
Geoffrey Hinton  
Nitish Srivastava, 
Kevin Swersky 
Tijmen Tieleman 
Abdel-rahman Mohamed  

Neural Networks for Machine Learning 
 

Lecture 11a 
Hopfield Nets 



Hopfield Nets 

•  A Hopfield net is composed of 
binary threshold units with 
recurrent connections between 
them.  

•  Recurrent networks of non-
linear units are generally very 
hard to analyze. They can 
behave in many different ways: 
–  Settle to a stable state 
–  Oscillate 
–  Follow chaotic trajectories 

that cannot be predicted far 
into the future. 

•  But John Hopfield (and others) 
realized that if the connections 
are symmetric, there is a global 
energy function. 
–  Each binary “configuration” 

of the whole network has an 
energy. 

–  The binary threshold 
decision rule causes the 
network to settle to a 
minimum of this energy 
function. 



The energy function 
•  The global energy is the sum of many contributions. Each contribution 

depends on one connection weight and the binary states of two neurons: 

•  This simple quadratic energy function makes it possible for each unit to 
compute locally how it’s state affects the global energy: 

E = − si
i
∑ bi − sis j wij

i< j
∑

Energy gap = ΔEi = E(si = 0)−E(si = 1) = bi + s jwij
j
∑



Settling to an energy minimum 

 
•  To find an energy minimum in this 

net, start from a random state and 
then update units one at a time in 
random order. 
–  Update each unit to whichever 

of its two states gives the 
lowest global energy. 

–  i.e. use binary threshold units.  
 

 
 

3        2           3          3      

-1             

-4 

-1             

1 
 

1 
 

 
0 

 
0 

         ? 

 
0 

        - E = goodness = 3  



Settling to an energy minimum 

 
•  To find an energy minimum in this 

net, start from a random state and 
then update units one at a time in 
random order. 
–  Update each unit to whichever 

of its two states gives the 
lowest global energy. 

–  i.e. use binary threshold units.  
 

 
 

3        2           3          3      

-1             

-4 

-1             

1 
 

1 
 

 
0 

 
0 

 
0          ? 

        - E = goodness = 3  



Settling to an energy minimum 

 
•  To find an energy minimum in this 

net, start from a random state and 
then update units one at a time in 
random order. 
–  Update each unit to whichever 

of its two states gives the 
lowest global energy. 

–  i.e. use binary threshold units.  
 

 
 

3        2           3          3      

-1             

-4 

1 
 

-1             

1 
 

1 
 

 
0 

 
0 

 
0          ? 

        - E = goodness = 3  - E = goodness = 4  



A deeper energy minimum 
 
•  The net has two triangles in which the 

three units mostly support each other. 
–  Each triangle mostly hates the other 

triangle. 
•  The triangle on the left differs from the 

one on the right by having a weight of 2 
where the other one has a weight of 3. 
–  So turning on the units in the triangle 

on the right gives the deepest 
minimum. 

 
 

3        2           3          3      

-1             

-4 

1 
 

-1             

1 
 

1 
 

 
0 

 
0 

- E = goodness = 5  



Why do the decisions need to be sequential? 
 
•  If units make simultaneous 

decisions the energy could go up. 
•  With simultaneous parallel updating 

we can get oscillations. 
–  They always have a period of 2. 

•  If the updates occur in parallel but 
with random timing, the oscillations 
are usually destroyed.   

-100 
+5 +5 

0 0 

At the next parallel step, both 
units will turn on. This has 
very high energy, so then 
they will both turn off again. 



A neat way to make use of this type of computation 
 
•  Hopfield (1982) proposed that 

memories could be energy 
minima of a neural net. 
–  The binary threshold decision 

rule can then be used to 
“clean up” incomplete or 
corrupted memories. 

•  The idea of memories as energy 
minima was proposed by I. A. 
Richards in 1924 in “Principles of 
Literary Criticism”. 

•  Using energy minima to 
represent memories gives a 
content-addressable memory: 
–  An item can be accessed 

by just knowing part of its 
content. 

•  This was really amazing 
in the year 16 BG. 

–  It is robust against 
hardware damage. 

–  It’s like reconstructing a 
dinosaur from a few bones. 



Storing memories in a Hopfield net 

•  If we use activities of 1 and -1, 
we can store a binary state 
vector by incrementing the 
weight between any two units by 
the product of their activities. 
–  We treat biases as weights 

from a permanently on unit. 

