
Journal of Machine Learning Research 12 (2011) 1025-1068 Submitted 7/10; Revised 1/11; Published 3/11

Two Distributed-State Models
For Generating High-Dimensional Time Series∗

Graham W. Taylor GWTAYLOR@CS.NYU .EDU

Courant Institute of Mathematical Sciences
New York University
New York, NY 10003, USA

Geoffrey E. Hinton HINTON@CS.TORONTO.EDU

Department of Computer Science
University of Toronto
Toronto, ON M5S 3G1, Canada

Sam T. Roweis ROWEIS@CS.NYU .EDU

Courant Institute of Mathematical Sciences
New York University
New York, NY 10003, USA

Editor: Yoshua Bengio

Abstract
In this paper we develop a class of nonlinear generative models for high-dimensional time series.
We first propose a model based on the restricted Boltzmann machine (RBM) that uses an undi-
rected model with binary latent variables and real-valued “visible” variables. The latent and visible
variables at each time step receive directed connections from the visible variables at the last few
time-steps. This “conditional” RBM (CRBM) makes on-line inference efficient and allows us to
use a simple approximate learning procedure. We demonstrate the power of our approach by syn-
thesizing various sequences from a model trained on motion capture data and by performing on-line
filling in of data lost during capture.

We extend the CRBM in a way that preserves its most important computational properties and
introduces multiplicative three-way interactions that allow the effective interaction weight between
two variables to be modulated by the dynamic state of a third variable. We introduce a factoring
of the implied three-way weight tensor to permit a more compact parameterization. The resulting
model can capture diverse styles of motion with a single set of parameters, and the three-way
interactions greatly improve its ability to blend motion styles or to transition smoothly among
them.

Videos and source code can be found athttp://www.cs.nyu.edu/ ˜ gwtaylor/publications/
jmlr2011 .
Keywords: unsupervised learning, restricted Boltzmann machines, time series, generative models,
motion capture

1. Introduction

The simplest time series models, and the earliest studied, contain no hidden variables. Two mem-
bers of this class of “fully-observed” models are the vector autoregressive model and theNth order

∗. This article is dedicated to the memory of the third author who unexpectedly passed away on January 12, 2010.

c©2011 Graham W. Taylor, Geoffrey E. Hinton and Sam T. Roweis.

TAYLOR , HINTON AND ROWEIS

Markov model. Though elegant in their construction, these models are limited bytheir lack of
memory. To capture long-range structure they must maintain explicit links to observations in the
distant past, which results in a blow-up in the number of parameters. The strong regularities present
in many time series suggest that a more efficient parameterization is possible.

More powerful models, such as the popular hidden Markov model (HMM), introduce a hidden
(or latent) state variable that controls the dependence of the current observation on the history of
observations. HMMs, however, cannot efficiently model data that is a result of multiple underlying
influences since they rely on a single, discreteK-state multinomial to represent the entire history of
observations. To modelN bits of information about the past, they require 2N hidden states.

In this paper, we propose an alternative class of time series models that have three key proper-
ties which distinguish them from the prior art. The first property is distributed(i.e., componential)
hidden state. Mixture models such as HMMs generate each observation from a single category. Dis-
tributed state models (e.g., products) generate each object from a set of features that each contain
some aspect of that object’s description. linear dynamical systems (LDS) have a continuous, and
therefore componential hidden state, but in order to make inference in these models tractable, the
relationship between latent and visible variables is constrained to be linear. We show that by care-
fully choosing the right form of nonlinear observation model it is possible toattain tractable, exact
inference, yet retain a rich representational capacity that is linear in the number of components.

Directed acyclic graphical models (or Bayes nets) are a dominant paradigm in models of static
data. Their temporal counterparts, dynamic Bayes nets (Ghahramani, 1998), generalize many ex-
isting models such as the HMM and its various extensions. In all but the simplestdirected models,
inference is made difficult due to a phenomenon known as “explaining away” where observing a
child node renders its parents dependent (Pearl, 1988). To performinference in these networks, typ-
ically one resorts to approximate techniques such as variational inference(Neal and Hinton, 1998)
or Monte Carlo methods which have a significant number of disadvantages (Ghahramani, 1998;
Murphy, 2002).

An alternative to directed models is to abandon the causal relationship between variables, and
instead focus onundirectedmodels. One such model, the restricted Boltzmann machine (RBM)
(Smolensky, 1986), has garnered recent interest due to its desirable property of permitting efficient
exact inference. Unfortunately this comes at a cost: Exact maximum likelihood learning is no longer
possible due to the existence of an intractable normalizing constant called the partition function.
However, the RBM has an efficient, approximate learning algorithm, contrastive divergence (CD)
(Hinton, 2002), that has been shown to scale well to large problems. RBMshave been used in a
variety of applications (Welling et al., 2005; Gehler et al., 2006; Hinton and Salakhutdinov, 2006;
Larochelle et al., 2007; Salakhutdinov et al., 2007) and over the last fewyears their properties have
become better understood (Bengio and Delalleau, 2008; Salakhutdinov and Murray, 2008; Sutskever
and Hinton, 2008). The CD learning procedure has also been improved (Carreira-Perpinan and
Hinton, 2005; Tieleman, 2008; Tieleman and Hinton, 2009). With a few exceptions (Hinton and
Brown, 2000; Sutskever and Hinton, 2007) the literature on RBMs is confined to modeling static
data. In this paper, we leverage the desirable properties of an undirected architecture, the RBM, and
extend it to model time series. This brings us to the second key property of themodels we propose:
their observation or emission distribution is an undirected, bipartite graph. This makes inference in
our models simple and efficient.

The final key property of our proposed models is that they can form the building blocks of deep
networks by incrementally learning one layer of feature extractors at a time.One motivation for

1026

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

promoting deep architectures is biological plausibility. Experimental evidencesupports the belief
that the brain uses multiple layers of feature-detecting neurons to processrich sensory input such
as speech or visual signals (Hinton, 2007). There is also a practical argument for deep learning. In
capturing more abstract, high-level structure from the data, the higher layers provide a more sta-
tistically salient representation for tasks such as discrimination. These ideasare not new, but until
recently, the problem of how to efficiently train deep networks remained open. The backpropagation
algorithm requires a large amount of labeled data and has difficulties with poor local minima and
vanishing gradients. A resurgence in the study of deep architectures has been sparked by the dis-
covery that deep networks can be initialized by greedy unsupervised learning of each layer (Hinton
et al., 2006). RBMs were originally proposed for this task, but autoencoders (Bengio et al., 2007)
and sparse encoder-decoder networks (Ranzato et al., 2006) havealso been shown to work. After
a pre-training stage, the entire network can be fine-tuned with either a generative or discriminative
objective.

2. Modeling Human Motion

Motion capture (mocap) is the process of recording the movement of a subject as a time series of 3D
cartesian coordinates corresponding to real or virtual points on the body. Most modern systems use
a series of synchronized high-speed cameras to capture the location of strategically-placed physical
markers attached to the subject (so called “marker-based” systems) or use image features to infer
points of interest (so-called “markerless” systems). Marker-based systems are much more common
but necessitate the use of a laboratory setting. Markerless systems permit motion capture in more
natural environments (e.g., outdoors) but in general require more time to post-process the data.
Recent advances in motion capture technology have fueled interest in the analysis and synthesis of
motion data for computer animation and tracking.

Given its high-dimensional nature, nonlinearities, and long-range dependencies, mocap data is
ideal for both studying the limitations of time series models and demonstrating their effectiveness.
Several large motion capture data repositories are available, and people are very good at detecting
anomalies in data that is generated from a model, so it is easy to judge the relative generative ability
of two models. While focusing on a particular domain has greatly facilitated modeldevelopment
and comparison, there is nothing motion-specific to any of the models discussed herein. Therefore,
there is no reason to believe that they cannot be applied to other high-dimensional, highly-structured
time series data. In the following discussion, we briefly review related work inmocap-driven motion
synthesis.

2.1 Motion Synthesis for Computer Animation

A dominant approach in computer animation is “keyframing” whereby an animator employs soft-
ware to manually configure the “key” body poses over time, and these frames are interpolated to
form smooth trajectories. This process, however, is time and labor intensive. It is therefore common
to use mocap data to supplement or replace keyframing. A variety of methods have been developed
to exploit the plethora of high-quality motion sequences available for animation.These approaches
can be loosely divided into a handful of categories which we describe below.

1027

TAYLOR , HINTON AND ROWEIS

2.1.1 CONCATENATION METHODS

Perhaps the simplest way to generate new motion sequences based on data isto sensibly concatenate
short examples from a motion database to meet sparse user-specified constraints (Tanco and Hilton,
2000; Arikan and Forsyth, 2002; Kovar et al., 2002; Lee et al., 2002;Arikan et al., 2003). Pullen
and Bregler (2002) propose a hybrid approach where low-frequency components are retained from
user input and high-frequency components, called “texture”, are added from the database. The ob-
vious benefit of concatenation approaches is the high-quality motion that is produced. However, the
“synthesized” motions are restricted to content already in the database andtherefore many resources
must be devoted to capture all desired content.

2.1.2 BLENDING AND INTERPOLATION METHODS

Many methods produce new motions by interpolating or blending existing content from a database
(Rose et al., 1998; Park et al., 2002; Kovar and Gleicher, 2004; Mukai and Kuriyama, 2005). Unfor-
tunately, these methods typically require extensive pre-processing whichgenerally involves some
type of time-warping to align the original sequences. Furthermore, the resulting motions often
grossly violate dynamics, resulting in artifacts such as “footskate” and thereby requiring extensive
clean-up using inverse kinematics.

2.1.3 TRANSFORMINGEXISTING MOTION

Another method is to transform motion in the training data to new sequences by learning to adjust
its style or other characteristics (Urtasun et al., 2004; Hsu et al., 2005; Torresani et al., 2007). Such
approaches have produced impressive results given user-suppliedmotion content but we seek more
powerful methods that can synthesize both style and content.

2.1.4 PHYSICS-BASED METHODS

Models based on the physics of masses and springs have produced someimpressive results by using
sophisticated “energy-based” learning methods (LeCun et al., 1998) to estimate physical parameters
from motion capture data (Liu et al., 2005). However, if we want to generate realistic human
motion, we need to model all the complexities of the real dynamics which is extremelydifficult
to do analytically. In this paper we focus on model driven analysis and synthesis but avoid the
complexities involved in imposing physics-based constraints, relying instead on a “pure” learning
approach in which all the knowledge in the model comes from the data.

2.1.5 GENERATIVE MODELS

Data from modern motion capture systems is high-dimensional and contains complex nonlinear
relationships among the components of each observation, which is typically a series of joint angles
with respect to some skeletal structure. This is a challenge for existing approaches to sequence
modeling. However, there are examples of successes in the literature. Brand and Hertzmann (2000)
model style and content of human motion with hidden Markov models (HMMs) whose emission
distributions depend on stylistic parameters learned directly from the data. Their approach permits
sampling of novel sequences from the model and applying new styles to existing content. HMMs,
however, cannot efficiently model mocap data due to their simple, discrete state. Linear dynamical
systems, on the other hand, have a more powerful hidden state but they cannot model the complex

1028

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

nonlinear dynamics created by the nonlinear properties of muscles, contact forces of the foot on
the ground and myriad other factors. This problem has been addressedby applying piecewise-linear
models to synthesize motion (Pavlovic et al., 2001; Li et al., 2002; Bissacco,2005). In general, exact
inference and learning is intractable in such models and approximations are costly and difficult to
evaluate.

