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Lecture 11a 
Hopfield Nets 



Hopfield Nets 

•  A Hopfield net is composed of 
binary threshold units with 
recurrent connections between 
them.  

•  Recurrent networks of non-
linear units are generally very 
hard to analyze. They can 
behave in many different ways: 
–  Settle to a stable state 
–  Oscillate 
–  Follow chaotic trajectories 

that cannot be predicted far 
into the future. 

•  But John Hopfield (and others) 
realized that if the connections 
are symmetric, there is a global 
energy function. 
–  Each binary “configuration” 

of the whole network has an 
energy. 

–  The binary threshold 
decision rule causes the 
network to settle to a 
minimum of this energy 
function. 



The energy function 
•  The global energy is the sum of many contributions. Each contribution 

depends on one connection weight and the binary states of two neurons: 

•  This simple quadratic energy function makes it possible for each unit to 
compute locally how it’s state affects the global energy: 

E = − si
i
∑ bi − sis j wij

i< j
∑

Energy gap = ΔEi = E(si = 0)−E(si = 1) = bi + s jwij
j
∑



Settling to an energy minimum 

 
•  To find an energy minimum in this 

net, start from a random state and 
then update units one at a time in 
random order. 
–  Update each unit to whichever 

of its two states gives the 
lowest global energy. 

–  i.e. use binary threshold units.  
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A deeper energy minimum 
 
•  The net has two triangles in which the 

three units mostly support each other. 
–  Each triangle mostly hates the other 

triangle. 
•  The triangle on the left differs from the 

one on the right by having a weight of 2 
where the other one has a weight of 3. 
–  So turning on the units in the triangle 

on the right gives the deepest 
minimum. 
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Why do the decisions need to be sequential? 
 
•  If units make simultaneous 

decisions the energy could go up. 
•  With simultaneous parallel updating 

we can get oscillations. 
–  They always have a period of 2. 

•  If the updates occur in parallel but 
with random timing, the oscillations 
are usually destroyed.   

-100 
+5 +5 

0 0 

At the next parallel step, both 
units will turn on. This has 
very high energy, so then 
they will both turn off again. 



A neat way to make use of this type of computation 
 
•  Hopfield (1982) proposed that 

memories could be energy 
minima of a neural net. 
–  The binary threshold decision 

rule can then be used to 
“clean up” incomplete or 
corrupted memories. 

•  The idea of memories as energy 
minima was proposed by I. A. 
Richards in 1924 in “Principles of 
Literary Criticism”. 

•  Using energy minima to 
represent memories gives a 
content-addressable memory: 
–  An item can be accessed 

by just knowing part of its 
content. 

•  This was really amazing 
in the year 16 BG. 

–  It is robust against 
hardware damage. 

–  It’s like reconstructing a 
dinosaur from a few bones. 



Storing memories in a Hopfield net 

•  If we use activities of 1 and -1, 
we can store a binary state 
vector by incrementing the 
weight between any two units by 
the product of their activities. 
–  We treat biases as weights 

from a permanently on unit. 

•   With states of 0 and 1 the rule is 
slightly more complicated. )()(4 2

1
2
1 −−=Δ jiij ssw

Δwij = sis j
This is a very simple rule 
that is not error-driven. 
That is both its strength 
and its weakness 
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Lecture 11b 
Dealing with spurious minima in Hopfield Nets 



The storage capacity of a Hopfield net 

•  Using Hopfield’s storage rule 
the capacity of a totally 
connected net with N units is 
only about 0.15N memories. 
–  At N bits per memory this is 

only               bits. 
–  This does not make 

efficient use of the bits 
required to store the 
weights. 

•  The net has       weights and 
biases. 

•  After storing M memories, 
each connection weight has an 
integer value in the range       
[–M, M]. 

•  So the number of bits required 
to store the weights and biases 
is: N 2 log(2M +1)

N 2

0.15 N 2



Spurious minima limit capacity 

•  Each time we memorize a 
configuration, we hope to 
create a new energy minimum. 
–  But what if two nearby 

minima merge to create a 
minimum at an 
intermediate location? 

–  This limits the capacity of a 
Hopfield net. 

The state space is the corners of a 
hypercube. Showing it as a 1-D 
continuous space is a misrepresentation. 



Avoiding spurious minima by unlearning 

•  Hopfield, Feinstein and Palmer 
suggested the following 
strategy: 
–  Let the net settle from a 

random initial state and then 
do unlearning.  

–  This will get rid of deep, 
spurious minima and 
increase memory capacity. 

•  They showed that  this worked. 
–  But they had no analysis. 

•  Crick and Mitchison proposed 
unlearning as a model of what 
dreams are for. 
–  That’s why you don’t 

remember them (unless you 
wake up during the dream) 

•  But how much unlearning should 
we do?  
–  Can we derive unlearning as 

the right way to minimize 
some cost function? 



Increasing the capacity of a Hopfield net 
•  Physicists love the idea that the 

math they already know might 
explain how the brain works. 
–  Many papers were published in 

physics journals about Hopfield 
nets and their storage capacity.  