•   With states of 0 and 1 the rule is 
slightly more complicated. )()(4 2

1
2
1 −−=Δ jiij ssw

Δwij = sis j
This is a very simple rule 
that is not error-driven. 
That is both its strength 
and its weakness 



Geoffrey Hinton  
Nitish Srivastava, 
Kevin Swersky 
Tijmen Tieleman 
Abdel-rahman Mohamed  

Neural Networks for Machine Learning 
 

Lecture 11b 
Dealing with spurious minima in Hopfield Nets 



The storage capacity of a Hopfield net 

•  Using Hopfield’s storage rule 
the capacity of a totally 
connected net with N units is 
only about 0.15N memories. 
–  At N bits per memory this is 

only               bits. 
–  This does not make 

efficient use of the bits 
required to store the 
weights. 

•  The net has       weights and 
biases. 

•  After storing M memories, 
each connection weight has an 
integer value in the range       
[–M, M]. 

•  So the number of bits required 
to store the weights and biases 
is: N 2 log(2M +1)

N 2

0.15 N 2



Spurious minima limit capacity 

•  Each time we memorize a 
configuration, we hope to 
create a new energy minimum. 
–  But what if two nearby 

minima merge to create a 
minimum at an 
intermediate location? 

–  This limits the capacity of a 
Hopfield net. 

The state space is the corners of a 
hypercube. Showing it as a 1-D 
continuous space is a misrepresentation. 



Avoiding spurious minima by unlearning 

•  Hopfield, Feinstein and Palmer 
suggested the following 
strategy: 
–  Let the net settle from a 

random initial state and then 
do unlearning.  

–  This will get rid of deep, 
spurious minima and 
increase memory capacity. 

•  They showed that  this worked. 
–  But they had no analysis. 

•  Crick and Mitchison proposed 
unlearning as a model of what 
dreams are for. 
–  That’s why you don’t 

remember them (unless you 
wake up during the dream) 

•  But how much unlearning should 
we do?  
–  Can we derive unlearning as 

the right way to minimize 
some cost function? 



Increasing the capacity of a Hopfield net 
•  Physicists love the idea that the 

math they already know might 
explain how the brain works. 
–  Many papers were published in 

physics journals about Hopfield 
nets and their storage capacity.  

•  Eventually, Elizabeth Gardiner 
figured out that there was a much 
better storage rule that uses the 
full capacity of the weights. 

•  Instead of trying to store vectors in 
one shot, cycle through the training 
set many times. 
–  Use the perceptron 

convergence procedure to train 
each unit to have the correct 
state given the states of all the 
other units in that vector. 

•  Statisticians call this technique 
“pseudo-likelihood”. 



Geoffrey Hinton  
Nitish Srivastava, 
Kevin Swersky 
Tijmen Tieleman 
Abdel-rahman Mohamed  

Neural Networks for Machine Learning 
 

Lecture 11c 
Hopfield Nets with hidden units 



A different computational role for Hopfield nets 

•  Instead of using the net to store 
memories, use it to construct 
interpretations of sensory input. 
–  The input is represented by the 

visible units. 
–  The interpretation is represented 

by the states of the hidden units. 
–  The badness of the interpretation 

is represented by the energy. visible units 

hidden units 



What can we infer about 3-D edges from 2-D lines 
in an image? 

•  A 2-D line in an image could have 
been caused by many different 3-D 
edges in the world. 

•  If we assume it’s a straight 3-D edge, 
the information that has been lost in 
the image is the  3-D depth of each 
end of the  2-D line.  
–  So there is a family of 3-D edges 

that all correspond to the same   
2-D line. 

You can only see one 
of these 3-D edges at 
a time because they 
occlude one another. 



An example: Interpreting a line drawing 
•  Use one “2-D line” unit for each 

possible line in the picture. 
–  Any particular picture will 

only activate a very small 
subset of the line units. 

•  Use one “3-D line” unit for each 
possible 3-D line in the scene. 
–  Each 2-D line unit could be 

the projection of many 
possible 3-D lines. Make 
these 3-D lines compete. 

•  Make 3-D lines support each 
other if they join in 3-D.  

•  Make them strongly support 
each other if they join at right 
angles. 

