
CSC2515 Assignment 3
Due: Nov 20 2007, 11am at START of class

November 7, 2007

This is the final version of the programming part of assignment 3

Late assignments will have 25% subtracted from the total out of which they are graded for each
day or part of a day that they are late. They will be more than one day late if they are not slipped
under Prof. Zemel’s office door before 11.00am the next day.

1 PCA and Factor Analysis

(a). How do the factors found by running EM to optimize a probabilistic PCA model re-
late to the sample covariance matrix of the data? Support your answer. (2 points)

(b). Derive the updates for the parameters in the M step when using EM to optimize
a factor analysis model. You can use the expression for the expected complete-data log
likelihood from the lecture notes for this derivation. (2 points)

2 Using unlabeled data and greedy learning to improve

discrimination

There are many datasets in which only a small fraction of the cases have labels. We would
like to use the unlabeled cases to help us learn good features. Then the labeled cases only
need to provide enough information to fine-tune the features we already learned (see lec-
ture 8). You will be comparing the performance of three different training methods. For
each training method you will be trying both 100 and 200 hidden units. To compare per-
formance you should use both the number of errors and the negative log probability of
the correct answer (i.e. the cross-entropy error that is normally used with a softmax (see
lecture notes).

You will use the same data as in assignment 1, but the dataset has been divided up differ-
ently. There are 1000 labeled training cases (as in assignment 1), 5000 unlabeled training

1



cases, and 5000 (labeled) test cases. All of these subsets have equal numbers of each of
the ten classes. To load the training and test sets, invoke matlab and load the file
http://www.cs.toronto.edu/˜hinton/csc2515/matlab/as sign3v6.mat
This should work for all versions of matlab from version 6 up.

The code you will need for training RBM’s is at:
http://www.cs.toronto.edu/˜hinton/csc2515/matlab/rb m.m
The code assumes your training data has been divided into minibatches. You could do
this, or you could modify the code. If you do use minibatches, make sure that each mini-
batch has equal numbers of each class.

1. First train a restricted Boltzmann machine (once with 100 and once with 200 hidden
units) on the 6000 labeled + unlabeled training cases (but without using the labels).
Code is provided for this. Do not change the weightcost parameter. Then use multi-
nomial logistic regression on the 1000 labeled training cases, with the inputs being
the real-valued activation probabilities of the hidden units of the RBM. (Hint: multi-
nomial logistic regression is just backprop with softmax output units but no hidden
layer, so you just need a simplified version of the code you wrote for assignment 1.)

2. Starting with the weights and biases found by method 1, use standard backprop-
agation with one hidden layer to fine-tune all the weights learned in part 1. The
backpropagation only uses the labeled training cases.

3. Use backpropagation in two networks with exactly the same architectures as in part
2, but start with small random weights and zero biases. So, for this method, you do
not make use of the unlabeled training data.

To reduce the amount of fiddling around required, you are not allowed to use weight-
decay in any of the methods (except for the weight-decay that comes with the code pro-
vided when you are training the RBM).

You should submit:

• (4 points) One page or less containing a clear description of the results you obtained
for each of the three methods with each of the two numbers of hidden units. The
one page should include the results for all 3 × 2 results.

• (8 points) One page or less discussing what you think these results show and de-
scribing exactly four other experiments you would do to make sure that your con-
clusions were correct.

2


