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Introduction 
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Introduction: Collaborative Filtering  

Collaborative filtering – users assign ratings to items à 
system uses information from all users to recommend 
previously unseen items that a user might like 
 
 

One approach to recommendation: predict ratings for all unrated items, 
recommend highest predicted ratings 
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Collaborative Filtering:  
Collaborative Prediction Problem 

?
?

?
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Introduction: Missing Data  
 
Critical assumption: missing ratings are missing at random 
 
One way to violate: value of variable affects probability value 
will be missing – bias in observed ratings, and hence learned 
parameters 
 
Also complementary bias in standard testing procedure – 
distribution of observed data different from distribution of 
complete data, so estimated error on observed test data poor 
estimate of complete data error 
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Introduction: Survey Sampling Example 

Data  
Variables 

Response 
 Variables 

R 

X Answers to questions. 

Did the respondent  
answer the question? 
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Introduction: Medical Diagnosis Example 

Latent  
Variables 

Data  
Variables 

Response 
 Variables 

R 

X 

Z Diseases 

Symptoms 

Was a test performed to 
check for the symptom? 
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Introduction: Recommender Systems Example 

Latent  
Variables 

Data  
Variables 

Response 
 Variables 

R 

X 

Z 
Preferences and 
Tastes 

Ratings or Purchase 
History  

Did the user rate  
or buy the item? 
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Introduction: Basic Notation 

Number of data cases. 

Number of clusters or hidden units. 

Number of multinomial values. 

Number of classes. 

Number of data dimensions. 
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Missing Data 

Observed Data 

Missing 
Dimensions 

Observed 
Dimensions 

Response Vector 

Data Vector 

Introduction: Notation for Missing Data 
0.3 0.7 0.2 0.9 0.1 

1 1 0 0 1 

5 4 1 

3 2 

0.3 0.7 0.1 

0.2 0.9 
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Theory of Missing Data: Generative Process 

Latent  
Variables 

Data  
Variables 

Response 
 Variables 

Data Model 

R 

X 

Z 

Missing Data 
Model 

R 

X 

Z 

µ	



θ	
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Theory of Missing Data: Factorizations 
Data/Selection Model Factorization: 

•  The probability of selection depends on the true values 
of the data variables and latent variables.  

Pattern Mixture Model Factorization: 

•  Each response vector defines a different pattern, and 
each pattern has a different distribution over the data.  
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Theory of Missing Data: Classification 

MCAR: 

R 

X 

Z 

µ	



θ	



Missing Completely at Random: 
 

•  Response probability is independent of data variables and 
latent variables. 

MCAR Examples: 
 

Send questionnaires to a 
random subset of the population 
or use random digit dialing. 
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Theory of Missing Data: Classification 
Missing at Random: 
 

•  Typically written in a short-hand form that looks like a 
statement of probabilistic independence:   

•  MAR is actually a different type of condition that requires a 
particular set of symmetries hold in P(r|x,z,µ): 
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Theory of Missing Data: Classification 
Missing at Random Examples: 

Respondents are not required to provide information 
about their employer if they are not currently 
employed.  

Doctor only orders test B if the result of test A was 
negative. If result of test A is positive, result for test B 
is missing.  
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Theory of Missing Data: Classification 
What Does it mean to be Missing at Random?  
 

•  MAR is not a statement of independence between 
random variables. MAR requires that particular 
symmetries hold so that P(R=r|X=x) can be determined 
from observed data only.  
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Theory of Missing Data: Classification 

MCAR: 

R 

X 

Z 

µ	



θ	



Not Missing at Random: 
 

•  Allows for arbitrary dependence of response probabilities on 
missing data values and latent variables: 

No Simplifications 

An Easy Way to Violate MAR: 
 

•  Let the probability that a data 
variable is observed depend on the 
value of that data variable. 
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Theory of Missing Data: Classification 
Not Missing at Random Examples: 

Snowfall reading is likely to be missing if weather 
station is covered with snow.  

Users are more likely to rate or buy items they like 
than items they don’t like. 

Participants in a longitudinal health study for a heart 
medication may die of a heart attack during the study. 
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Theory of Missing Data: Inference 
MCAR/MAR Posterior: 

•  When MCAR or MAR holds, the posterior can be greatly 
simplified. Inference for θ does not depend on r, µ, or η. 
The missing data can be ignored. 
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Theory of Missing Data: Inference 
NMAR Posterior: 

•  When MAR fails to hold, the posterior does not simplify.  

•  Basing inference on the observed data posterior and 
ignoring the missing data model leads to provably biased 
inference for data model parameters. 
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Multinomial Models: Mixture 

Probability Model: 

  

Properties: 
•  Allows for a fixed, finite number of clusters.  
 