Join in 3-D 

Join in 3-D at right angle 

2-D lines 

3-D lines 

picture 



Two difficult computational issues  

•  Using the states of the hidden units 
to represent an interpretation of the 
input raises two difficult issues: 
–  Search (lecture 11) How do we 

avoid getting trapped in poor 
local minima of the energy 
function? 

•  Poor minima represent sub-
optimal  interpretations. 

–  Learning (lecture 12) How do we 
learn the weights on the 
connections to the hidden units 
and between the hidden units? 



Geoffrey Hinton  
Nitish Srivastava, 
Kevin Swersky 
Tijmen Tieleman 
Abdel-rahman Mohamed  

Neural Networks for Machine Learning 
 

Lecture 11d 
Using stochastic units to improve search 



Noisy networks find better energy minima 
•  A Hopfield net always makes decisions that reduce the energy. 

–  This makes it impossible to escape from local minima. 
•  We can use random noise to escape from poor minima. 

–  Start with a lot of noise so its easy to cross energy barriers. 
–  Slowly reduce the noise so that the system ends up in a deep 

minimum. This is “simulated annealing” (Kirkpatrick et.al. 1981) 

A             B                     C 



How temperature affects transition probabilities 

A 
B 

1.0)(
2.0)(

=←

=→

BAp
BAp

A 
B 

000001.0)(
001.0)(

=←

=→

BAp
BAp

High temperature 
transition 
probabilities 

Low temperature 
transition 
probabilities 



Stochastic binary units  

•  Replace the binary threshold units by binary stochastic units that 
make biased random decisions. 
–  The “temperature”  controls the amount of noise 
–  Raising the noise level is equivalent to decreasing all the energy 

gaps between configurations. 

p(si=1) =
1

1+ e−ΔEi T temperature 

Energy gap = ΔEi = E(si = 0)−E(si = 1) = bi + s jwij
j
∑



Simulated annealing is a distraction 

•  Simulated annealing is a powerful method for improving searches 
that get stuck in local optima. 

•  It was one of the ideas that led to Boltzmann machines. 
•  But it’s a big distraction from the main ideas behind Boltzmann 

machines. 
–  So it will not be covered in this course. 
–  From now on, we will use binary stochastic units that have a 

temperature of 1. 



Thermal equilibrium at a temperature of 1 

•  Thermal equilibrium is a difficult 
concept! 
–  Reaching thermal equilibrium 

does not mean that the system 
has settled down into the 
lowest energy configuration. 

–  The thing that settles down is 
the probability distribution over 
configurations. 

–  This settles to the stationary 
distribution. 

•  There is a nice intuitive way to 
think about thermal 
equilibrium: 
–  Imagine a huge ensemble 

of systems that all have 
exactly the same energy 
function. 

–  The probability of a  
configuration is just the 
fraction of the systems that 
have that configuration. 



Approaching thermal equilibrium 

•  We start with any distribution we like over all the identical systems. 
–  We could start with all the systems in the same configuration. 
–  Or with an equal number of systems in each possible configuration. 

•  Then we keep applying our stochastic update rule to pick the next 
configuration for each individual system.  

•  After running the systems stochastically in the right way, we may 
eventually reach a situation where the fraction of systems in each 
configuration remains constant. 
–  This is the stationary distribution that physicists call thermal 

equilibrium. 
–   Any given system keeps changing its configuration, but the fraction 

of systems in each configuration does not change.  



An analogy 
•  Imagine a casino in Las Vegas that is full of card dealers (we need 

many more than 52! of them). 
•  We start with all the card packs in standard order and then the dealers 

all start shuffling their packs. 
–  After a few time steps, the king of spades still has a good chance 

of being next to the queen of spades. The packs have not yet 
forgotten where they started.  

–  After prolonged shuffling, the packs will have forgotten where they 
started. There will be an equal number of packs in each of the 52! 
possible orders. 

–  Once equilibrium has been reached, the number of packs that 
leave a configuration at each time step will be equal to the number 
that enter the configuration. 

•  The only thing wrong with this analogy is that all the configurations 
have equal energy, so they all end up with the same probability.  



Geoffrey Hinton  
Nitish Srivastava, 
Kevin Swersky 
Tijmen Tieleman 
Abdel-rahman Mohamed  

Neural Networks for Machine Learning 
 

Lecture 11e 
How a Boltzmann Machine models data 



Modeling binary data 
•  Given a training set of binary vectors, fit a model that will assign a 

probability to every possible binary vector. 
–  This is useful for deciding if other binary vectors come from the 

same distribution (e.g. documents represented by binary 
features that represents the occurrence of a particular word). 

