
CSC 2535 - Assignment 1.
Due: Feb 6, 2013, 1pm at START of class

Graphical models

Q. 1) [7 marks] Section 8.21 in Bishop shows three example graphs that form
the basis of D-separation, using 3 variables. Here we want to show how these
hold in the slightly more general case of four variables.

(a) [1 mark] Consider a model with four variables - w, x, y and z, and four
parameters - θ1, θ2, θ3, and θ4 whose joint distribution is given by:

p(w, x, y, z) = pθ1(w)pθ2(x|w)pθ3(z|x)pθ4(y|z)

Mathematically, show that w ⊥ y|z, i.e. p(w, y|z) = p(w|z)p(y|z), or,
equivalently, that p(y|w, z) = p(y|z). You can use the conditional inde-
pendence property p(a, c|b) = p(a|b)p(c|b), for a chain of 3 variables, A →
B → C as given.

(b) [1 mark] Consider the alternative model given by:

p(w, x, y, z) = pθ1(z)pθ2(x|z)pθ3(y|z)pθ4(w|x)

Mathematically, show that w ⊥ y|z. Again, you can use the corresponding
independence property for the model of three variables (A ← B → C) as
given.

(c) [2 marks] Consider the alternative model given by:

p(w, x, y, z) = pθ1(x)pθ2(y)pθ3(w|x, y)pθ4(z|w)

Show that x ⊥ y marginally. Give a counterexample to the conditional
independence assertion: x ⊥ y|z.

(d) [3 marks] Draw the corresponding graphical models for (a), (b), (c) above,
with variable z as the observed node in each case, and the other variables
as unobserved.
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Variational Learning

Q. 2) [3 marks] Consider the following directed model. Let z = {zj}, j =
1 · · · J be the J latent binary variables (i.e. zj ∈ {0, 1}), and x = {xi}, i = 1 · · ·D
be the D real-valued observed variables.
The probability distributions governing this model are as follows:

p(z) =
∏
j

a
zj
j (1− aj)(1−zj)

p(x|z) = N (
∑
j

Wjzj , σ
2I)

where, a1, · · · , aJ are the parameters of the Bernouilli prior on z, W is a JxD
matrix, defining the conditional distribution of x given z, and Wj is the jth row
of W. Data are assumed to be column vectors.
Remember that in the E.M. algorithm, we maximize the marginal distribution
of the visible variables using the following equality (see Bishop equations 10.2-
10.4):

ln p(x) = L(q) +KL(q‖p) (1)

where q(z) is the posterior distribution, p(z|x,Θt) of z using the current set of
parameters, Θt.

(a) [1 mark] What is the number of possible states for the latent variable z in
the above problem ? Are the components of z independent in the posterior
p(z|x,Θt)? What does that imply about the computation in equation 1
above ?

(b) [1 mark] Instead of using q(z) = p(z|x,Θt), we will use q as being another
Bernouilli distribution:

q(z) =
∏
j

m
zj
j (1−mj)

(1−zj)

Show the following:

L(q) =
∑
j

[
<zj> log

aj
<zj>

+ (1−<zj>) log
1−aj

1−<zj>

]
− 1

2σ2

[
xTx− 2

∑
j <zj>Wjx +

∑
j,k <zjzk>WjW

T
k

]
−D2 log σ2 + const (2)

where, the expectations <.> are computed wrt q(z).

(c) [1 mark] Using the following properties of equation 2:

<zj> = mj

<zjzk> = mjmk + δjk
(
mj −m2

j

)
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show that L(q) can be maximized by using the following update rule, for
each case c:

mc
j = g

(
log

aj
1− aj

+
1

σ2

[
Wj

(
xc − x̂c

)
+

(
mc
j −

1

2

)
WjW

T
j

])
(3)

where, g(u) = 1
1+exp (−u) is the sigmoid function, and x̂c =

(∑
jWjm

c
j

)T
.

Q. 3) [10 marks] In this question we will fit the model we discussed in ques-
tion 2 to some data.

The E step for EM was given in equation 3. The M step involves the following
updates, summing over the training cases:

W =
[∑

cM
cTM c

]−1 [∑
cM

cmcxcT
]

aj = 1
C

∑C
c=1m

c
j

where, M c
i,j = <zizj>. We assume that σ is fixed.

The dataset is a set of 5x5 greyscale images, each consisting of a horizontal
and a vertical bar, and some additive Gaussian noise. To load the training
and test sets, invoke matlab and load the file http://www.cs.toronto.edu/

~hinton/csc2535/matlab/assign1.mat This should work for all versions of
matlab from version 6 up.

• Run the learning algorithm with different numbers of latent variables J.
You should try J = 3, 10, 15. Examine the parameters W in each case, as
well as the optimum values of the cost function.

• Try setting the prior for the values of each latent variable to be identical
and constant, i.e., aj = a for all j. You can then set this constant value
of a to favor sparse solutions, e.g., a = p(zj = 1) = .3; p (zj = 0) = 1− a.
Modify your EM algorithm accordingly, and train the system with different
values of a, such as 0.5 and 0.2. Try this for each setting of J above.

• For the model with J = 3, you can evaluate the true posterior by direct
enumeration. Compare this to the variational approximation, for the test
cases.

You should submit:

(a) [5 marks] One page or less containing a clear description of the results you
obtained for each of the values of J, and the different settings of a.
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(b) [5 marks] One page or less discussing what your results show about the
variational approximation to the posterior. You should show how you
computed the true posterior. Also, look at the data examples, and the
model. Do you think this is a good model for this data?

You do not need to submit your code.
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