•  Eventually, Elizabeth Gardiner 
figured out that there was a much 
better storage rule that uses the 
full capacity of the weights. 

•  Instead of trying to store vectors in 
one shot, cycle through the training 
set many times. 
–  Use the perceptron 

convergence procedure to train 
each unit to have the correct 
state given the states of all the 
other units in that vector. 

•  Statisticians call this technique 
“pseudo-likelihood”. 
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Lecture 11c 
Hopfield Nets with hidden units 



A different computational role for Hopfield nets 

•  Instead of using the net to store 
memories, use it to construct 
interpretations of sensory input. 
–  The input is represented by the 

visible units. 
–  The interpretation is represented 

by the states of the hidden units. 
–  The badness of the interpretation 

is represented by the energy. visible units 

hidden units 



What can we infer about 3-D edges from 2-D lines 
in an image? 

•  A 2-D line in an image could have 
been caused by many different 3-D 
edges in the world. 

•  If we assume it’s a straight 3-D edge, 
the information that has been lost in 
the image is the  3-D depth of each 
end of the  2-D line.  
–  So there is a family of 3-D edges 

that all correspond to the same   
2-D line. 

You can only see one 
of these 3-D edges at 
a time because they 
occlude one another. 



An example: Interpreting a line drawing 
•  Use one “2-D line” unit for each 

possible line in the picture. 
–  Any particular picture will 

only activate a very small 
subset of the line units. 

•  Use one “3-D line” unit for each 
possible 3-D line in the scene. 
–  Each 2-D line unit could be 

the projection of many 
possible 3-D lines. Make 
these 3-D lines compete. 

•  Make 3-D lines support each 
other if they join in 3-D.  

•  Make them strongly support 
each other if they join at right 
angles. 

Join in 3-D 

Join in 3-D at right angle 

2-D lines 

3-D lines 

picture 



Two difficult computational issues  

•  Using the states of the hidden units 
to represent an interpretation of the 
input raises two difficult issues: 
–  Search (lecture 11) How do we 

avoid getting trapped in poor 
local minima of the energy 
function? 

•  Poor minima represent sub-
optimal  interpretations. 

–  Learning (lecture 12) How do we 
learn the weights on the 
connections to the hidden units 
and between the hidden units? 
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Lecture 11d 
Using stochastic units to improve search 



Noisy networks find better energy minima 
•  A Hopfield net always makes decisions that reduce the energy. 

–  This makes it impossible to escape from local minima. 
•  We can use random noise to escape from poor minima. 

–  Start with a lot of noise so its easy to cross energy barriers. 
–  Slowly reduce the noise so that the system ends up in a deep 

minimum. This is “simulated annealing” (Kirkpatrick et.al. 1981) 

A             B                     C 



How temperature affects transition probabilities 

A 
B 

1.0)(
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transition 
probabilities 

Low temperature 
transition 
probabilities 



Stochastic binary units  

•  Replace the binary threshold units by binary stochastic units that 
make biased random decisions. 
–  The “temperature”  controls the amount of noise 
–  Raising the noise level is equivalent to decreasing all the energy 

gaps between configurations. 

p(si=1) =
1

1+ e−ΔEi T temperature 

Energy gap = ΔEi = E(si = 0)−E(si = 1) = bi + s jwij
j
∑



Simulated annealing is a distraction 

•  Simulated annealing is a powerful method for improving searches 
that get stuck in local optima. 

•  It was one of the ideas that led to Boltzmann machines. 
•  But it’s a big distraction from the main ideas behind Boltzmann 

machines. 
–  So it will not be covered in this course. 
–  From now on, we will use binary stochastic units that have a 

temperature of 1. 



Thermal equilibrium at a temperature of 1 

•  Thermal equilibrium is a difficult 
concept! 
–  Reaching thermal equilibrium 

does not mean that the system 
has settled down into the 
lowest energy configuration. 

–  The thing that settles down is 
the probability distribution over 
configurations. 

–  This settles to the stationary 
distribution. 

•  There is a nice intuitive way to 
think about thermal 
equilibrium: 
–  Imagine a huge ensemble 

of systems that all have 
exactly the same energy 
function. 

–  The probability of a  
configuration is just the 
fraction of the systems that 
have that configuration. 



Approaching thermal equilibrium 

•  We start with any distribution we like over all the identical systems. 
–  We could start with all the systems in the same configuration. 
–  Or with an equal number of systems in each possible configuration. 

•  Then we keep applying our stochastic update rule to pick the next 
configuration for each individual system.  

•  After running the systems stochastically in the right way, we may 
eventually reach a situation where the fraction of systems in each 
configuration remains constant. 
–  This is the stationary distribution that physicists call thermal 

equilibrium. 
–   Any given system keeps changing its configuration, but the fraction 

of systems in each configuration does not change.  