–  It can be used for monitoring complex systems to detect unusual 
behavior. 

–  If we have models of several different distributions it can be used 
to compute the posterior probability that a particular  distribution 
produced the observed data. 

∑
=

j
jModeldatap
iModeldatapdataiModelp
)|(
)|()|(



How a causal model generates data 
•  In a causal model we generate data 

in two sequential steps: 
–  First pick the hidden states from 

their prior distribution. 
–  Then pick the visible states from 

their conditional distribution given 
the hidden states. 

•  The probability of generating a visible 
vector, v, is computed by summing 
over all possible hidden states. Each 
hidden state is an “explanation” of v. 

  

p(v) = p(h)p(v | h)
h
∑

hidden 

visible 

1 

1 1 0 

0 



How a Boltzmann Machine generates data 
•  It is not a causal generative model. 
•  Instead, everything is defined in terms of the energies of joint 

configurations of the visible and hidden units.  
•  The energies of joint configurations are related to their probabilities 

in two ways. 
–  We can simply define the probability to be 
–  Alternatively, we can define the probability to be the probability 

of finding the network in that joint configuration after we have 
updated all of the stochastic binary units many times. 

•  These two definitions agree. 

  

p(v,h)∝e−E(v,h)



The Energy of a joint configuration 

−E(v,h) = vibi
i∈vis
∑ + hkbk

k∈hid
∑ + viv jwij

i< j
∑ + vihkwik

i,k
∑ + hkhlwkl

k<l
∑

bias of 
unit k 

weight between 
visible unit i and 
hidden unit k 

Energy with configuration 
v on the visible units and 
h on the hidden units 

binary state 
of unit i in v 

indexes every 
non-identical pair 
of i and j once  



Using energies to define probabilities 

•  The probability of a joint configuration 
over both visible and hidden units 
depends on the energy of that joint 
configuration compared with the 
energy of all other joint 
configurations. 

•  The probability of a configuration of 
the visible units is the sum of the 
probabilities of all the joint 
configurations that contain it. 

p(v,h) = e−E(v,h)

e−E(u,g)
u,g
∑

partition 
function 

p(v) =
e−E(v,h)
h∑
e−E(u,g)

u,g∑



         

h1           h2 

 

  +2            +1 

 

v1            v2 

An example of how 
weights define a 

distribution  
1 1   1 1       2          7.39          .186 
1 1   1 0       2          7.39          .186  
1 1   0 1       1          2.72          .069 
1 1   0 0       0          1               .025 
1 0   1 1       1          2.72          .069 
1 0   1 0       2          7.39          .186 
1 0   0 1       0          1               .025 
1 0   0 0       0          1               .025 
0 1   1 1       0          1               .025 
0 1   1 0       0          1               .025 
0 1   0 1       1          2.72          .069 
0 1   0 0       0          1               .025 
0 0   1 1       -1         0.37          .009 
0 0   1 0       0          1               .025 
0 0   0 1       0          1               .025 
0 0   0 0       0          1               .025 
                              39.70 
 

v h −E e−E p(v, h ) p(v)

0.466 

0.305 

0.144 

0.084 

-1 



Getting a sample from the model 

•  If there are more than a few hidden 
units, we cannot compute the 
normalizing term (the partition 
function) because it has exponentially 
many terms. 

•  So we use Markov Chain Monte 
Carlo to get samples from the model 
starting from a random global 
configuration: 
–  Keep picking units at random and 

allowing them to stochastically 
update their states based on their 
energy gaps. 

•  Run the Markov chain until 
it reaches its stationary 
distribution (thermal 
equilibrium at a 
temperature of 1). 
–  The probability of a 

global configuration is 
then related to its 
energy by the 
Boltzmann distribution. 

p(v,h) ∝ e−E(v,h)



Getting a sample from the posterior distribution over 
hidden configurations for a given data vector 

•  The number of possible hidden configurations is exponential so 
we need MCMC to sample from the posterior. 
–  It is just the same as getting a sample from the model, except 

that we keep the visible units clamped to the given data 
vector.  

•  Only the hidden units are allowed to change states 
•  Samples from the posterior are required for learning the weights. 

Each hidden configuration is an “explanation” of an observed 
visible configuration. Better explanations have lower energy.  


