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Existing Methods

e One of the most popular and widely used in practice
algorithms for document retrieval tasks is TF-IDFE.

e TF-IDF weights each word by:

—its frequency in the query document (Term Frequency)

— the logarithm of the reciprocal of its frequency in the whole set of
documents (Inverse Document Frequency).

However, TF-IDF has several limitations:
— It computes document similarity directly in the word-count space,
which may be slow for large vocabularies.

— It assumes that the counts of different words provide independent
evidence of similarity.

— It makes no use of semantic similarities between words.



Existing Methods

e To overcome these limitations, many models for capturing
low-dimensional, latent representations have been proposed.

e One such simple and widely-used method is Latent Semantic
Analysis (LSA).

e It extracts low-dimensional semantic structure using SVD to
get a low-rank approximation of the word-document
co-occurrence matrix:

log(1 4+ M(doc,w)) ~ USV.

U=|doc| xd,S=dxd,V =dx|w|.

e A test query q is represented as d-dim vector SV log (1 + q).



Drawbacks of Existing Methods

e LSA is a linear method so it can only capture pairwise
correlations between words.

e Numerous methods, in particular probabilistic versions of
LSA were introduced in the machine learning community.

e These models can be viewed as graphical models in which a
single layer of hidden topic variables have directed
connections to variables that represent word-counts.

e There are limitations on the types of structure that can be
represented efficiently by a single layer of hidden variables.

e We will build a network with multiple hidden layers and with
millions of parameters and show that it can discover latent
representations that work much better.
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RBM’s revisited

\ 74/
WHPER 25577/
NRSSEL A

QNS X4

SR X7 ¥t

.9” i%n‘w M‘M"\V 4\\\“
SNZANZ7D,

XK XY

SN AN
S O
RIS
X ﬂ.oﬁ&., X
WAL
W

NNA
AN

\
/ \5‘* 4» \{ //f)(’//////
A% XX/
/i PSSO\ \

SN\ \
2 AN\

V7~ ‘4/2/-0
\\\\~"////J

t configuration (v, h) has an energy:

join

o A

]

tovis

igns

e The probability that the model ass

)



RBM'’s for continuous data

e Hidden units remain binary.

e The visible units are replaced by linear stochastic units that
have Gaussian noise.

e The energy becomes:

E(v,h) = Z Zb hj — h Wi

’L Za]

e Conditional distributions over hidden and visible units are:
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RBM’s for count data

e Hidden units remain binary and the visible word counts are
modeled by the Poisson model.

e The energy is defined as:
E(V, h) — — Zz bﬂ)@ — Zj bjhj — Zi,j Uz'thz'j + Zz 10g Uz'

e Conditional distributions over hidden and visible units are:
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Learning Stacks of RBM'’s

e Perform greedy, layer-by-layer learning: o
| 30 |
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— Greedily learn many layers.

e Hach layer of features captures strong
high-order correlations between the activities
of units in the layer below.







20 newsgroup: 2-D topic space
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e The 20 newsgroup corpus contains 18,845 postings (11,314
training and 7,531 test) taken from the Usenet newsgroups.

e We use a 2000-500-250-125-10 autoencoder to convert a
document into a low-dimensional code.

e We used a simple “bag-of-words” representation.
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Reuters Corpus: 2-D topic space
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e We use a 2000-500-250-125-2 autoencoder to convert test
documents into a two-dimensional code.

e The Reuters Corpus Volume II contains 804,414 newswire
stories (randomly split into 402,207 training and 402,207 test).

e We used a simple “bag-of-words” representation.
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Results for 10-D codes

e We use the cosine of the angle between two codes as a
measure of similarity.

e Precision-recall curves when a 10-D query document from the

test set is used to retrieve other test set documents, averaged
over 402,207 possible queries.
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Semantic Hashing
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Fine—-tuning

e Learn to map documents into semantic 20-D binary code and
use these codes as memory addresses.

e We have the ultimate retrieval tool: Given a query document,
compute its 20-bit address and retrieve all of the documents
stored at the similar addresses with no search at all.
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The Main Idea of Semantic Hashing
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Semantic Hashing

Reuters 2-D Embedding of 20-bit codes
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e Left picture shows a 2-dimensional embedding of the learned
20-bit codes using stochastic neighbor embedding.

e Right picture shows Precision-Recall curves when a query
document from the test set is used to retrieve other test set
documents, averaged over all 402,207 possible queries.



Semantic Hashing
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e We used a simple C implementation on Reuters dataset
(402,212 training and 402,212 test documents).

e For a given query, it takes about 0.5 milliseconds to create a
short-list of about 3,000 semantically similar documents.

e [t then takes 10 milliseconds to retrieve the top few matches

from that short-list using TF-IDEF, and it is more accurate than
full TF-IDE.
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Learning nonlinear embedding

e Learning a similarity measure over the input space X.

e Given a distance metric D (e.g. Euclidean) we can measure
similarity between two input vectors x", x* € X by

computing D|[f(x"[1V'), f (x|,

e “Push-Pull” Idea: Pull points belonging to the same class
together. Push points belonging to the different classes apart.

d[f(x1),f(x2)]
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Learning Nonlinear NCA

e We are given a set of NV labeled training cases (x", c"),
a=1,2,..,N,wherex" ¢ R, and ¢" € {1,2,...,C}.

e For each training vector x", define the probability that point n
selects one of its neighbours £ as:

Prp = exXp (—an) P
! Zz;«én exp (—Dp.)’ .

where Dy =|| f(x"|W) — f(x*|W) |°, and f(:|IV)is a
multi-layer perceptron.

= (

e Previous algorithms: a simple linear projection f(z|W) = Wz.

e The Euclidean distance is then the Mahalanobis distance:
D[f(x"), f(x")] = (x" = x")' W' W (x" — x").
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Learning Nonlinear NCA

e Probability that point n belongs to class a is:
p(cn — CL) — Zk:ck‘:a DPnk-

e Maximize the expected number of correctly classified points
on the training data:

N
ONCA — % anl Zk:c”:ck‘ Pnk-

e By considering a linear perceptron we arrive at linear NCA.
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2-D codes
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Regularized Nonlinear NCA

Decoder

Pretraining Fine—tuning

e The NCA objective Oy¢ 4 is combined with the autoencoder
reconstruction error £ to maximize:

C'=XOnca+ (1= X)(—E).
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Results
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o Left: K nearest neighbours results in the 30-D space on the
MNIST test set.

e Right: Precision-recall curves for 20 newsgroup test data.
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THE END
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