2.1.6 GAUSSIAN PROCESSMODELS

Models based on Gaussian processes (GPs) have received a greatdeal of recent attention, especially
in the tracking literature. The Gaussian process dynamical model (Wang etal., 2008) extends the
Gaussian process latent variable model (GP-LVM) (Lawrence, 2004)with a GP-based dynamical
model over the latent representations. This model has been shown to discover interesting structure
in motion data and permit synthesis of simple actions. However, the main concernwith GP-based
approaches is their computational expense (cubic in the number of training examples for learning,
quadratic in the number of training examples for prediction or generation). This problem may be
alleviated by sparse methods but this remains to be seen. Another downside of the GPDM is that
a single model cannot synthesize multiple types of motion, a limitation of the simple manifold
structure and unimodal dynamics learned by these models. Recently proposed models such as the
multifactor GP (Wang et al., 2007) and hierarchical GP-LVMs (Lawrenceand Moore, 2007) address
this limitation.

3. Conditional Restricted Boltzmann Machines

We have emphasized that models with distributed hidden state are necessary for efficiently model-
ing complex time series. But using distributed representations for hidden statein directed models
of time series (Bayes nets) makes inference difficult in all but the simplest models (HMMs and
linear dynamical systems). If, however, we use a restricted Boltzmann machine (RBM) to model
the probability distribution of the observation vector at each time frame, the posterior over latent
variables factorizes completely, making inference easy. In this section, wefirst review the RBM
and then propose a simple extension to capture temporal dependencies yetmaintain its most impor-
tant computational properties: simple, exact inference and efficient approximate learning using the
contrastive divergence algorithm.

3.1 Restricted Boltzmann Machines

The restricted Boltzmann machine (Smolensky, 1986) is a Boltzmann machine with aspecial struc-
ture (Figure 1c). It has a layer of visible units fully connected to a layer ofhidden units but no
connections within a layer. This bi-partite structure ensures that the hidden units are conditionally
independent given a setting of the visible units and vice-versa. Simplicity andexactness of inference
are the main advantages to using an RBM compared to a fully connected Boltzmann machine.

To make the distinction between visible and hidden units clear, we usevi to denote the state of
visible unit i andh j to denote the state of hidden unitj. We also distinguish biases on the visible
units,ai from biases on the hidden units,b j . The RBM assigns a probability to any joint setting of
the visible units,v and hidden units,h:

p(v,h) =
exp(−E(v,h))

Z
(1)

1029

TAYLOR , HINTON AND ROWEIS

s j

s
i

(a)

s
i

s j

(b)

v
i

h j

(c)

Figure 1: a) A Boltzmann machine. b) A Boltzmann machine partitioned into visible (shaded) and
hidden units. c) A restricted Boltzmann machine.

whereE(v,h) is an energy function. When both the visible and the hidden units are binary with
states 1 and 0, the energy function is

E(v,h) =−∑
i j

Wi j vih j −∑
i

aivi −∑
j

b jh j

whereZ is a normalization constant called the partition function, whose name comes fromstatistical
physics. The partition function is intractable to compute exactly as it involves a sum over the
(exponential) number of possible joint configurations:

Z = ∑
v′,h′

E(v′,h′).

Marginalizing over the hidden units in Equation 1 and maximizing the likelihood leadsto a very
simple maximum likelihood weight update rule:

∆Wi j ∝ 〈vih j〉data−〈vih j〉model. (2)

where〈·〉datais an expectation with respect to the data distribution and〈·〉model is an expectation with
respect to the model’s equilibrium distribution. Because of the conditional independence properties
of the RBM, we can easily obtain an unbiased sample of〈vih j〉databy clamping the visible units to
a vector in the training data set, and sampling the hidden units in parallel according to

p(h j = 1|v) =
1

1+exp(−b j −∑i Wi j vi)
. (3)

This is repeated for each vector in a representative “mini-batch” from thetraining set to obtain
an empirical estimate of〈vih j〉data To compute〈vih j〉model requires us to obtain unbiased samples
from the joint distributionp(v,h). However, there is no known algorithm to draw samples from this
distribution in a practical amount of time. We can perform alternating Gibbs sampling by iterating
between sampling fromp(h|v) using Equation 3 and sampling fromp(v|h) using

p(vi = 1|h) =
1

1+exp(−ai −∑ j Wi j h j)
. (4)

1030

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

However, Gibbs sampling in high-dimensional spaces typically takes too long toconverge. Em-
pirical evidence suggests that rather than running the Gibbs sampler to convergence, learning works
well if we replace Equation 2 with

∆Wi j ∝ 〈vih j〉data−〈vih j〉recon, (5)

where the second expectation is with respect to the distribution of “reconstructed” data. The re-
construction is obtained by starting with a data vector on the visible units and alternating between
sampling all of the hidden units using Equation 3 and all of the visible units using Equation 4K
times. The learning rules for the biases are just simplified versions of Equation 5:

∆ai ∝ 〈vi〉data−〈vi〉recon, (6)

∆b j ∝ 〈h j〉data−〈h j〉recon.

The above procedure is not maximum likelihood learning but it corresponds to approximately
following the gradient of another function called the contrastive divergence (Hinton, 2002). We use
the notation CD-K to denote contrastive divergence usingK full steps of alternating Gibbs sampling
after first inferring the states of the hidden units for a datavector from thetraining set. TypicallyK is
set to 1, but recent results show that gradually increasingK with learning can significantly improve
performance at an additional computational cost that is roughly linear inK (Carreira-Perpinan and
Hinton, 2005).

3.2 RBMs with Real-Valued Observations

Typically, RBMs use stochastic binary units for both the visible data and hidden variables, but for
many applications the observed data is non-binary. For some domains (e.g., modeling handwritten
digits) we can normalize the data and use the real-valued probabilities of the binary visible units
in place of their activations. When we use mean-field logistic units to model data that is very
non-binary (e.g., modeling patches of natural images), it is difficult to obtainsharp predictions for
intermediate values and so it is more desirable to use units that match the distributionof the data.

Fortunately, the stochastic binary units of RBMs can be generalized to any distribution that falls
in the exponential family (Welling et al., 2005). This includes multinomial units, Poisson units
and linear, real-valued units that have Gaussian noise (Freund and Haussler, 1992). To model real-
valued data (e.g., mocap), we use a modified RBM with binary logistic hidden unitsand real-valued
Gaussian visible units. The joint probability ofv andh follows the form of Equation 1 where the
energy function is now

E(v,h) = ∑
i

(vi −ai)
2

2σ2
i

−∑
i j

Wi j
vi

σi
h j −∑

j

b jh j .

whereai is the bias of visible uniti, b j is the bias of hidden unitj andσi is the standard deviation
of the Gaussian noise for visible uniti. The symmetric weight,Wi j , connects visible uniti to hidden
unit j.

Any setting of the hidden units makes a linear contribution to the mean of each visible unit:

p(vi |h) =N

(

ai +σi ∑
j

Wi j h j ,σ2
i

)

. (7)

1031

TAYLOR , HINTON AND ROWEIS

Inference simply uses a scaled form of Equation 3:

p(h j = 1|v) =
1

1+exp(−b j −∑i Wi j
vi
σi
)
.

Given the hidden units, the distribution of each visible unit is defined by a parabolic log like-
lihood function that makes extreme values very improbable. For any setting ofthe parameters, the
gradient of the quadratic term with respect to a visible unit will always overwhelm the gradient
due to the weighted input from the binary hidden units provided the valuevi of a visible unit is far
enough from its bias,ai . Conveniently, the contrastive divergence learning rules remain the sameas
in an RBM with binary visible units.

Finally, a brief note aboutσi : it is possible to learn, but this is difficult using CD-1 (Hinton,
2010). In practice, we simply rescale our data to have zero mean and unit variance and fixσi to
be 1. Provided no noise is added to the mean reconstructions given by Equation 7, this makes the
learning work well even though we would expect a good model to predict the data with much higher
precision. For the remainder of the paper, we will assumeσi = 1, but that no noise is added to the
reconstructions used for learning.

3.3 The Conditional RBM

The RBM models static frames of data, but does not incorporate any temporal information. We
can model temporal dependencies by treating the visible variables in the previous time slice(s) as
additional fixed inputs. We add two types of directed connections: autoregressive connections from
the pastN configurations (time steps) of the visible units to the current visible configuration, and
connections from the pastM configurations of the visible units to the current hidden configuration.
The addition of these directed connections turns the RBM into a conditional RBM (Figure 2). The
autoregressive weights can model linear, temporally local structure verywell, leaving the hidden
units to model nonlinear, higher-level structure.

N andM are tunable parameters and need not be the same for both types of directedconnections.
To simplify discussion, we will assumeN = M and refer toN as the order of the model. Typically,
in our experiments, we use a small number such asN = 3. In modeling motion capture with higher
frame rates, we have found that a good rule of thumb is to setN = F/10 whereF is the frame rate
of the data (in frames per second).

To simplify the presentation, we will assume the data att − 1, . . . , t −N is concatenated into
a “history” vector which we callv<t . So if vt is of dimensionD, thenv<t is of dimensionN ·D.
We will usek to index the individual, scalar components ofv<t . The autoregressive parameters are
summarized by anN ·D×D weight matrix calledA and the directed “past to hidden” parameters
are summarized by anN ·D×H matrix B whereH is the number of binary hidden units. This does
not change the computation, but allows us to simplify the presentation of the following equations as
we can avoid explicitly summing over past frames.

3.3.1 INFERENCE ANDLEARNING

Fortunately, inference in the CRBM is no more difficult than in the standard RBM. The states of
the hidden units are determined by both the input they receive from the current observation and the
input they receive from the recent past. Givenvt andv<t , the hidden units at timet are conditionally

1032

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

vtvt−1vt−2

ht

i

j

k

!"#"$%&'%()&*'

+",,&-'%()&*'

Figure 2: Architecture of the CRBM. In this figure we showN = 2 but in our experiments, we
typically use a slightly higher order. There are no connections between thehidden units
at different time steps (see Section 3.4.3).

independent. The effect of the past on each hidden unit can be viewedas a dynamic bias:

b̂ j,t = b j +∑
k

Bk jvk,<t

which includes the static bias,b j , and the contribution from the past. This slightly modifies the
factorial distribution over hidden units:b j in Equation 3 is replaced witĥb j,t to obtain

p(h j,t = 1|vt ,v<t) =
1

1+exp(−b̂ j,t −∑i Wi j vi,t)
. (8)

Note that we are now conditioning onv<t . Figure 3 shows an example of frame-by-frame
inference in a trained CRBM.

The past has a similar effect on the visible units. The reconstruction distribution becomes

p(vi,t |ht,v<t) =N

(

âi,t +∑
j

Wi j h j,t ,1

)

(9)

whereâi,t is also a dynamically changing bias that is an affine function of the past:

âi,t = ai +∑
k

Akivk,<t .