An analogy 
•  Imagine a casino in Las Vegas that is full of card dealers (we need 

many more than 52! of them). 
•  We start with all the card packs in standard order and then the dealers 

all start shuffling their packs. 
–  After a few time steps, the king of spades still has a good chance 

of being next to the queen of spades. The packs have not yet 
forgotten where they started.  

–  After prolonged shuffling, the packs will have forgotten where they 
started. There will be an equal number of packs in each of the 52! 
possible orders. 

–  Once equilibrium has been reached, the number of packs that 
leave a configuration at each time step will be equal to the number 
that enter the configuration. 

•  The only thing wrong with this analogy is that all the configurations 
have equal energy, so they all end up with the same probability.  
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Lecture 11e 
How a Boltzmann Machine models data 



Modeling binary data 
•  Given a training set of binary vectors, fit a model that will assign a 

probability to every possible binary vector. 
–  This is useful for deciding if other binary vectors come from the 

same distribution (e.g. documents represented by binary 
features that represents the occurrence of a particular word). 

–  It can be used for monitoring complex systems to detect unusual 
behavior. 

–  If we have models of several different distributions it can be used 
to compute the posterior probability that a particular  distribution 
produced the observed data. 

∑
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How a causal model generates data 
•  In a causal model we generate data 

in two sequential steps: 
–  First pick the hidden states from 

their prior distribution. 
–  Then pick the visible states from 

their conditional distribution given 
the hidden states. 

•  The probability of generating a visible 
vector, v, is computed by summing 
over all possible hidden states. Each 
hidden state is an “explanation” of v. 

  

p(v) = p(h)p(v | h)
h
∑

hidden 

visible 

1 

1 1 0 

0 



How a Boltzmann Machine generates data 
•  It is not a causal generative model. 
•  Instead, everything is defined in terms of the energies of joint 

configurations of the visible and hidden units.  
•  The energies of joint configurations are related to their probabilities 

in two ways. 
–  We can simply define the probability to be 
–  Alternatively, we can define the probability to be the probability 

of finding the network in that joint configuration after we have 
updated all of the stochastic binary units many times. 

•  These two definitions agree. 

  

p(v,h)∝e−E(v,h)



The Energy of a joint configuration 

−E(v,h) = vibi
i∈vis
∑ + hkbk

k∈hid
∑ + viv jwij

i< j
∑ + vihkwik

i,k
∑ + hkhlwkl

k<l
∑

bias of 
unit k 

weight between 
visible unit i and 
hidden unit k 

Energy with configuration 
v on the visible units and 
h on the hidden units 

binary state 
of unit i in v 

indexes every 
non-identical pair 
of i and j once  



Using energies to define probabilities 

•  The probability of a joint configuration 
over both visible and hidden units 
depends on the energy of that joint 
configuration compared with the 
energy of all other joint 
configurations. 

•  The probability of a configuration of 
the visible units is the sum of the 
probabilities of all the joint 
configurations that contain it. 

p(v,h) = e−E(v,h)

e−E(u,g)
u,g
∑

partition 
function 

p(v) =
e−E(v,h)
h∑
e−E(u,g)

u,g∑



         

h1           h2 

 

  +2            +1 

 

v1            v2 

An example of how 
weights define a 

distribution  
1 1   1 1       2          7.39          .186 
1 1   1 0       2          7.39          .186  
1 1   0 1       1          2.72          .069 
1 1   0 0       0          1               .025 
1 0   1 1       1          2.72          .069 
1 0   1 0       2          7.39          .186 
1 0   0 1       0          1               .025 
1 0   0 0       0          1               .025 
0 1   1 1       0          1               .025 
0 1   1 0       0          1               .025 
0 1   0 1       1          2.72          .069 
0 1   0 0       0          1               .025 
0 0   1 1       -1         0.37          .009 
0 0   1 0       0          1               .025 
0 0   0 1       0          1               .025 
0 0   0 0       0          1               .025 
                              39.70 
 

v h −E e−E p(v, h ) p(v)

0.466 

0.305 

0.144 

0.084 

-1 



Getting a sample from the model 

•  If there are more than a few hidden 
units, we cannot compute the 
normalizing term (the partition 
function) because it has exponentially 
many terms. 

•  So we use Markov Chain Monte 
Carlo to get samples from the model 
starting from a random global 
configuration: 
–  Keep picking units at random and 

allowing them to stochastically 
update their states based on their 
energy gaps. 

•  Run the Markov chain until 
it reaches its stationary 
distribution (thermal 
equilibrium at a 
temperature of 1). 
–  The probability of a 

global configuration is 
then related to its 
energy by the 
Boltzmann distribution. 

p(v,h) ∝ e−E(v,h)



Getting a sample from the posterior distribution over 
hidden configurations for a given data vector 

•  The number of possible hidden configurations is exponential so 
we need MCMC to sample from the posterior. 
–  It is just the same as getting a sample from the model, except 

that we keep the visible units clamped to the given data 
vector.  

•  Only the hidden units are allowed to change states 
•  Samples from the posterior are required for learning the weights. 

Each hidden configuration is an “explanation” of an observed 
visible configuration. Better explanations have lower energy.  