•  In the multinomial mixture, P(xn|βk) is a 
product of discrete distributions. The prior on β 
and θ is Dirichlet. 
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Multinomial Models: Mixture 
Dirichlet Distribution: 
 

Bayesian mixture modeling becomes much easier when conjugate priors 
are used for the model parameters. The conjugate prior for the mixture 
proportions θ is the Dirichlet distribution.   
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Multinomial Models: Mixture 
MAP EM Algorithm: 
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Multinomial Models: Mixture/CPT-v 
Probability Model: 
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Multinomial Models: Mixture/CPT-v 
Probability Model: 
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Multinomial Models: Mixture/CPT-v 
MAP EM Algorithm (E-Step): 
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Multinomial Models: Mixture/CPT-v 
MAP EM Algorithm (M-Step): 
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DEMO 
Multinomial Mixture Learning With 

Random and Non-Random Missing Data 
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Other Models for Missing Data: 
•  K-Nearest Neighbors  
•  Probabilistic Principal Components Analysis 
•  Factor Analysis  
•  Mixtures of Gaussians 
•  Mixtures of PPCA/FA 
•  Probabilistic Matrix Factorization 
•  Maximum Margin Matrix Factorization 
•  Conditional Restricted Boltzmann Machines  
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Collaborative Filtering:  
Collaborative Prediction Problem 

?
?

?
?

? ?
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Collaborative Filtering : Yahoo!  
Data was collected through an online survey of 
Yahoo! Music LaunchCast radio users. 

•  1000 songs selected at random. 

•  Users rate 10 songs selected at 
random from 1000 songs. 

•  Answer 16 questions. 

•  Collected data from 35,000+ 
users. 

Image copyright Yahoo! Inc. 2006. Used with permission. 
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Collaborative Filtering: Yahoo!  

User Selected Randomly Selected 
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More Empirical Distributions  
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Collaborative Filtering: Jester 

Jester gauge set of 10 jokes used as complete 
data. Synthetic missing data was added. 

•  15,000 users randomly selected 
 

•  Missing data model: µv(s) = s(v-3)+0.5 
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Experimental Protocol 
Randomly partition users into 5 blocks of 1080 users 
 
Three sets of ratings: 

1.  Observed ratings – all but one of original ratings 
2.  Test ratings for user-selected – remaining one 
3.  Test ratings for randomly-selected – ten survey 

responses 

User-selected items – same distribution as observed 
Randomly selected test items -- MCAR 
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Experimental Protocol 

Weak Generalization 
•  Learn on training user observed ratings 
•  Evaluate on training user test ratings 

Strong Generalization 
•  Learn on training user observed ratings 
•  Evaluate on test user test ratings 
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Data Sets: User Splits 
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Data Sets: User Splits 
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Collaborative Filtering: Results 
Jester Results: MM vs MM/CPT-v 
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Collaborative Filtering: Baselines 

1.  Item-based K-nearest neighbor (iKNN) 
2.  cRBM 
3.  Matrix factorization 

Standard CF methods implicitly assume MAR 
 
Here we compare to three other CF methods:  
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Conditional RBM for CF 
Restricted Boltzmann Machines for Collaborative Filtering
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Figure 2. Conditional RBM. The binary vector r, indi-
cating rated/unrated movies, affects binary states of the
hidden units.

missing ratings and it does not perform any computa-
tions that scale with the number of missing ratings.

There is a more subtle source of information in the
Netflix database that cannot be captured by the “stan-
dard” multinomial RBM. Netflix tells us in advance
which user/movie pairs occur in the test set, so we
have a third category: movies that were viewed but
for which the rating is unknown. This is a valuable
source of information about users who occur several
times in the test set, especially if they only gave a
small number of ratings in the training set. If, for ex-
ample, a user is known to have rated “Rocky 5”, we
already have a good bet about the kinds of movies he
likes.

The conditional RBM model takes this extra informa-
tion into account. Let r ∈ {0, 1}M be a binary vec-
tor of length M (total number of movies), indicating
which movies the user rated (even if these ratings are
unknown). The idea is to define a joint distribution
over (V,h) conditional on r. In the proposed condi-
tional model, a vector r will affect the states of the
hidden units (see Fig. 2):

p(vk
i = 1|h) =

exp (bk
i +

∑F
j=1 hjW k

ij)
∑K

l=1 exp
(
bl
i +

∑F
j=1 hjW l

ij

)

p(hj = 1|V, r) = σ

(
bj +

m∑

i=1

K∑

k=1

vk
i W k

ij +
M∑

i=1

riDij

])

where Dij is an element of a learned matrix that mod-
els the effect of r on h. Learning D using CD is similar

to learning biases and takes the form:

∆Dij = ε

(
<hj>data − <hj>T

)
ri (12)

We could instead define an arbitrary nonlinear func-
tion f(r|θ). Provided f is differentiable with respect
to θ, we could use backpropagation to learn θ:

∆θ = ε

(
<hj>data − <hj>T

)
∂f(r|θ)

∂θ
(13)

In particular, f(r|θ) can be parameterized as a multi-
layer neural network.