We can still use contrastive divergence for training the CRBM. The updates for the symmetric
weights,W, as well as the static biases,a andb, have the same form as Equation 5 and Equation 6
but have a different effect because the states of the hidden units are now influenced by the previous
visible units. The updates for the directed weights are also based on simple pairwise products. The

1033

TAYLOR , HINTON AND ROWEIS

Figure 3: In a trained model, probabilities of each feature being “on”, conditional on the data at the
visible units. Shown is a 100-hidden unit model and a sequence which contains (in order)
walking, sitting/standing (three times), walking, crouching, and running. Rows represent
features, columns represent sequential frames.

gradients are now summed over all time steps:

∆Wi j ∝ ∑
t
(〈vi,th j,t〉data−〈vi,th j,t〉recon) , (10)

∆Aki ∝ ∑
t
(〈vi,tvk,<t〉data−〈vi,tvk,<t〉recon) , (11)

∆Bk j ∝ ∑
t
(〈h j,tvk,<t〉data−〈h j,tvk,<t〉recon) , (12)

∆ai ∝ ∑
t
(〈vi,t〉data−〈vi,t〉recon) , (13)

∆b j ∝ ∑
t
(〈h j,t〉data−〈h j,t〉recon) (14)

where〈·〉data is an expectation with respect to the data distribution, and〈·〉recon is theK-step re-
construction distribution as obtained by alternating Gibbs sampling, starting with the visible units
clamped to the training data.

While learning a CRBM, we do not need to proceed sequentially through the training data
sequences. The updates are only conditional on the pastN time steps, not the entire sequence.
As long as we isolate “chunks” ofN+ 1 frames (the size depending on the order of the directed
connections), these small windows can be mixed and formed into mini-batches.To speed up the
learning, we assemble these chunks of frames into “balanced” mini-batches of size 100.

We randomly assign chunks to different mini-batches so that the chunks in each mini-batch are
as uncorrelated as possible. To save computer memory, time frames are not actually replicated in
mini-batches; we simply use indexing to simulate the “chunking” of frames.

1034

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

3.3.2 SCORING OBSERVATIONS

The CRBM defines a joint probability distribution over a data vector,vt , and a vector of hidden
states,ht , conditional on the recent past,v<t :

p(vt ,ht |v<t) =
exp(−E (vt ,ht |v<t))

Z(v<t)
(15)

where the partition function,Z, is constant with respect tovt andht but depends onv<t . As in the
RBM, it is intractable to compute exactly because it involves an integration overall possible settings
of the visible and hidden units:

Z(v<t) = ∑
h′

t

∫
v′t

exp
((

−E(v′t ,h
′
t |v<t

))

dv′t .

The energy function is given by

E(vt ,ht |v<t) =
1
2 ∑

i

(vi,t − âi,t)
2−∑

i j

Wi j vi,th j,t −∑
j

b̂ j,th j,t (16)

where we have assumedσi = 1. The probability of observingvt can be expressed by marginalizing
out the binary hidden units:

p(vt |v<t) = ∑
ht

p(vt ,ht |v<t) =
∑ht

exp(−E(vt ,ht |v<t))

Z(v<t)
. (17)

Under the CRBM, the probability of observing asequence, v(N+1):T , given v1:N, is just the
product of all the local conditional probabilities:

p(v(N+1):T |v1:N) =
T

∏
t=N+1

p(vt |v<t). (18)

We do not attempt to model the firstN frames of each sequence, though a separate set of biases
could be learned for this purpose.

Although the partition function makes Equation 17 and Equation 18 intractable to compute
exactly, we can exploit the fact that the hidden units are binary and integrate them out to arrive at
the “free energy”:

F(vt |v<t) =
1
2 ∑

i

(vi,t − âi,t)
2−∑

j

log

(

1+exp(∑
i

Wi j vi,t + b̂ j,t)

)

, (19)

which is a function of the model parameters and recent past. It is the negative log probability of an
observation plus logZ (see Equation 15). Given a history, the free energy allows us to score asingle
temporal frame of observations under a fixed setting of the parameters, but unlike a probability it
does not let us compare between models.1 It can still be useful, however, in making deterministic
forward predictions (as described in the following section). Freund andHaussler (1992) give details
on deriving the free energy for an RBM.

1. Different models will have different partition functions.

1035

TAYLOR , HINTON AND ROWEIS

3.3.3 GENERATION

Generation from a learned CRBM can be done on-line. The visible states atthe last few time
steps determine the effective biases of the visible and hidden units at the current time step. We
always keep the previous visible states fixed and perform alternating Gibbs sampling to obtain a
joint sample from the CRBM. This picks new hidden and visible states that are compatible with
each other and with the recent (visible) history. To start alternating Gibbs sampling, we need to
initialize with eithervt or ht . For time-series data that is smooth (e.g., mocap), a good choice is to
initially setvt = vt−1. In practice, we alternate 30 to 100 times, though the quality of generated data
does not seem to be sensitive to this parameter.

Generation does not require us to retain the training data set, but it does require initialization
with N observations. Typically we use randomly drawn consecutive frames from the training data
as an initial configuration.

A trained CRBM has the ability to fill in missing data (complete or partial observations), re-
gardless of where the dropouts occur in a sequence. To be strictly correct, we would need to use
smoothing (i.e., conditioning on future as well as past observations) in order to take into account the
effect of a filled-in value on the probability of future observed values. As in the learning procedure,
we ignore smoothing and this approximation allows us to fill in missing data on-line. Filling in
missing data with the CRBM is very similar to generation. We simply clamp the known datato
the visible units, initialize the missing data to something reasonable (for example, thevalue at the
previous frame), and alternate between stochastically updating the hidden and visible units,with the
known visible states held fixed.

The noise in sampling may be an asset when using the CRBM to generate sequences, but when
using the CRBM to fill in missing data, or in a predictive setting it may be undesirable. Rather than
obtaining a sample, we may want the model’s “best guess”. Given the model parameters, and past
history, we can follow the negative gradient of the free energy (Equation 19) with respect to either
a complete or partial setting of the visible variables,vt :

∂F(vt |v<t)

∂vk,t
= vk,t −

(

âi,t +∑
j

Wi j f

(

−∑
i

Wi j vi,t − b̂ j,t

))

where f (·) is the logistic function. The gradient at a unit has an intuitive form: it is the difference
between its current value and the value that would be obtained by mean-fieldreconstruction. We
use conjugate-gradient optimization, but any general purpose gradient-based optimizer is suitable.

3.4 Higher Level Models: The Conditional Deep Belief Network

Once we have trained the model, we can add layers in the same way as a deep belief network (DBN)
(Hinton et al., 2006). The previous layer CRBM is kept, and the sequenceof hidden state vectors,
while driven by the data, is treated as a new kind of “fully observed” data.The next level CRBM
has the same architecture as the first (though we can alter the number of its units) and is trained in
the exact same way. Upper levels of the network can then model higher-order structure.

Figure 4a shows a CRBM whose symmetric, undirected weights have been represented explic-
itly by two sets of directed weights: top-down “generative” weightsW0, and bottom-up “recogni-
tion” weights,WT

0 . This representation is purely illustrative: it does not at all change the model.
The use of the zero subscripts and superscripts simply indicates that the CRBM is first in a series of
layers which we will introduce shortly.

1036

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

B
0

W
0W

0

T

A
0

v< t
0

v
t

0

h
t

0

(a)

B
0

W
0

A
0

v< t
0

v
t

0

h
t

0

A
0

W
0 W

0

T

v
t

1
v< t
0

(b)

B
0

A
0

v< t
0

v
t

0

h
t

0

A
1

W
1 W

1

T

v< t
0

W
0 W

0

T

B
1

h
t

1

(c)

B
0

A
0

v< t
0

v
t

0

h
t

0

A
1

W
1 W

1

T

h< t
0

W
0 W

0

T

B
1

h
t

1

(d)

Figure 4: Building a conditional deep belief network. (a) The CRBM. (b) Agenerative model
whose weights between layers are tied. It defines the same joint distribution over v0

t and
h0

t . The top two layers interact using symmetric connections while all other connections
are directed. (c) Improving the model by untying the weights; holdingW0,A0 andB0

fixed and greedily trainingW1,A1 andB1. Note that the “dashed” directed, bottom-up
weights are not part of the generative model. They are used to infer factorial, approximate
posterior distributions overh0

t whenv0
t is clamped to the data. (d) The model we use in

practice. Note the change fromv0
<t to h0

<t . We ignore uncertainty in the past hidden
states.

Figure 4b shows a generative model that is equivalent to the original CRBM in the sense that
their joint distributions overv0

t andh0
t , conditional onv0

<t are the same. We have added a second
set of visible units,v1

t , identical to the first, and ensured that the undirected, symmetric weights
betweenv1

t andh0
t are equal to the weights used in the original CRBM. Furthermore, we introduce

a copy ofv0
<t and the autoregressive connections,A0. The weights are therefore “tied” between

the two layers. Additionally, the bottom-up weights betweenv0
t andh0

t , WT
0 , are no longer part

of the generative model in Figure 4b. Although the model defines the same joint distribution, its
semantics are very different than the CRBM. To generate an observation, v0

t , conditional onv0
<t , we

must reach equilibrium in the conditional associative memory formed by the top two layers and then
perform a single down-pass using directed weightsW0 andA0. The CRBM generates observations
as explained in Section 3.3.3.

Note that if we observev0
t , the unitsh0

t are no longer conditionally independent because the
undirected connections betweenv0

t andh0
t have been replaced by directed connections. The new

model is therefore subject to the effects of “explaining away”. However, because of the tied weights,
the CRBM at the top two layers becomes a “complementary prior” (Hinton et al., 2006): meaning
that when we multiply the likelihood term by the prior, the posterior is factorial. Researchers who
are used to using directed models often assume thatW0v0

t +B0v0
<t is computing a likelihood term.

1037

TAYLOR , HINTON AND ROWEIS

This is incorrect. It is computing the product of the likelihood term and the prior term (i.e., the
posterior). Both the likelihood term and the prior term are much more complicatedsince they are
each far from being factorial.

If we holdW0,A0 andB0 fixed, but “untie”2 the weights between the top two layers (Figure 4c)
we can improve the generative model by greedily learningW1,A1 andB1, treating the activations
of h0

t while driven by the training data as a kind of “fully-observed” data. Whenthe weights are
untied, units in the topmost layer no longer represent the visible units, but another layer of latent
features,h1

t . We can still useWT
0 and B0 (which are not part of the generative model) to infer

factorialapproximateposterior distributions over the states ofh0
t .

The joint distribution defined by the original CRBM,p(v0
t ,h

0
t |v

0
<t), decomposes into a mapping

from features to data,p(v0
t |h

0
t ,v

0
<t), and an implicit prior over the features,p(h0

t |v
0
<t) which is also

determined byW0. We can think of training the next layer as a means of improving the prior model.
By fixing W0,A0, the distributionp(v0

t |h
0
t ,v

0
<t) is unchanged. The gain from building a better model

of p(h0
t |v

0
<t) more than offsets the loss from having to perform approximate inference.This greedy

learning algorithm can be applied recursively to any number of higher layers and is guaranteed to
never decrease a variational lower bound on the log probability of the dataunder the full generative
model (Hinton et al., 2006).

In practice, greedily training multiple layers of representation works well. However, there are
a number of small changes we make to gain flexibility and improve the computationalcost of per-
forming inference and learning. Bending the rules as follows breaks the above guarantee:

1. We replace maximum likelihood learning with contrastive divergence (forobvious computa-
tional reasons).

2. The guarantee relies on initializing the weights of each successive layerwith the weights in
the layer below. This assumes that all odd layers are of equal size and alleven layers of equal
size. In practice, however, we typically violate this constraint and initialize theweights to
small random values.

3. Rather than train each layer conditional onv0
<t (which we assume to be the fully-observed re-

cent past of the visible units), we train each layer using its own recent pastas the conditioning
input. v0

<t ,h
0
<t , . . . ,h

H−1
<t (whereH is the number of hidden layers), always treating the past

as fully-observed.

