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Existing Methods

• One of the most popular and widely used in practice
algorithms for document retrieval tasks is TF-IDF.

• TF-IDF weights each word by:

– its frequency in the query document (Term Frequency)

– the logarithm of the reciprocal of its frequency in the whole set of
documents (Inverse Document Frequency).

However, TF-IDF has several limitations:

– It computes document similarity directly in the word-count space,
which may be slow for large vocabularies.

– It assumes that the counts of different words provide independent
evidence of similarity.

– It makes no use of semantic similarities between words.
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Existing Methods

• To overcome these limitations, many models for capturing
low-dimensional, latent representations have been proposed.

• One such simple and widely-used method is Latent Semantic
Analysis (LSA).

• It extracts low-dimensional semantic structure using SVD to
get a low-rank approximation of the word-document
co-occurrence matrix:

log(1 + M (doc, w)) ∼ USV.

U = |doc| × d, S = d × d, V = d × |w|.

• A test query q is represented as d-dim vector S−1V log (1 + q).
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Drawbacks of Existing Methods

• LSA is a linear method so it can only capture pairwise
correlations between words.

• Numerous methods, in particular probabilistic versions of
LSA were introduced in the machine learning community.

• These models can be viewed as graphical models in which a
single layer of hidden topic variables have directed
connections to variables that represent word-counts.

• There are limitations on the types of structure that can be
represented efficiently by a single layer of hidden variables.

• We will build a network with multiple hidden layers and with
millions of parameters and show that it can discover latent
representations that work much better.
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RBM’s revisited

• A joint configuration (v,h) has an energy:

E(v,h) = −
∑

i

bivi −
∑

j

bjhj −
∑

i,j

vihjWij.

• The probability that the model assigns to v is:

p(v) =
∑

h

p(v,h) =
1

Z

∑

h

exp(−E(v,h)).
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RBM’s for continuous data

• Hidden units remain binary.

• The visible units are replaced by linear stochastic units that
have Gaussian noise.

• The energy becomes:

E(v,h) =
∑

i

(vi − bi)
2

2σ2
i

−
∑

j

bjhj −
∑

i,j

vi

σi
hjWij.

• Conditional distributions over hidden and visible units are:

p(hj = 1|v) =
1

1 + exp(−bj −
∑

i Wijvi/σi)
,

p(vi = v|h) =
1√
2πσi

exp
(

−
(v − bi − σi

∑

j hjWij)
2

2σ2
i

)

.
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RBM’s for count data

• Hidden units remain binary and the visible word counts are
modeled by the Poisson model.

• The energy is defined as:

E(v,h) = −
∑

i bivi −
∑

j bjhj −
∑

i,j vihjWij +
∑

i log vi!.

• Conditional distributions over hidden and visible units are:

p(hj = 1|v) =
1

1 + exp(−bj −
∑

i Wijvi)
,

p(vi = n|h) = Poisson

(

n, exp (bi +
∑

j

hjWij)

)

,

where

Poisson
(

n, λ
)

= e−λλ
n

n!
.
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Learning Stacks of RBM’s
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• Perform greedy, layer-by-layer learning:

– Learn and Freeze W1 using Poisson
Model.

– Treat the existing feature detectors
as if they were data.

– Learn and Freeze W2.

– Greedily learn many layers.

• Each layer of features captures strong
high-order correlations between the activities
of units in the layer below.
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20 newsgroup: 2-D topic space
Autoencoder 2−D Topic Space

talk.religion.misc

comp.graphics

sci.cryptography

misc.forsale

rec.sport.hockey

talk.politics.mideast

LSA 2−D Topic Space

• The 20 newsgroup corpus contains 18,845 postings (11,314
training and 7,531 test) taken from the Usenet newsgroups.

• We use a 2000-500-250-125-10 autoencoder to convert a
document into a low-dimensional code.