Conditional RBM models have been successfully used
for modeling temporal data, such as motion cap-
ture data (Taylor et al., 2006), or video sequences
(Sutskever & Hinton, 2006). For the Netflix task, con-
ditioning on a vector of rated/unrated movies proves
to be quite helpful – it significantly improves perfor-
mance.

Instead of using a conditional RBM, we can impute
the missing ratings from the ordinary RBM model.
Suppose a user rated a movie t, but his/her rating is
missing (i.e. it was provided as a part of the test set).
We can initialize vt to the base rate of movie t, and
compute the gradient of the log-probability of the data
with respect to this input (Eq. 3). The CD learning
takes form:

∆vk
t = ε

(
<

∑

j

W k
t hj>data − <

∑

j

W k
t hj>T

)

After updating vk
t , for k = 1, ..,K, vk

t are renormalized
to obtain probability distribution over K values. The
imputed values vt will now contribute to the energy
term of Eq. 4 and will affect the states of the hidden
units. Imputing missing values by following an ap-
proximate gradient of CD works quite well on a small
subset of the Netflix data set, but is slow for the com-
plete data set. Alternatively, we can use a set of mean
field equations Eqs. 9, 10 to impute the missing val-
ues. The imputed values will be quite noisy, especially
at the early stages of training. Nevertheless, in our
experiments, the model performance was significantly
improved by using imputations and was comparable to
the performance of the conditional RBM.

5. Conditional Factored RBM’s

One disadvantage of the RBM models we have de-
scribed so far is that their current parameterization of
W ∈ RM×K×F results in a large number of free param-
eters. In our current implementation, with F = 100
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Probabilistic Matrix Factorization  Probabilistic Matrix Factorization
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• Let Rij represent the rating of user i for movie j. The row and
column vectors Ui and Vj represent user-specific and movie-specific
latent feature vectors respectively.

• The model:

p(Rij|Ui, Vj,σ
2) = N (Rij|U

T
i Vj,σ

2)

6
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Collaborative Filtering: Results 
Comparison of Results on Yahoo! Data 
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Collaborative Filtering: Results 
Comparison of Results on Yahoo! Data 
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Figure 4: Figure (a) presents the test set rating prediction error on randomly selected items. Figure (b) presents the test set
NDCG@L results on randomly selected items. The methods are iKNN, MF, MM/MAR, MM/CPT-v, and MM/Logit-vd.

Figure 4(b) shows the test NDCG@L performance for each
model estimated on lists of ratings for the 10 randomly se-
lected items. We select the optimal complexity for each
model based on cross validation NDCG@L scores. The re-
sults again show that the MM/Logit-vd and MM/CPT-v mod-
els, which do not assume the MAR condition, outperform the
MM, iKNN and MF models, which do assume random miss-
ing data.

7 Conclusions
In this paper, we have explored properties of the missing data
process in recommender systems, discussed their impact on
the validity of standard statistical model estimation and eval-
uation procedures, and described and tested extended mod-
eling and evaluation frameworks that seek to overcome the
problems caused by non-random missing data. The develop-
ment of more sophisticated models within the extended mod-
eling framework is of great interest, as is the design of bet-
ter test sets for ranking. The question of how non-random
missing data affects methods for learning to rank is also of
great interest. The continued convergence of recommender
systems, content-based search and social networks raises the
question of the extent to which the detrimental effects of non-
randommissing ratings can be mitigated by incorporating ad-
ditional sources of information including content-based fea-
tures for items (including social tags) and information about
both individual users and the relationships between users.
This is a very interesting direction for future research.
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Application to Ranking 

imization (EM) algorithm [Dempster et al., 1977]. The per-
iteration complexity of the algorithm scales linearly with the
number of observed ratings. In the case of the multinomial
mixture model combined with the CPT-v and Logit-vd miss-
ing data models, efficient EM algorithms can be also derived
where the computational complexity per iteration is domi-
nated by the number of observed ratings. This is the main ad-
vantage of using simplified missing data models. We use the
EM algorithm to simultaneously learn the parameters of both
the data and missing data models in all of the experiments
described in the following sections. Further details regard-
ing the estimation and prediction algorithms for these mod-
els can be found in our previous work [Marlin et al., 2007;
Marlin and Zemel, 2009].