The model that we use in practice is shown in Figure 4d. It is a conditional deep belief network
(CDBN). The inference we perform in this model, conditional on past visible states, is approxi-
mate because it ignores the future (it does not do smoothing). Because ofthe directed connections,
exact inference within the model should include both a forward and backward pass through each se-
quence. We perform only a forward pass because smoothing is intractable in the multi-layer model.
Effectively, at each layer we replace the full posterior by an approximate filtering distribution. How-
ever, there is no guarantee that this is a good approximation. Compared with an HMM, the lack of
smoothing is a loss. But the deep model is still exponentially more powerful at using its hidden state
to represent data.

2. A note on our naming convention: the “untied”A0 becomesB1 since it now represents a visible-to-hidden connection.
The “untied” B0 becomesA1 since it will ultimately be a “visible-visible” connection when the hidden units are
treated as observed during greedy learning.

1038

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

3.4.1 ON-LINE GENERATION WITH HIGHER-LEVEL MODELS

The generative model for a conditional DBN consists of a top-level conditional associative memory
(with symmetric weights and dynamic biases) and any number of directed lower layers (with top-
down generative weights and dynamic generative biases). We also maintainbottom-up connections
that are used in approximate inference. Like in a DBN, to generate a sample,vt , the associative
memory must settle on a joint setting of the units in the top two hidden layers and then the top-
down weights are used to generate the lower layers. Since the model is conditional, each layer must
also consider the effect of the past via the dynamic biases. Note that in a deep network, all but the
topmost hidden layer will have two sets of dynamic biases: recognition biasesfrom when it was
greedily trained as a hidden layer, and generative biases from when it was subsequently trained as
a “visible” layer. During generation, we must be careful not to double-count the input to each layer
(i.e., by including both types of biases when computing the total input to each unit); we use the
recognition biases during inference and generative biases during generation.

As a concrete example, let us consider generating an observation from aconditional DBN built
by greedily training two CRBMs (the same network shown in Figure 4d).

1. If the first CRBM is orderN and the second CRBM is orderM then we must initialize with
N+M frames,v1:(N+M) (Figure 5a).

2. Next, we initializeM frames of the first hidden layer using a mean-field up-pass through the
first CRBM (Figure 5b).

3. Then we initialize the first layer hidden units att = N+M+1 to be a copy of the real-valued
probabilities we have just inferred att = N+M. We perform alternating Gibbs sampling in
the 2nd layer CRBM. At each step, we stochastically activate the top-level hidden units, but
on the final step, we suppress noise by using the real-valued probabilitiesof the top layer to
obtain the real-valued probabilities of the first layer hidden units (Figure 5c).

4. We do a mean-field down-pass in the first layer CRBM to obtain the visible states at time
t = N+M+1 (Figure 5d).

Again, we copy the real-valued probabilities of the first layer hidden units toinitialize Gibbs
sampling for the next frame, and repeat steps 3 and 4 above for as many frames as desired.

3.4.2 FINE-TUNING

Following greedy learning, both the weights and the simple inference procedure are suboptimal in
all but the top layer of the network, as the weights have not changed in the lower layers since their
respective stage of greedy training. We can, however, use a contrastive form of the “wake-sleep”
algorithm (Hinton et al., 1995) called the “up-down” algorithm (Hinton et al., 2006) to fine-tune
the generative model. In our experiments, we have observed that fine-tuning improves the visual
quality of generated sequences at a modest additional computational cost.

3.4.3 TEMPORAL L INKS BETWEEN HIDDEN UNITS

In a conditional restricted Boltzmann machine the hidden state and visible state depend only on past
instances of the visible variables. The CRBM is a special case of the temporal restricted Boltz-
mann machine (TRBM) (Sutskever and Hinton, 2007) in which there are no temporal connections

1039

TAYLOR , HINTON AND ROWEIS

?

?

?

??

1 2 3 4 5 6

(a)

?

?

?

1 2 3 4 5 6

(b)

?

1 2 3 4 5 6

(c)
1 2 3 4 5 6

(d)

Figure 5: Generating from a conditional deep belief network with two hiddenlayers. For this ex-
ample, we assume the first layer CRBM is third order and the second layer CRBM is
second order. We provide five frames to initialize the model.

between hidden units. This makes filtering in the CRBM exact, and “mini-batch” learning possible,
as training does not have to be done sequentially. This latter property can greatly speed up learning
as well as smooth the learning signal, as the order of data vectors presented to the network can be
randomized. This ensures that the training cases in each mini-batch are as uncorrelated as possible.

As soon as we introduce connections between hidden units, we must resort to approximate fil-
tering or deterministic methods (Sutskever et al., 2009) even in a single layer model. In training
higher-level models using CRBMs, we gain hidden-to-hidden links via the autoregressive connec-
tions of the higher layers. At each stage of greedy learning, filtering is exact within each CRBM.
However, filtering in the overall multi-layer model is approximate.

3.5 Experiments

We have carried out a series of experiments training CRBM models on motion capture data from
publicly available repositories. After learning a model using the updates described in Section 3.3,
we can demonstrate in several ways what it has learned about the structure of human motion. Per-
haps the most direct demonstration, which exploits the fact that it is a probability density model
of sequences, is to use the model to generatede-novoa number of synthetic motion sequences.
Supplemental video files of these sequences are available on the website mentioned in the abstract;
these motions have not been retouched by hand in any motion editing software. Note that we also
do not have to keep a reservoir of training data sequences for generation - we only need the weights
of the trained model andN valid frames for initialization. Our model is, therefore, suitable for
low-memory devices.3 More importantly, we believe that compact models are likely to be better at
generalization.

3.5.1 DATA SOURCE AND REPRESENTATION

The first data set used in these experiments was obtained fromhttp://mocap.cs.cmu.edu . It will
be hereafter referred to as the CMU data set. The second data set usedin these experiments was
released by Hsu et al. (2005). We obtained it from fromhttp://people.csail.mit.edu/ehsu/
work/sig05stf/ . It will be hereafter referred to as the MIT data set. The data consisted of 3D
joint angles derived from 30 (CMU) or 17 (MIT) markers plus a root orientation and displacement.

3. The level of compression obtained will of course vary with the numberof free parameters and size of the data set.

1040

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

Data was represented with the encoding described in Appendix A. The final dimensionality of our
data vectors was 62 (CMU) and 49 (MIT).

One advantage of the CRBM is the fact that the data does not need to be heavily preprocessed
or dimensionality reduced before learning. Other generative approaches (Brand and Hertzmann,
2000; Li et al., 2002) apply PCA to reduce noise and dimensionality. However, dimensionality
reduction becomes problematic when a wider range of motions is to be modeled. The autoregressive
connections can be thought of as doing a kind of “whitening” of the data.

3.5.2 DETAILS OF LEARNING

Except where noted, all CRBM models were trained as follows: Each training case was a window of
N+1 consecutive frames and the order of the training cases was randomly permuted. The training
cases were presented to the model as “mini-batches” of size 100 and the weights were updated after
each mini-batch. Models were trained using CD-1 (see Section 3.1) for a fixed number of epochs
(complete passes through the data). All parameters used a learning rate of10−3, except for the
autoregressive weights which used a learning rate of 10−5. A momentum term was also used: 0.9
of the previous accumulated gradient was added to the current gradient.All parameters (excluding
biases) used L2 weight decay of 0.0002.

3.5.3 GENERATION OFWALKING AND RUNNING SEQUENCES FROM ASINGLE MODEL

In our first demonstration, we train a single CRBM on data containing both walking and running
motions; we then use the learned model to generate both types of motion, depending on how it is
initialized. We extracted 23 sequences of walking and 10 sequences of running from subject 35
in the CMU data set. After downsampling to 30Hz, the training data consisted of 2813 frames.
We trained a 200 hidden-unit CRBM for 4000 passes through the training data, using a third-order
model (for directed connections). The order of the sequences was randomly permuted such that
walking and running sequences were distributed throughout the training data.

Figure 6 shows a walking sequence and a running sequence generatedby the same model,
using alternating Gibbs sampling (with the probability of hidden units being “on” conditional on the
current and previous three visible vectors). Since the training data doesnot contain any transitions
between walking and running (andvice-versa), the model will continue to generate walking or
running motions depending on where it is initialized.

3.5.4 LEARNING TRANSITIONS BETWEEN WALKING AND RUNNING

In our second demonstration, we show that our model is capable of learning not only several types
of homogeneous motion content but also the transitions between them when thetraining data itself
contains examples of such transitions. We trained on 9 sequences (from the MIT database, file
Jog1 M) containing long examples of walking and running, as well as a few transitions between the
two gaits. After downsampling to 30Hz, this provided us with 2515 frames. Training was done
as before, but after the model was trained, an identical 200 hidden-unitmodel was trained on top
of the first model (see Section 3.4). The resulting two-level model was used to generate data. A
video available on the website demonstrates our model’s ability to stochastically transition between
various types of motion during a single generated sequence.

1041

TAYLOR , HINTON AND ROWEIS

Figure 6: After training, the same model can generate walking (top) and running (bottom) motion
(see supplemental videos). Each skeleton is 4 frames apart.

3.5.5 INTRODUCING TRANSITIONS USING NOISE

In our third demonstration, we show how transitions between different types of motion content
can be generated even when such transitions are absent in the data. We use the same model and
data as described in Section 3.5.3, where we have learned on separate sequences of walking and
running. To generate, we use the same sampling procedure as before, except that at each time we
stochastically choose the hidden states (given the current and previousthree visible vectors) we
add a small amount of Gaussian noise to the hidden state biases. This encourages the model to
explore more of the hidden state space without deviating too far from the current motion. Applying
this “noisy” sampling approach, we see that the generated motion occasionally transitions between
learned gaits. These transitions appear natural (see the supplemental video).

3.5.6 LEARNING MOTION STYLE

We have demonstrated that the CRBM can generate and transition between different gaits, but what
about its ability to capture more subtle stylistic variation within a particular gait? We also seek to
show the CRBM’s ability to learn on data at a higher frame-rate (60Hz), andfrom a much larger
training corpus. Finally, we incorporate label information into our training procedure.

From the CMU data set, we extracted a series of 10 stylized walk sequencesperformed by
subject 137. The walks were labeled ascat, chicken, dinosaur, drunk, gangly, graceful, normal,
old-man, sexyandstrong. We balanced the data set by repeating the sequences three to six times
(depending on the original length) so that our final data set contained approximately 3000 frames of
each style at 60fps.

In general, we used the same training procedure as above, but made a few important changes:

1042

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

• At each iteration of CD learning, we performed 10 steps of alternating Gibbssampling (CD-
10)

• We added a sparsity term to the energy function to gently encourage the hidden units, while
driven by the data, to have an average activation of 0.2 (details below)

• At each iteration of CD learning, we added Gaussian noise withσ = 1 to each dimension
of the past history,v<t . This ensures that the generative model can cope with the type of
noisy history that is produced when generating from the model. For the linear autoregressive
parameters,A, this is equivalent to L2 regularization (Matsuoka, 1992). For the parameters
which involve the binary hidden units it is not quite equivalent but has a very similar effect.

These experiments were carried out considerably later than the experiments described in Section
3.5.3 to 3.5.5 and so represent a refinement to our learning method. This allows us to cope with
the higher frame rate and larger degree of variability in the training set. Recent work on estimating
the partition functions of RBMs and evaluating the log probability of held-out sets has shown that
models trained with CD>1 , although more computationally demanding to train, are significantly
better generative models (Salakhutdinov and Murray, 2008). We have chosen CD-10 as a compro-
mise between closely approximating maximum likelihood learning and minimizing computational
cost.

