, assuming that approximation is correct, we minimize the error
using an efficient technique called conjugate gradient. Then we make
another approximation to the curvature matrix and minimize again.
–  For RNNs its important to add a penalty for changing any of the

hidden activities too much.

Conjugate gradient

•  There is an alternative to going to the minimum in one step by
multiplying by the inverse of the curvature matrix.

•  Use a sequence of steps each of which finds the minimum along
one direction.

•  Make sure that each new direction is “conjugate” to the previous
directions so you do not mess up the minimization you already did.
–  “conjugate” means that as you go in the new direction, you do

not change the gradients in the previous directions.

A picture of conjugate gradient

The gradient in the direction of
the first step is zero at all points
on the green line.

So if we move along the green
line we don’t mess up the
minimization we already did in
the first direction.

What does conjugate gradient achieve?

•  After N steps, conjugate gradient is guaranteed to find the minimum
of an N-dimensional quadratic surface. Why?
–  After many less than N steps it has typically got the error very

close to the minimum value.
•  Conjugate gradient can be applied directly to a non-quadratic error

surface and it usually works quite well (non-linear conjugate grad.)
•  The HF optimizer uses conjugate gradient for minimization on a

genuinely quadratic surface where it excels.
–  The genuinely quadratic surface is the quadratic approximation

to the true surface.

Modeling text: Advantages of working with characters
•  The web is composed of character strings.
•  Any learning method powerful enough to understand the world by

reading the web ought to find it trivial to learn which strings make
words (this turns out to be true, as we shall see).

•  Pre-processing text to get words is a big hassle
–  What about morphemes (prefixes, suffixes etc)
–  What about subtle effects like “sn” words?
–  What about New York?
–  What about Finnish

•  ymmartamattomyydellansakaan

An obvious recurrent neural net
1500	
hidden	
units	

character:	
1-‐of-‐86	

1500	
hidden	
units	

c
predicted	 distribu8on	 	
for	 next	 character.	 	 	

It’s	 a	 lot	 easier	 to	 predict	 86	 characters	 than	 100,000	 words.	

softmax

A sub-tree in the tree of all character strings

•  If the nodes are implemented as hidden states in an RNN, different
nodes can share structure because they use distributed representations.

•  The next hidden representation needs to depend on the conjunction of
the current character and the current hidden representation.

...fix

…fixi

…fixin

i e

n

In an RNN, each
node is a hidden
state vector. The
next character
must transform this
to a new node.

…fixe

There are
exponentially many
nodes in the tree of
all character strings
of length N.

Multiplicative connections
•  Instead of using the inputs to the recurrent net to provide additive

extra input to the hidden units, we could use the current input
character to choose the whole hidden-to-hidden weight matrix.
–  But this requires 86x1500x1500 parameters
–  This could make the net overfit.

•  Can we achieve the same kind of multiplicative interaction using
fewer parameters?
–  We want a different transition matrix for each of the 86

characters, but we want these 86 character-specific weight
matrices to share parameters (the characters 9 and 8 should
have similar matrices).

Using factors to implement multiplicative interactions
•  We can get groups a and b to interact multiplicatively by using

“factors”.
–  Each factor first computes a weighted sum for each of its input

groups.
–  Then it sends the product of the weighted sums to its output group.

c f = bTw f() aTu f() v f
vector of
inputs to
group c

scalar
input to f
from group
b

scalar
input to f
from group
a

fu fv
f

w f

Group b

G
ro

up
 a

G
ro

up
 c

Using factors to implement a set of basis matrices
•  We can think about factors

another way:
–  Each factor defines a rank

1 transition matrix from a
to c.

c f = bTw f() aTu f() v f

c f = bTw f() u f v f
T() a

scalar
coefficient

outer product
transition
matrix with
rank 1

c = bTw f() u f v fT()
f
∑
"

#
$
$

%

&
'
' a

fu fv
f

w f

Group b

G
ro

up
 a

G
ro

up
 c

1500	
hidden	
units	

character:	 1-‐of-‐86	

Using 3-way factors to allow a character to create a whole
transition matrix

predicted	 distribu8on	 	
for	 next	 character	

1500	
hidden	
units	

fu fv
f

Each factor, f, defines a
rank one matrix , T

ff vu

Each character, k, determines a gain for each of these matrices.

wkf

wkf

k

Training the character model
•  Ilya Sutskever used 5 million strings of 100 characters taken from

wikipedia. For each string he starts predicting at the 11th character.
•  Using the HF optimizer, it took a month on a GPU board to get a

really good model.
•  Ilya’s current best RNN is probably the best single model for

character prediction (combinations of many models do better).
•  It works in a very different way from the best other models.