• We used a simple “bag-of-words” representation.
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Reuters Corpus: 2-D topic space

Autoencoder 2−D Topic Space

Legal/JudicialLeading Ecnomic 
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government 
 Borrowings

Disasters and
Accidents

Energy Markets

LSA 2−D Topic Space

• We use a 2000-500-250-125-2 autoencoder to convert test
documents into a two-dimensional code.

• The Reuters Corpus Volume II contains 804,414 newswire
stories (randomly split into 402,207 training and 402,207 test).

• We used a simple “bag-of-words” representation.
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Results for 10-D codes

• We use the cosine of the angle between two codes as a
measure of similarity.

• Precision-recall curves when a 10-D query document from the
test set is used to retrieve other test set documents, averaged
over 402,207 possible queries.
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Semantic Hashing
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• Learn to map documents into semantic 20-D binary code and
use these codes as memory addresses.

• We have the ultimate retrieval tool: Given a query document,
compute its 20-bit address and retrieve all of the documents
stored at the similar addresses with no search at all.
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The Main Idea of Semantic Hashing
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Semantic Hashing

Reuters 2−D Embedding of 20−bit codes
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TF−IDF
TF−IDF using 20 bits
Locality Sensitive Hashing

• Left picture shows a 2-dimensional embedding of the learned
20-bit codes using stochastic neighbor embedding.

• Right picture shows Precision-Recall curves when a query
document from the test set is used to retrieve other test set
documents, averaged over all 402,207 possible queries.
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Semantic Hashing
Reuters 2−D Embedding of 20−bit codes
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TF−IDF
TF−IDF using 20 bits
Locality Sensitive Hashing

• We used a simple C implementation on Reuters dataset
(402,212 training and 402,212 test documents).

• For a given query, it takes about 0.5 milliseconds to create a
short-list of about 3,000 semantically similar documents.

• It then takes 10 milliseconds to retrieve the top few matches
from that short-list using TF-IDF, and it is more accurate than
full TF-IDF.
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Learning nonlinear embedding

• Learning a similarity measure over the input space X .

• Given a distance metric D (e.g. Euclidean) we can measure
similarity between two input vectors x

n, xk ∈ X by
computing D[f (xn|W ), f (xk|W )].

• “Push-Pull” Idea: Pull points belonging to the same class
together. Push points belonging to the different classes apart.
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Learning Nonlinear NCA

• We are given a set of N labeled training cases (xn, cn),
a = 1, 2, ..., N , where x

n ∈ Rd, and cn ∈ {1, 2, ..., C}.

• For each training vector x
n, define the probability that point n

selects one of its neighbours k as:

pnk =
exp (−Dnk)

∑

z 6=n exp (−Dnz)
, pnn = 0

where Dnk =‖ f (xn|W ) − f (xk|W ) ‖2, and f (·|W ) is a
multi-layer perceptron.

• Previous algorithms: a simple linear projection f (x|W ) = Wx.

• The Euclidean distance is then the Mahalanobis distance:

D[f (xn), f (xk)] = (xn − x
k)TW TW (xn − x

k).
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Learning Nonlinear NCA

• Probability that point n belongs to class a is:

p(cn = a) =
∑

k:ck=a pnk.

• Maximize the expected number of correctly classified points
on the training data:

ONCA = 1
N

∑N
n=1

∑

k:cn=ck pnk.

• By considering a linear perceptron we arrive at linear NCA.
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2-D codes
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Regularized Nonlinear NCA
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• The NCA objective ONCA is combined with the autoencoder
reconstruction error E to maximize:

C = λONCA + (1 − λ)(−E).
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Results
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Nonlinear NCA 30D
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Autoencoder 30D
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Nonlinear NCA + Auto 10D
Nonlinear NCA 10D
Linear NCA 10D
Autoencoder 10D
LDA 10D
LSA 10D

• Left: K nearest neighbours results in the 30-D space on the
MNIST test set.

• Right: Precision-recall curves for 20 newsgroup test data.
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THE END
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