The recent popularity of sparse, overcomplete latent representations has highlighted both the
theoretical and practical motivations for their use in unsupervised learning (Olshausen and Field,
1997; Lee and Seung, 1999; Ranzato et al., 2006; Lee et al., 2008). Sparse representations are often
more easy to interpret, and also more robust to noise. Furthermore, evidence suggests that they may
be used in biological systems. Recent sparse “energy-based methods”(Ranzato et al., 2006, 2007,
2008) have proposed the use of sparsity as an alternative to contrastive divergence learning. The
“contrastive term” in CD (which represents the derivative of the log partition function) corresponds
to pulling up on the energy (or pushing down on the probability) of points outside the training set.
Another way to ensure that the energy surface is low only around the training set is to eliminate the
partition function and replace it with a term that limits the volume of the input space over which
the energy surface can take low value (Ranzato et al., 2008). Using sparse overcomplete latent
representations is a means of limiting this volume by minimizing the information content ofthe
latent representation. Using both a contrastive term and sparsity, as we have done here, is a two-fold
approach to sculpting energy surfaces.

To implement sparsity, we maintained a damped “average activation” estimate foreach hidden
unit. Each element of this vector was initialized to the target activation, 0.2. Every time we presented
a mini-batch, we updated the estimate to be 0.9 times its current value plus 0.1 times the average
activation of the hidden units while the visible units were clamped to the data. The average was
taken over the mini-batch. After we calculated the positive-phase (data) and negative-phase (after
K steps of Gibbs sampling) statistics for each parameter, we added, to the original gradient, the
gradient of the cross-entropy error between the updated activity estimateand the target, 0.2, with
respect to that parameter. Note that updates for visible-only parameters (e.g., autoregressive weights
and visible biases) were unaffected by the sparsity term. Our sparsity termis similar to the one used
by Lee et al. (2008). However, they used a squared-error penalty between average activation and
target while we used cross-entropy error (Nair and Hinton, 2009) which is more appropriate for
logistic units.

1043

TAYLOR , HINTON AND ROWEIS

1-layer Model.A single-layer CRBM with 1200 hidden units andN = 12 was trained for 200
epochs on data for 10 different walking styles, with the parameters being updated after every 100
training cases. Each training case was a window of 13 consecutive frames and the order of the
training cases was randomly permuted. In addition to the real-valued mocap data, the hidden units
received additive input from a “one-hot” encoding of the matching style label through another matrix
of weights. Respecting the conditional nature of our application (generation of stylized motion, as
opposed to, say classification) this label was not reconstructed during learning. After training the
model, we generated motion by initializing with 12 frames of training data and holdingthe label
units clamped to the style matching the initialization.

With a single layer we could generate high-quality motion of 9/10 styles (see the supplemental
videos), however, the model failed to produce good generation of theold-manstyle. We believe that
this relates to the subtle nature of this particular motion. In examining the activity ofthe hidden
units over time while clamped to training data, we observed that the model devotesmost of its
hidden capacity to capturing the more “active” styles as it pays a higher cost for failing to model
more pronounced frame-to-frame changes.

2-layer Model. We also learned a deeper network by first training a CRBM with 600 binary
hidden units and real-valued visible units and then training a higher-level CRBM with 600 binary
hidden and 600 binary visible units. Both models usedN = 12. The data for training the higher-
level CRBM consisted of the activation probabilities of the hidden units of the first CRBM while
driven by the training data. Style labels were only connected to the top-layerof this network, while
training the second level CRBM. The first-level model was trained, without style labels, for 300
epochs and the second-level model was trained for 120 epochs.

After training, the 2-hidden-layer network was able to generate high-quality walks of all styles,
including old-man (see Figure 7 and the supplemental videos). The second level CRBM layer
effectively replaces the prior over the first layer of hidden units,p(ht |v<t), that is implicitly defined
by the parameters of the first CRBM. This provides a better model of the subtle correlations between
the features that the first-level CRBM extracts from the motion. The superiority of the second layer
may indeed be a result of its ability to capture longer-term dependencies in thedata. Learning the
old-manstyle is conditional on capturing longer-term dependencies since the signal (representing
joint angles) changes more slowly. The 2-layer network has access to a wider temporal context and
therefore is better able to model this particular style. We thank one of the anonymous reviewers for
suggesting this explanation.

(a) Cat (b) Dinosaur (c) Graceful (d) Sexy (e) Strong

Figure 7: Generating different walking styles from the same conditional deep belief network with
two hidden layers.

1044

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

Qualitative Comparison to the GPDM.The Gaussian process dynamical model (GPDM) (Wang
et al., 2008) was proposed for human motion synthesis and for use as a prior in tracking (Urtasun
et al., 2006). It extends the Gaussian process latent variable model (GP-LVM) (Lawrence, 2004)
with a GP-based dynamical model over the latent representations. However, as we demonstrate
in this section, the model has difficulty in capturing multiple styles of motion due to its simple
manifold structure and unimodal dynamics.

We used two publicly available GPDM implementations, each with its own suggested hyper-
parameters and structural settings. The first implementation was provided byNeil Lawrence’s FG-
PLVM toolbox: http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/fg plvm . Lawrence
recommends fixing by hand, rather than optimizing, the hyperparameters of the dynamics GP
(Lawrence, 2006). This ensures a strong preference for smooth trajectories. For the dynamics,
we used the default compound (RBF + white noise) kernel with recommendedhyperparameter set-
tings ofᾱ = [0.2,0.001,1×10−6]T . The observation model used a compound (RBF + bias + white
noise) kernel whose hyperparameters were optimized.

The second implementation we employed was provided by Jack Wang:http://www.dgp.
toronto.edu/ ˜ jmwang/gpdm/ . This implementation differed from the first in a number of re-
spects. First, it used a compound (linear + RBF + white noise) dynamics kernel whose hyperpa-
rameters were optimized rather than set by hand. The observation model used a compound (RBF
+ white noise) kernel whose hyperparameters were optimized. This GPDM also “balanced” the
objective function by reweighting the dynamics term by the ratio of observeddimensions to latent
dimensions (Wang et al., 2008). Similar to fixing hyperparameters, this encourages smoothness of
the latent trajectories.

With each implementation we trained both a single model on the complete 10 walking styles
data set as well as 10 style-specific models. The data was preprocessedidentically to the CRBM
experiments, however, we did not balance the data set by repeating sequences. It would have taken
several weeks to train the GPDM on a corpora of approximately 30,000 frames. We tried each of the
sparse approximations provided by the FGPLVM toolbox to reduce the computational complexity.
In our experience, though drastically improving training time, all of the approximations led to far
worse synthesized motion quality. In all results shown, we use the recommended 3 latent dimensions
(Lawrence, 2006; Urtasun et al., 2006; Wang et al., 2008). We also experimented with 8 and 16
latent dimensions but found that this caused quality to decrease.

Similar to the online process used for drawing samples from a CRBM, we simulated the dynam-
ical process one frame at a time, starting from training data (mapped to latent space). At each time
step, we set the latent position to the mean latent position conditioned on the previous step. The
latent trajectory then induces a per-frame Gaussian distribution over (normalized) poses (i.e., the re-
construction distribution). We take the mean of this distribution for each frame.Wang et al. (2008)
recommend drawing fair samples of entire trajectories using hybrid Monte Carlo (HMC), using the
simulated latent trajectory as an initialization. We did not observe any significant improvement in
the quality of synthesized motion when using HMC. Moreover, it increased simulation time by an
order of magnitude.

The supplemental videos show the result of synthesizing motion styles from the GPDM. For
each model and style we show three sequences: 1) a sequence generated from the same initializa-
tion as we used for the CRBM; 2) the best sequence, as determined by visual inspection, over ten
different initializations spaced uniformly over the training data; and 3) reconstructing the training
data using the latent representation. We observed that when trained per-style, both implementations

1045

TAYLOR , HINTON AND ROWEIS

of the GPDM could generate reasonable-looking motion, though not of the same quality as a 1 or
2-layer CRBM trained on all styles. Regardless of the implementation, a single GPDM trained on
all styles failed to generate satisfactory motion. More recent extensions ofthe GP-LVM, such as
Topologically-constrained GP-LVMs (Urtasun et al., 2008), multifactor GPs (Wang et al., 2007) and
hierarchical GP-LVMs (Lawrence and Moore, 2007) may perform better at this task.

3.5.7 FILLING IN M ISSING DATA

0 20 40 60 80 100 120 140
−1.5

−1

−0.5

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 jo
in

t a
ng

le

Frame
0 20 40 60 80 100 120 140

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 jo
in

t a
ng

le

Frame
0 20 40 60 80 100 120 140

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 jo
in

t a
ng

le

Frame

Figure 8: The model successfully fills in missing data using only the previous values of the joint
angles (through the temporal connections) and the current angles of other joints (through
the symmetric connections). Shown are the three angles of rotation for the left hip joint.
The original data is shown as a solid line, the model’s prediction is shown as a dashed
line, and the results of nearest neighbour interpolation are shown as a dotted line.

Due to the nature of the motion capture process, which can be adversely affected by lighting
and environmental effects, as well as noise during recording, motion capture data often contains
missing or unusable data. Some markers may disappear (“dropout”) for long periods of time due to
sensor failure or occlusion. The majority of motion editing software packages contain interpolation
methods to fill in missing data, but this leaves the data unnaturally smooth. These methods also rely
on the starting and end points of the missing data. Hence, if a marker goes missing until the end
of a sequence, naı̈ve interpolation will not work. Such methods often only use the past and future
data from the single missing marker to fill in that marker’s missing values. Since joint angles are
highly correlated, substantial information about the placement of one marker can be gained from the
others. To demonstrate filling in, we trained a model exactly as described in Section 3.5.3, holding
out one walking and one running sequence from the training data to be used as test data. For each
of these walking and running test sequences, we erased two differentsets of joint angles, starting
halfway through the test sequence. These sets were the joints in (1) the left leg, and (2) the entire
upper body. As seen in the supplemental video, the quality of the filled-in datais excellent and is
hardly distinguishable from the original ground truth of the test sequence. Figure 8 demonstrates
the model’s ability to predict the three angles of rotation of the left hip.

We report results on the held-out walking sequence, of length 124 frames. We compared our
model’s performance to nearest neighbour interpolation, a simple method where for each frame, the
values on known dimensions are compared to each example in the training set tofind the closest
match (measured by Euclidean distance in the normalized angle space). The unknown dimensions
are then filled in using the matched example. As reconstruction from our modelis stochastic,

1046

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

we repeated the experiment 100 times and report the mean. For the missing leg,mean squared
reconstruction error per joint using our model was 8.78, measured in normalized joint angle space,
and summed over the 62 frames of interest. Using nearest neighbour interpolation, the error was
greater: 11.68. For the missing upper body, mean squared reconstruction error perjoint using our
model was 20.52. Using nearest neighbour interpolation, again the error was greater: 22.20.

We note that by adding additional neighbouring points, the nearest neighbour prediction can be
significantly improved. For filling in the left leg, we found thatK = 8 neighbours gave minimal
error (8.63), while for the missing upper body, usingK = 6 neighbours gave minimal error (12.67).
These scores, especially in the case of the missing upper body, are, in fact, an improvement over
using the CRBM for prediction. However, we note that in practice we would not be able to fine-
tune the number of nearest neighbours nor could we be expected to haveaccess to a large database
of extremely similar training data. In more realistic missing-data scenarios, we would expect the
model-based approach to generalize much better. Furthermore, we have not optimized other tunable
parameters such as the model order, number of Gibbs steps per CD iteration, and number of hidden
units; all of which are expected to have an impact on the prediction error.

