TWO COLLABORATIVE FILTERING PROJECTS FOR CSC2515
What is collaborative filtering (CF)

• The goal of collaborative filtering is to predict the preferences of a given user given a large collection of user preferences.

• For example:
 – Suppose you infer from the data that most of the users who like “Star Wars” also like “Lord of the Rings”.
 – Then if a user watched and liked “Star Wars” you would recommend him/her to see “Lord of the Rings”.
• A year ago, Netflix announced a movie rating predictions competition.

• Whoever improves Netflix’s own baseline score by 10% will win the 1 million dollar prize.

• The training data set consists of 100,480,507 ratings from 480,189 randomly-chosen, anonymous users on 17,770 movie titles. The data is very sparse, most users rate only few movies.

• Also, Netflix provides a test set containing 2,817,131 user/movie pairs with the ratings withheld. The goal is to predict those ratings as accurately as possible.
The goal is to correctly predict test ratings.

<table>
<thead>
<tr>
<th>Movies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>?</td>
<td>1</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>?</td>
<td>4</td>
<td>?</td>
<td>3</td>
<td>2</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Projects

- We will provide you with a subset of the Netflix training data: a few thousand users + a few thousand movies, so that you can easily run your algorithms on CDF machines.

- We will also provide you with a validation set. You will report the achieved prediction accuracy on this validation set.

- There will be two projects based on the following two models:
 - Probabilistic Matrix Factorization (PMF)
 - Restricted Boltzmann Machines (RBM’s)

- You can choose which model you would like to work on.
Let R_{ij} represent the rating of user i for movie j. The row and column vectors U_i and V_j represent user-specific and movie-specific latent feature vectors respectively.

The model:

$$p(R_{ij}|U_i, V_j, \sigma^2) = \mathcal{N}(R_{ij}|U_i^T V_j, \sigma^2)$$
Probabilistic Matrix Factorization

• The model:

\[p(R_{ij}|U_i, V_j, \sigma^2) = \mathcal{N}(R_{ij}|U_i^T V_j, \sigma^2) \]

• To avoid severe overfitting, place a zero-mean spherical Gaussian prior on user and movie feature vectors:

\[p(U_i|\sigma_U) = \mathcal{N}(U_i|0, \sigma_U I), \quad p(V_j|\sigma_V) = \mathcal{N}(V_j|0, \sigma_V I). \]

• and do MAP estimation of \(U \) and \(V \). See Bishop, Chapter 3.
A different way to build a good recommendation system is to use RBM’s.

RBM’s will be covered in the class on Oct 30th, but you can look up a Scholarpedia entry on “Boltzmann machine”

Sample code for training RBM’s on binary inputs is available at: http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

Sample code for training RBM’s on binary inputs is available at:
What we expect from these projects

• If you decide to work on this project, come talk to one of the TAs.

• You do not have to choose one of the suggested models. You can use your other favorite machine learning model (e.g. a neural net).

• We expect a clear write-up of your model (description of the model, choice of priors, hyper-priors, model training, etc.) as well as an analysis of the model’s performance. For example, you can analyse how the model performs as a function of user-rating frequency.

• You model must perform better than a very simple model that predicts a combination of user and movie averages.

• If you are feeling ambitious, you can enter the Netflix competition and try to win the 1 million dollar Grand Prize.