–  It can balance quotes and brackets over long distances. Models
that rely on matching previous contexts cannot do this.

How to generate character strings from the model

•  Start the model with its default hidden state.
•  Give it a “burn-in” sequence of characters and let it update its

hidden state after each character.
•  Then look at the probability distribution it predicts for the next

character.
•  Pick a character randomly from that distribution and tell the net that

this was the character that actually occurred.
–  i.e. tell it that its guess was correct, whatever it guessed.

•  Continue to let it pick characters until bored.
•  Look at the character strings it produces to see what it “knows”.

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters‘ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

Some completions produced by the model

•  Sheila thrunges (most frequent)
•  People thrunge (most frequent next character is space)
•  Shiela, Thrungelini del Rey (first try)
•  The meaning of life is literary recognition. (6th try)

•  The meaning of life is the tradition of the ancient human reproduction: it is
less favorable to the good boy for when to remove her bigger.
(one of the first 10 tries for a model trained for longer).

What does it know?

•  It knows a huge number of words and a lot about proper names,
dates, and numbers.

•  It is good at balancing quotes and brackets.
–  It can count brackets: none, one, many

•  It knows a lot about syntax but its very hard to pin down exactly
what form this knowledge has.
–  Its syntactic knowledge is not modular.

•  It knows a lot of weak semantic associations
–  E.g. it knows Plato is associated with Wittgenstein and

cabbage is associated with vegetable.

RNNs for predicting the next word

•  Tomas Mikolov and his collaborators have recently trained quite large
RNNs on quite large training sets using BPTT.
–  They do better than feed-forward neural nets.
–  They do better than the best other models.
–  They do even better when averaged with other models.

•  RNNs require much less training data to reach the same level of
performance as other models.

•  RNNs improve faster than other methods as the dataset gets bigger.
–  This is going to make them very hard to beat.

The key idea of echo state networks (perceptrons again?)

•  A very simple way to learn a
feedforward network is to make
the early layers random and fixed.

•  Then we just learn the last layer
which is a linear model that
uses the transformed
inputs to predict the
target outputs.
–  A big random

expansion of
the input vector
can help.

•  The equivalent idea for RNNs is
to fix the inputàhidden
connections and the
hiddenàhidden connections at
random values and only learn the
hiddenàoutput connections.
–  The learning is then very

simple (assuming linear
output units).

–  Its important to set the
random connections very
carefully so the RNN does not
explode or die.

Setting the random connections in an Echo State
Network

•  Set the hiddenàhidden weights
so that the length of the activity
vector stays about the same
after each iteration.
–  This allows the input to echo

around the network for a
long time.

•  Use sparse connectivity (i.e. set
most of the weights to zero).
–  This creates lots of loosely

coupled oscillators.

•  Choose the scale of the
inputàhidden connections very
carefully.
–  They need to drive the

loosely coupled oscillators
without wiping out the
information from the past
that they already contain.

•  The learning is so fast that we
can try many different scales for
the weights and sparsenesses.
–  This is often necessary.

A simple example of an echo state network
INPUT SEQUENCE
A real-valued time-varying value that specifies the frequency of
a sine wave.

TARGET OUTPUT SEQUENCE
A sine wave with the currently specified frequency.

LEARNING METHOD
Fit a linear model that takes the states of the hidden units as
input and produces a single scalar output.

Example from
Scholarpedia

The target and predicted outputs after learning

Beyond echo state networks
•  Good aspects of ESNs

Echo state networks can be
trained very fast because they just
fit a linear model.

•  They demonstrate that its very
important to initialize weights
sensibly.

•  They can do impressive modeling
of one-dimensional time-series.
–  but they cannot compete

seriously for high-dimensional
data like pre-processed
speech.

•  Bad aspects of ESNs
They need many more hidden
units for a given task than an
RNN that learns the
hiddenàhidden weights.

•  Ilya Sutskever (2012) has
shown that if the weights are
initialized using the ESN
methods, RNNs can be
trained very effectively.
–  He uses rmsprop with

momentum.