4. Factored Conditional Restricted Boltzmann Machines

In this section we present a different model, based on the CRBM, that explicitly preserves the
CRBM’s most important computational properties but includes multiplicative three-way interactions
that allow the effective interaction weight between two units to be modulated by the dynamic state
of a third unit. We factor the three-way weight tensor implied by the multiplicative model, greatly
reducing the number of parameters.

4.1 Multiplicative Interactions

A major motivation for the use of RBMs is that they can be used as the building blocks of deep belief
networks (DBN), which are learned efficiently by training greedily, layer-by-layer (see Section 3.4).
DBNs have been shown to learn very good generative models of handwritten digits (Hinton et al.,
2006), but they have difficulty modeling patches of natural images. This is because RBMs have no
simple way to capture the smoothness constraint in natural images: a single pixel can usually be
predicted very accurately by simply interpolating its neighbours.

To address this concern, Osindero and Hinton (2008) introduced the semi-restricted Boltzmann
machine (SRBM). In an SRBM, the constraints on the connectivity of the RBMare relaxed to allow
lateral connections between thevisible units in order to model the pair-wise correlations between
inputs, thus allowing the hidden units to focus on modeling higher-order structure. Semi-restricted
Boltzmann machines also permit deep networks. Each time a new level is added,the previous top
layer of units is given lateral connections, so, after the layer-by-layerlearning is complete, all layers
except the topmost contain lateral connections between units. SRBMs make itpossible to learn
deep belief nets that model image patches much better, but they still have strong limitations that
can be seen by considering the overall generative model. The equilibriumsample generated at each
layer influences the layer below by controlling its effective biases. The model would be much more
powerful if the equilibrium sample at the higher level could also control the lateral interactions at the
layer below using a three-way, multiplicative relationship. Memisevic and Hinton(2007) introduced
the gated CRBM, which permitted such multiplicative interactions and showed thatit was able to
learn rich distributed representations of image transformations (see Section 4.3).

1047

TAYLOR , HINTON AND ROWEIS

In this section, we explore the idea of multiplicative interactions in the context ofa different
type of CRBM. Instead of gating lateral interactions with hidden units, we allowa set of real-valued
style variables to gate the three types of connections: autoregressive, past to hidden, and visible to
hidden within the CRBM. We will use the term “sub-model” to refer to a set of connections of a
given type. Our modification of the CRBM architecture does not change thedesirable properties
related to inference and learning but allows the style variables to modulate the interactions in the
model.

Like the CRBM, the multiplicative model is applicable to general time series where conditional
data is available (e.g., seasonal variables for modeling rainfall occurrences, economic indicators
for modeling financial instruments). However, we are largely motivated by our success thus far in
modeling mocap data. In Section 3 we showed that a CRBM could capture many different styles
with a single set of parameters. Generation of different styles was purelybased on initialization,
and the model architecture did not allow control of transitions between stylesnor did it permit style
blending. By using explicit style variables to gate the connections of a CRBM,we can obtain a much
more powerful generative model that permits controlled transitioning and blending. We demonstrate
that in a conditional model, the gating approach is superior to simply using labelsto bias the hidden
units, which is the approach most commonly used in static models (Hinton et al., 2006).

4.2 Style and Content Separation

There has been a significant amount of work on the separation of style and content in motion. The
ability to separately specify the style (e.g., sad) and the content (e.g., walk to location A) is highly
desirable for animators. One approach to style and content separation is toguide a factor model
(e.g., PCA, factor analysis, ICA) by giving it “side-information” related tothe structure of the data.
Tenenbaum and Freeman (2000) considered the problem of extracting exactly two types of factors,
namely style and content, using a bilinear model. In a bilinear model, the effect of each factor on
the output is linear when the other is held fixed, but together the effects aremultiplicative. This
model can be learned efficiently, but supports only a rigid, discrete definition of style and content
requiring that the data be organized in a (style× content) grid.

Previous work has looked at applying user-specified style to an existing motion sequence (Ur-
tasun et al., 2004; Hsu et al., 2005; Torresani et al., 2007). The drawback to these approaches is
that the user must provide the content. We propose a generative model for content that adapts to
stylistic controls. Recently, models based on the Gaussian process latent variable model (Lawrence,
2004) have been successfully applied to capturing style in human motion (Wang et al., 2007). The
advantage of our approach over such methods is that our model does not need to retain the training
data set (just a few frames for initialization). Furthermore, training time increases linearly with
the number of frames of training data, and so our model can scale up to massive data sets, un-
like the kernel-based methods which are cubic in the number of frames. The powerful distributed
hidden state of our model means that it does not suffer from the limited representational power of
HMM-based methods of modeling style (e.g., Brand and Hertzmann, 2000).

4.3 Gated Conditional Restricted Boltzmann Machines

Memisevic and Hinton (2007) introduced a way of implementing multiplicative interactions in a
conditional model. The gated CRBM was developed in the context of learningtransformations
between image pairs. The idea is to model an observation (the output) given itsprevious instance

1048

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

(the input). For example, the input and output might be neighbouring framesof video. The gated
CRBM has two equivalent views: first, as gated regression (Figure 9a), where hidden units can
blend “slices” of a transformation matrix into a linear regression, and second as modulated filters
(Figure 9b) where input units gate a set of basis functions used to reconstruct the output. In the
latter view, each setting of the input units defines an RBM. This means that conditional on the input,
inference and learning in a gated CRBM are tractable.

i

j

k

!"#$%&'()*+& ,$%#$%&'()*+&

-.//*"&

'()*+&

(a)

i

j

k

!"#$%&'()*+&

,$%#$%&

'()*+&

-.//*"&

'()*+&

(b)

Figure 9: Two views of the gated CRBM, reproduced from the original paper (Memisevic and Hin-
ton, 2007).

For ease of presentation, let us consider the case where all input, output, and hidden variables are
binary (the extension to real-valued input and output variables is straightforward). As in Equation
15, the gated CRBM describes a joint probability distribution through exponentiating an energy
function and renormalizing. This energy function captures all possible correlations between the
components of the input,x, the output,v, and the hidden variables,h:

E (v,h|x) =−∑
i jk

Wi jkvih jxk−∑
i j

ci j vih j −∑
i

aivi −∑
j

b jh j (20)

whereai , b j index the standard biases on each unit andci j index the gated biases, which shift the
total input to a unit conditionally. The parametersWi jk are the components of a three-way weight
tensor. The CD weight updates for learning a gated CRBM are similar to a standard CRBM (Ackley
et al., 1985). For example, the weight update rule forWi jk is:

∆Wi jk ∝ 〈vih jxk〉data−〈vih jxk〉recon.

Considering the “modulated filters” view of the gated CRBM, we can fold the (given) inputs into the
weights to express the input-dependent filtersŴi j = ∑kWi jkxk. This allows us to rewrite the energy

1049

TAYLOR , HINTON AND ROWEIS

function (Equation 20) as:

E (v,h|x) =−∑
i j

Ŵi j vih j −∑
i j

ci j vih j −∑
i

aivi −∑
j

b jh j .

Fixing the input, the first term is bilinear inv andh. Therefore at first glance, the model appears
similar to the bilinear factor model (Tenenbaum and Freeman, 2000). However, the two models
differ considerably in both their learning method and structure. Note that thebilinearity only occurs
in the energy function: the gated CRBM permits the learned transformations to be highly nonlinear
functions of the data.

4.4 Factoring

To model time-series, we can consider the output of a gated CRBM to be the current frame of data,
v = vt , and the input to be the previous frame (or frames),x = v<t = vt−N:t−1. In this sense, the
gated CRBM is a kind of autoregressive model where a transformation is composed from a set of
basis transformations, with each binary hidden unit specifying whether ornot to include one of
the basis transformations. The number of possible compositions is exponential in the number of
hidden units, but the componential nature of the hidden units prevents the number of parameters in
the model from becoming exponential, as it would in a mixture model. Because ofthe three-way
weight tensor, the number of parameters is cubic (assuming that the numbersof input, output and
hidden units are comparable).

In many applications, including human motion modeling, strong underlying regularities in the
data suggest that structure can be captured using three-way, multiplicative interactions but with less
than the cubically many parameters implied by the weight tensor. This motivates usto factor the
interaction tensor into a product of pairwise interactions (Figure 10). Factoring changes the energy
function (Equation 20) to:

E (v,h|x) =−∑
f

∑
i jk

Wv
i f W

h
j f W

x
k fvih jxk−∑

i j

ci j vih j −∑
i

aivi −∑
j

b jh j

where f indexes a set of deterministic factors. Superscripts differentiate the different types of pair-
wise interactions:Wv

i f connect output units to factors (undirected),Wh
j f connect hidden units to

factors (undirected), andWx
k f connect input units to factors (directed).

The factors correspond to an intermediate layer of “simple cells” which modulate the interac-
tions between units. Each factor is connected to all input units, all hidden units, and all output
units. However, there are typically about as many factors as the number ofeach type of unit, so the
introduction of factors corresponds to a kind of low-rank approximation tothe interaction tensor,
W, that uses about 3N2 parameters instead ofN3. Factors are deterministic, and are therefore very
different than the visible and hidden units, which have stochastic states. Factors always send the
product of the total input from two types of units to the remaining third type of unit. For example,
during inference, each factor collects the total input arriving at it fromthe input and output layers,
respectively, multiplies these quantities together, and sends this input to eachhidden unit. During
reconstruction, each factor collects the total input arriving at it from theinput and hidden layers,
respectively, multiplies these quantities together, and sends this input to eachvisible unit. This is
in contrast to the visible and hidden units. These must be sampled before sending their stochastic
states to the factors, and, unlike factors, they send the same message everywhere. Factors cannot be

1050

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

replaced by a layer of nonlinear stochastic units because this would prevent the hidden states from
being conditionally independent.

Although factoring has been motivated by the introduction of multiplicative interactions, models
that only involve pairwise interactions can also be factored (e.g., Salakhutdinov et al., 2007). To
factor the CRBM, we change the energy function in Equation 16 to:

E(vt ,ht |v<t) =
1
2 ∑

i

(vi,t − âi,t)
2−∑

f
∑
i j

Wv
i f W

h
j f vi,th j,t −∑

i

b̂ j,th j,t

and additionally, factor the weights of the dynamic biasesât andb̂t :

âi,t = ai +∑
m

∑
k

Av
imAv<t

kmvk,<t ,

b̂ j,t = b j +∑
n

∑
k

Bh
jnBv<t

kn vk,<t .

The indicesm andn correspond to the factoring of directed connections,A andB. We may use a
different number of factors for each of the three different types of connections in the CRBM. This
procedure can be seen as a kind of learned low-rank matrix factorizationon each ofW,A, andB.

i

j

k

!"#$%&'()*+&
,*-.-&/(%(&(%&01*&!234&

5$%#$%&'()*+&
,*-.-&/(%(&(%&01*&!4

67//*"&'()*+&

8(9%:+;&

Figure 10: Factoring the gated CRBM.

4.5 A Style-Gated, Factored Model

We now consider modeling multiple styles of human motion using factored, multiplicative, three-
way interactions. Hinton et al. (2006) showed that a good generative model of handwritten digits
could be built by connecting a softmax label unit to the topmost hidden layer ofa DBN (Figure
11a). After learning, clamping a label changes the energy landscape ofthe autoassociative model
formed by the top two layers, so that performing alternating Gibbs sampling produces a joint sam-
ple compatible with a particular digit class. It is easy to extend this modification to theCRBM,

1051

TAYLOR , HINTON AND ROWEIS

where discrete style labels bias the hidden units. In a CRBM, however, the hidden units are also
conditioned on information from the past that is much stronger than the information coming from
the label (Figure 11b). The model has learned to respect consistency of styles between frames and
so will resist a transition introduced by changing the label units.

l

(a)

l

!!"#$!!!!!!!!!!"#%!!!!!!!!!!"!