5 Evaluation Protocols
As described in Section 3, standard empirical protocols for
rating prediction and ranking evaluation can lead to biased
performance estimates in the presence of non-random miss-
ing data, necessitating modified empirical protocols. In the
case of rating prediction, we require a test set that is as close
as possible to a random selection of unrated items. The rat-
ings for randomly selected items collected during the Yahoo!
Music user study described in Section 2 provide just such a
test set since the expected overlap between randomly-selected
items and previously-rated items is low.
We also propose the use of ratings for randomly selected

items for the evaluation of ranking accuracy, although this
choice presents some issues. In particular, since we only have
ten items per user and most of the items in the test set have
low ratings, the ranking evaluation may unduly reflect the
model’s ability to discriminate between items with low rat-
ing values. However, we feel this is preferable to measuring
the ranking performance on a subset of the observed data sub-
ject to a completely unknown observation process. Whether it
is possible to construct better test sets for ranking evaluation
given both sources of ratings is an open question.
The full empirical protocol uses a training set containing

the 5400 users who participated our study (described in Sec-
tion 2), plus an additional 10000 LaunchCast users selected
at random from those with at least 10 ratings on the 1000
songs used in the study data set. All of the training set rat-
ings are ratings for items selected by the users during normal
interaction with the LaunchCast music recommender system
(Figure 1(e)). The validation and test sets contain ratings sub-
sampled from the ratings for randomly-selected items col-
lected during the user study for each of the 5400 study users
(Figure 1(f)).
The models we evaluate include the multinomial mix-

ture model under the MAR assumption (MM/MAR), as well
as the multinomial mixture model combined with the CPT-
v (MM/CPT-v) and Logit-vd (MM/Logit-vd) missing data
models. We also evaluate two very common collaborative
filtering models that implicitly assume random missing data:
a matrix factorization (MF) model [Salakhutdinov and Mnih,
2008] and an item-based K-nearest neighbor method (iKNN)
[Sarwar et al., 2001].
We train each mixture-based model using 1, 5, 10 and 20

mixture components and select the best setting using cross
validation. The prior parameters for all of the mixture-based
models were set to yield broad priors. For the matrix fac-
torization model, we considered ranks K = 1, 5, 10, 20 and
regularization parameters 0.1, 1, 5, 10 and selected the best
values by cross validation. For the item-based KNN method,
we use an adjusted cosine similarity metric [Sarwar et al.,
2001], combined with the standard weighted nearest neigh-
bor prediction rule.
Once the models are trained, we condition on the training

set ratings for each user and predict the ratings for each of
that user’s test items. We form a ranked list of test items for
each user by sorting that user’s test items according to their
predicted ratings.

6 Results
Rating Prediction: We evaluate rating prediction perfor-
mance in terms of normalized mean absolute error (NMAE).
This error measure is proportional to the average absolute dif-
ference between actual and predicted ratings. NMAE is com-
puted as seen below. We assume there are T test items per
user with indices i(1, n) to i(T, n). The normalizing constant
(equal to 1.6) is the expected MAE assuming uniformly dis-
tributed predictions and true ratings. Note that lower NMAE
indicates better prediction performance.

NMAE =
N∑

n=1

T∑

t=1

|xni(t,n) − x̂ni(t,n)|

1.6NT

Figure 4(a) shows the test NMAE score for each of the five
models. We select the optimal complexity for each model
based on cross validation NMAE scores. Standard errors
are represented on the plots using error bars. We see that
the MM/Logit-vd and MM/CPT-v models, which do not as-
sume the MAR condition, drastically outperform the MM,
iKNN and MF models, which do assume random missing
data, when measuring performance on ratings for randomly
selected items.
Ranking: We evaluate the ranked lists of test items

produced by each method using a standard ranking accu-
racy measure, the normalized discounted cumulative gain
(NDCG). NDCG@L measures how well the predicted rank-
ing matches the true ranking (obtained by sorting the items
by their actual ratings) for a ranked list of length L. NDCG
places more emphasis on ranking errors at the top of the or-
dering and is normalized so that the true ranking yields an
accuracy of 1. The NDCG@L score is computed as seen be-
low where π(l, n) is the index of the item with rank l when
test items are sorted in descending order by true rating xnd,
π̂(l, n) is the index of the item with rank l when items are
sorted in descending order according to their predicted rat-
ings x̂nd. When sorting by true and predicted ratings, ties
can be broken arbitrarily without affecting the NDCG@L
score. Note that higher NDCG indicates better ranking per-
formance.

NDCG@L =
N∑

n=1

∑L
l=1(2

xnπ̂(l,n) − 1)/ log(1 + l)

N
∑L

l=1(2
xnπ(l,n) − 1)/ log(1 + l)
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Ranking Results 
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Conclusions 

In real recommender system data, the standard missing-
at-random assumption is typically violated 
 
Methods that include explicit non-random missing data 
model out-perform methods that assume MAR 
 

In practice, the important task is collaborative *ranking*, 
not rating prediction 
 
Our recent results show that combinations of neighbor- 
and model-based approaches to collaborative ranking 
permits scaling to large datasets 
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Collaborative Ranking Results 