(b)

Figure 11: a) In a deep belief network, clamping the label units changes theenergy function. b) In
a conditional model, label information is swamped by the signal coming from the past.

As in the gated CRBM, we are motivated to let style change theinteractionsof the units as
opposed to simply their effective biases. Memisevic and Hinton (2010) usedfactored three-way in-
teractions to allow the hidden units of a gated CRBM to control the effect of one video frame on the
subsequent video frame. Figure 12 shows a different way of using factored three-way interactions to
allow real-valued style features, derived from discrete style labels, to control three different sets of
pairwise interactions. Like the standard CRBM (Equation 15), the model defines a joint probability
distribution overvt andht , conditional on the pastN observations,v<t . However, the distribution is
also conditional on the style labels,yt , through a set of deterministic, real-valued features,zt . The
features are a linear function of the “one-hot” encoded style labels:

zl ,t = ∑
p

Rplyp,t .

This resembles the use of componential word-features used in Mnih and Hinton’s language model
(Mnih and Hinton, 2007).

Similar to our discussion of the CRBM, we assume binary stochastic hidden unitsand real-
valued visible units with additive Gaussian noise andσi = 1. The energy function is:

E (vt ,ht |v<t ,yt) =
1
2 ∑

i

(vi,t − âi,t)
2−∑

f
∑
i jl

Wv
i f W

h
j f W

z
l f vi,th j,tzl ,t −∑

j

b̂ j,th j,t . (21)

1052

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

!"#$%&'()*+&
,*-.-&/(%(&(%&01*&!234!2"5&

6$%#$%&'()*+&
,*-.-&/(%(&(%&01*&!5&

78//*"&'()*+&

9(:%;+<&

9*(%$+*<&

=%)'*&yt

zt l

ht

v<t
vt

j

k i

p

Figure 12: A factored CRBM whose interactions are gated by real-valuedstylistic features.

The three terms in Equation 21 correspond to the three sub-models (the groups of links connected
to each triangular factor in Figure 12). Note that for each sub-model, what was a matrix of weights
is now replaced by three sets of weights connecting units to factors. The three types of weights are
differentiated again by superscripts. For example, the matrix of undirectedweights in the standard
CRBM, Wi j , has been replaced by three matrices involved in a factored, multiplicative interaction:
Wv

i f , Wh
j f , andWz

l f . The same process is applied to the other two sub-models. Note that the three
sub-models may have a different number of factors (which we index byf , m, andn).

The dynamic biases become:

âi,t = ai +∑
m

∑
kl

Av
imAv<t

kmAz
lmvk,<tzl ,t

= ai +∑
m

Av
im∑

k

Av<t
kmvk,<t ∑

l

Az
lmzl ,t , (22)

b̂ j,t = b j +∑
n

∑
kl

Bh
jnBv<t

kn Bz
lnvk,<tzl ,t

= b j +∑
n

Bh
jn ∑

k

Bv<t
kn vk,<t ∑

l

Bz
lnzl ,t (23)

where the dynamic component of Equation 22 and Equation 23 is simply the total input to the
visible/hidden unit via the factors. The total input is a three-way product between the input to
the factors (coming from the past and from the style features) and the weight from the factors to
the visible/hidden unit. The dynamic biases include a static component,a andb. As in the gated

1053

TAYLOR , HINTON AND ROWEIS

CRBM, we could also add three types of gated biases, corresponding to the pairwise interactions in
each of the sub-models. In our experiments, we have not used any gatedbiases.

4.5.1 INFERENCE ANDLEARNING

Adding multiplicative interactions to the model and factoring does not change the property that the
posterior distribution is factorial. Inference is performed by considering, in parallel, the total input
to each hidden unit via the factors:

p(h j,t = 1|vt ,v<t ,yt)=
1

1+exp(−b̂ j,t −∑ f Wh
j f ∑i W

v
i j vi,t ∑l W

z
l f zl ,t)

whereb̂ j,t is defined in Equation 23. The reconstruction distribution is found by considering the
total input to each visible unit via the factors:

p(vi,t |ht ,v<t ,yt) =N

(

âi,t +∑
f

Wv
i f ∑

j

Wh
j f h j,t ∑

l

Wz
l f zl ,t ,1

)

whereâi,t is defined in Equation 22.
As in the other models based on RBMs, exact maximum likelihood learning is intractable.

However, applying contrastive divergence leads to a set of very simplegradient update rules which
are the same for binary or real-valued Gaussian visible units. The gradient with respect to a weight
that connects a unit to a factor is the difference of two expectations of products. Each product
involves three terms: the activity of the respective unit, and the total input to the factor from each of
the two other sets of units involved in the three-way relationship. For example:

∆Wv
i f ∝ ∑

t

(

〈vi,t ∑
j

Wh
j f h j,t ∑

l

Wz
l f zl ,t〉data−〈vi,t ∑

j

Wh
j f h j,t ∑

l

Wz
l f zl ,t〉recon

)

.

The complete set of update rules is given in Appendix C.
The weights connecting labels to features,R, can simply be learned by backpropagating the

gradients obtained by CD. Since these weights affect all three sub-models, their updates are more
complicated. Applying the chain rule, we obtain:

∆Rpl ∝ ∑
t
(〈Cl ,typ,t〉data−〈Cl ,typ,t〉recon) ,

Cl ,t = ∑
f

Wz
l f ∑

i

Wv
i f vi,t ∑

j

Wh
j f h j,t +∑

m
Az

lm∑
i

Av
imvi,t ∑

k

Av<t
kmvk,<t +∑

n
Bz

ln ∑
j

Bh
jnh j,t ∑

k

Bv<t
kn vk,<t .

The updates for the static biases on the hidden and visible biases are the sameas in the standard
CRBM (Equation 13 and 14).

4.5.2 PARAMETER SHARING

In addition to the large reduction in the number of free parameters obtained byfactoring, further
savings may be obtained by tying some sets of parameters together. In the fullyparameterized model
(Figure 13a), there are 9 different sets (matrices) of weights but if we restrict the number of factors
to be the same for each of the three sub-models, four sets of parameters are identical in dimension:
the weights that originate from the inputs (past visible units), the outputs (visible units), the hidden

1054

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

units and the features. Any combination of the compatible parameters may be tied.Figure 13b
shows a fully-shared parameterization. This has slightly less than half the number of parameters of
the fully parameterized model, assuming that the number of input, output, hidden, and feature units
are comparable.

i

j

k

l

(a)

i

j

k

l

(b)

Figure 13: a) Fully parameterized model with each dot representing a different set of parameters
and different colors denoting a different number of factors in each sub-model. b) Full
parameter sharing where each dot represents a tied group of parameters. The number of
factors is restricted to be the same for each sub-model.

In comparing different reduced parameterizations, tying only the feature-factor parameters,
Wz

l f ,A
z
lm, andBz

ln led to models synthesizing the highest quality motion. When sharing the au-
toregressive weightsAv<t

km andAv
im with non-autoregressive weightsBv<t

km andWv
i f , respectively, we

found that the component of the gradient related to the autoregressive model tended to dominate the
weight update early in learning. This was due to the strength of the correlation between past and
present compared to hidden and present or hidden and past. Witholding the autoregressive compo-
nent of the gradient for the first 100 epochs, until the hidden units wereable to extract interesting
structure from the data, solved this problem. In our reported experiments we trained models with
only the feature-factor parameters tied.

4.6 Experiments

CRBM models share a common deficiency: biasing the hidden units with a style label is not a
true integration of context into their architecture. Despite our attempts, we cannot prevent spurious
transitions (see Section 3.5.6), nor does a change of label during generation allow us to transition or
blend between styles. We carry out a set of experiments that demonstrate that this shortcoming can
be addressed by using factored, multiplicative interactions.

1055

TAYLOR , HINTON AND ROWEIS

4.6.1 MODELING WITH DISCRETESTYLE LABELS

Using the 10-styles data set described in Section 3.5.6, we trained a factored CRBM with Gaussian
visible units whose parameters were gated by 100 real-valued features driven by discrete style labels
(Figure 12). This model had 600 hidden units, 200 factors per sub-model andN = 12. Feature-to-
factor parameters were also tied between sub-models. All parameters useda learning rate of 10−2,
except for the autoregressive parameters,Av

im, Av<t
km, Az

lm and the label-to-feature parameters,Rpl,
which used a learning rate of 10−3. After training the model for 500 epochs, we tested its ability to
synthesize realistic motion by initializing with 12 frames of training data and holding the label units
clamped to the matching style. The single-layer model was able to generate stylized content as well
as the 2-layer standard CRBM (see the supplemental videos). In addition,we were able to induce
transitions between two or more styles by linearly blending the discrete style label from one setting
to another over 200 frames.4 We were further able to blend together styles (likesexyandstrong)
by applying a linear interpolation of the discrete labels. The resulting motion wasmore natural
when a single style was dominant (e.g., an 0.8/0.2 blend). We believe this is simply acase of better
performance when the desired motion more closely resembles the cases present in the training data
set, so training on a few examples of blends should greatly improve their generation.

4.6.2 MODELING WITH REAL-VALUED STYLE PARAMETERS

The motions considered thus far have been described by a single, discrete label such asganglyor
drunk. Motion style, however, can be characterized by multiple discrete labels or even continuous
factors such as the level of flow, weight, time and space formally defined in Laban movement
analysis (Torresani et al., 2007). In the case of multiple discrete labels, our real-valued feature
units, z, can receive input from multiple categories of labels. For continuous factors of style, we
can connect real-valued style units to the real-valued feature units, or wecan simply gate the model
directly by the continuous description of style.

To test this latter configuration, we trained a model exactly as in Section 4.6.1, but instead of gat-
ing connections with 100 real-valued feature units, we gated with 2 real-valued style descriptors that
were conditioned upon at every frame. Again we trained with walking data, but the data was cap-
tured specifically for this experiment. One style unit represented the speedof walking and the other,
the stride length. The training data consisted of nine sequences at 60fps,each approximately 6000
frames corresponding to the cross-product of (slow, normal, fast) speed and (short,normal,long)
stride length. The corresponding labels each had values of 1, 2 or 3. These values were chosen to
avoid the special case of all gating units being set at zero and nullifying theeffective weights of the
model. The model was trained for 500 epochs.

After training, the model could, as before, generate realistic motion according to the nine dis-
crete combinations of speed and stride-length with which it was trained basedon initialization and
setting the label units to match the labels in the training set. Furthermore, the model supported both
interpolation and extrapolation along the speed and stride length axes and didnot appear overly
sensitive to initialization (see the supplemental videos).

4. The number of frames was selected empirically and provided a smoothtransition, but the model is not sensitive to
this number. A quick (e.g., frame-to-frame) change of labels will simply produce a “jerky” transition.

1056

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

4.6.3 QUANTITATIVE EVALUATION

In our experiments so far, we have sought a qualitative comparison to the CRBM, based on the
realism of synthesized motion. We have also focused on the ability of a factored model with multi-
plicative interactions to synthesize transitions as well as interpolate and extrapolate between styles
present in the training data set. The application does not naturally presenta quantitative comparison,
but in the past, other time series models have been compared by their performance on the prediction
of either full or partial held-out frames (e.g., Wang et al., 2008; Lawrence, 2007). We use the data set
first proposed by Hsu et al. (2005) which consists of labeled sequences of seven types of walking:
(crouch, jog, limp, normal, side-right, sway, waddle) each at three different speeds (slow, medium,
fast). We preprocessed the data to remove missing or extremely noisy sections, and smoothed with
a low-pass filter before downsampling from 120 to 30fps.

For each architecture: CRBM, factored CRBM, style-gated unfactoredCRBM, and style-gated
factored CRBM, we trained 21 different models on all style/speed pairs except one, which we held
out for testing. Then, for each model, we attempted to predict every subsequence of lengthM in the
test set, given the pastN = 6 frames. We repeated the experiments for each architecture, each time
reporting results averaged over the 21 models. Prediction could be performed by initializing with
the previous frame and Gibbs sampling in the same way we generated, but this approach is subject
to noise. We found that in all cases, integrating out the hidden units and following the gradient
of the negative free energy with respect to the visible units gave less prediction error (see Section
3.3.3). We minimized the free energy using conjugate-gradient descent initialized with the previous
frame. The architectures were subject to different learning rates and so the number of epochs for
which to train each model was determined by setting aside 10% of the training setfor validation.

We have also included a sixth-order autoregressive model as a baseline. This corresponds to the
CRBM model without hidden units, except that it is trained using least squares instead of contrastive
divergence.

Figure 14 presents the results. With almost half the number of free parameters, the 600-60
factored model performed as well as the fully parameterized CRBM. Gating with style information
gives an advantage in longer-term prediction because it prevents the model from gradually changing
the style. The unfactored model with style information performed slightly worsethan the factored
model and was extremely slow to train (it took two days to train whereas the othermodels were
each trained in a few hours). The baseline autoregressive model performed extremely well in the
short term, but was quickly eclipsed by the latent variable models forN > 5.

4.6.4 COMPUTATIONAL COMPLEXITY

The CRBM (1 or 2 layer) and FCRBM take a few hours to train on a modern single-core work-
station. All of the models we have presented can generate motion at least as fast as 60fps (i.e., the
visualizations we have produced were generated in real-time). Learning and inference in the CRBM
and FCRBM are extremely efficient, with complexity linear in the number of trainingsamples. In
practice, this is slightly optimistic since larger and more complex data sets will require more hidden
units, and learning and inference are also linear in the number of hidden units. The scale of corpora
that we use in our experiments are problematic for GP-LVMs, since learningand inference for those
models areO(N3) andO(N2), whereN is the number of training samples.

1057

TAYLOR , HINTON AND ROWEIS

0 5 10 15 20
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Predict−ahead interval

R
M

S
 p

re
d

ic
ti
o

n
 e

rr
o

r
(n

o
rm

a
liz

e
d

 d
a

ta
 s

p
a

c
e

)

CRBM−600 (201,795)

FCRBM−600−60 (110,445)

style−FCRBM−600−60 (110,795)

unfac−style−CRBM−100 (218,445)

Autoregressive−6 (12,195)

Figure 14: Prediction experiment. The number of free parameters are shown in parentheses. Error
is reported in the normalized space in which the models are trained and is per-dimension,
per-frame. The first two values for the autoregressive model (0.1506and 0.2628) have
been intentionally cut off.

5. Conclusion

We have introduced the conditional restricted Boltzmann machine (CRBM). The key properties of
the CRBM are that it permits rich distributed representations to be learned from time series, and
that exact inference is simple and efficient. We derived the contrastive divergence (CD) learning
rules for CRBMs and showed how CRBMs can be stacked to form conditional deep belief nets. We
demonstrated that a single model can generate many different styles of motion.

Perhaps the two greatest limitations of CRBMs (and RBMs in general) are first, evaluating the
quality of trained models, and second, the learning algorithm with which they are trained. Though
we have explored different methods of model evaluation, such asN-step forward prediction and the
subjective assessment of synthesized data, the most natural way to evaluate a generative model is
to compute the log-likelihood it assigns to a held-out test set. For all but the smallest models, this
is impossible to do exactly due to the intractability of computing the partition function. Salakhut-
dinov and Murray (2008) have successfully applied annealed importance sampling (AIS) to RBMs.
However, conditioning changes the partition function which implies that we would need to perform
AIS for every possible configuration ofN-frame histories (whereN is the order of the CRBM) if
we wish to evaluate the likelihood assigned by the model to an arbitrary sequence. Fortunately,
to evaluate models we are often interested in computing likelihoods for a fixed test set rather than
arbitrary sequences. This means that we need only to concern ourselves with conditioning on all
possibleN-frame histories in the test set. If we are evaluatingM sequences whose maximum length
is T, we would need to make on the order ofM (T −N) complete AIS estimates.5

A major criticism of contrastive divergence learning is that by “pulling up” on the energy of
individual reconstructed data points, the algorithm fails to visit regions faraway from the training

5. Note that for each of these “conditional” estimates we would still performseveral runs of AIS.

1058

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

data. Consequently, the bulk of the energy surface is left arbitrarily low.One solution is to abandon
CD altogether, and pursue other learning methodologies, such as the sparse “energy-based methods”
discussed in Section 3.5 or score matching (Hyvärinen, 2005). The alternative is to improve CD
(e.g., Tieleman, 2008).

In Section 4 we extended the CRBM to permit context units to modulate the existing pairwise
interactions. The resulting multiplicative model implies cardinality of parameters cubic in the num-
ber of units. However, we factorized the weights to make the parameterizationquadratic and further
reduced this number by tying weights. We demonstrated that the resulting modelcould capture
several different motion styles, as well as transition and blend naturally between them. A sensible
and natural extension of this work is to the fully unsupervised setting, where stylistic parameters are
learned rather than provided (cf., Brand and Hertzmann, 2000).

Acknowledgments

An earlier version of this work appeared in two conference papers (Taylor et al., 2007; Taylor and
Hinton, 2009). The authors thank NSERC and CIFAR for financial support. The authors also thank
the anonymous reviewers for their helpful feedback. This work was primarily conducted while the
first and third authors were at the University of Toronto.

Appendix A. Data Representation

The most statistically salient patterns of variation in the data may differ considerably from the pat-
terns that humans find perceptually and expressively salient (Brand and Hertzmann, 2000). There-
fore our learning algorithms can benefit from a carefully chosen representation that highlights im-
portant sources of variation and suppresses irrelevant sources ofvariation. Specifically, we aim to
make our representation of motion invariant to rotation about the gravitationalvertical (which we
will simply call the vertical) and translation in the ground-plane. In the followingdiscussion, we
describe the steps taken to achieve a representation amenable to learning.

A.1 Original Representation

Data from a motion capture system typically consists of the 3D cartesian coordinates of 15-30
virtual markers (usually representing joint centres) for a series of discrete time-steps, which we call
frames. The data is processed to remove missing and noisy markers and thenconverted to a joint
angle hierarchy through an optimization that assumes constant limb lengths. For each frame, we
obtain a vector of relative joint angle orientations, each 1-3 degrees of freedom (dof) plus a root
orientation and translation in global coordinates (6 dof). The definition of the root depends on the
data source, but typically it is the coccyx, near the base of the back. In our experiments, we used
a variety of mocap sources, each of which provided the data already in a hierarchical “joint-angle”
format.

A.2 Conversion to Exponential Maps

The most common representation for orientations in mocap data are Euler angles. Euler angles
describe a one, two or three dof orientation by a sequence of rotations about axes in the global or

1059

TAYLOR , HINTON AND ROWEIS

local coordinate system. The order of rotations is user-defined and is a common source of confusion,
often differing between data sources. Euler angles do not permit distances between rotations to be
directly computed nor do they support interpolation or optimization since the orientation space is
highly nonlinear. It is also not trivial to ensure that similar poses are expressed by similar Euler
angles. Euler angles also suffer from “gimbal lock”, the loss of rotational degrees of freedom
due to singularities in the parameter space. Equivalent representations such as the 3× 3 rotation
matrix or 4D quaternion are not well suited to optimization and synthesis as they require additional
constraints to ensure that they remain valid. Therefore we convert joint angles to an exponential
map parameterization (Grassia, 1998) before learning.

The exponential map parameterization is also known as “axis-angle” representation since it con-
sists of a three-element vector, whose direction specifies an axis of rotation and whose magnitude
specifies the angle by which to rotate about this axis. Exponential maps are well suited to interpola-
tion, optimization and unconstrained synthesis since they are locally linear andevery three-element
vector maps to a valid rotation. The parameterization still contains singularities and therefore is
subject to gimbal lock, but the singularities in the exponential map are often avoidable (Grassia,
1998).6

A.3 Conversion to Body-Centred Orientations

We treat the root specially because it encodes a transformation with respect to a fixed global coor-
dinate system. At each frame,t, this transformation can be described by a 3×3 rotation matrix,Rt ,
and a translation vector,7

[

xt yt zt
]T

. We will assume, for our discussion, thatz corresponds
to the vertical. WhenRt is the identity matrix, this defines the “rest position” which is typically
defined by skeleton meta-data that accompanies the joint angles. Without loss of generality, let
us assume that in the rest position the subject is axis-aligned such that the dorsoventral axis (from
spinal column to belly) aligns with thex axis:

u0
t =

[

1 0 0
]T

,

the lateral axis (from left to right side of body) aligns with they axis:

v0
t =

[

0 1 0
]T

,

and the anteroposterior axis (from head to feet) aligns with the negativezaxis:

w0
t =

[

0 0 −1
]T

.

When the root is rotated (i.e.,Rt is not the identity) the body-centred coordinate system is no longer
axis aligned. It becomes:

ut = RT
t u0

t ,

vt = RT
t v0

t ,

wt = RT
t w0

t

6. For joints with a single degree of freedom, the exponential map reduces to an Euler angle and so we do not con-
vert. The orientation of the root does not need to be converted to exponential maps since we build an alternative
representation in the following section which requires the orientation to be expressed as a 3×3 rotation matrix.

7. It is also common to represent the transformation by a 4×4 matrix.

1060

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

where we have assumed a particular convention for the rotation matrix. Note that these axes are
simply the rows of the rotation matrix under our chosen convention.

Measuring the angle that the dorsoventral axis makes with the vertical gives us a measure of
pitch:

φt = cos−1

(

ut ·w0
t

||ut ||
∣

∣

∣

∣w0
t

∣

∣

∣

∣

)

= cos−1
(

ut ·w0
t

||ut ||

)

.

Similarly, measuring the angle that the lateral axis makes with the gravitational vertical gives us a
measure of roll:

ψt = cos−1

(

vt ·w0
t

||vt ||
∣

∣

∣

∣w0
t

∣

∣

∣

∣

)

= cos−1
(

vt ·w0
t

||vt ||

)

.

Both pitch and roll are invariant to rotation about the vertical and therefore can be thought of as
“body-centred” rotations. By projectingut into the ground-plane, this provides a measure of yaw,
or rotation about the vertical:

θt = tan−1
(

uy
t

ux
t

)

whereux
t anduy

t are the first two components of vectorut . Care should be taken to use the four-
quadrant version of tan−1 (often called theatan2 function). We unwrapθt to eliminate discontinu-
ities.

A.4 Conversion to Incremental Changes

We represent the rotation about the vertical, as well as translations in the ground plane by their
incremental changes (forward differences) and not their absolute values:

θ̇t = θt+1−θt ,

ẋt = xt+1−xt ,

ẏt = yt+1−yt .

For the last frame, we can use the two preceding frames to make a constant-velocity prediction.
To achieve translational invariance, we need to express velocity in the ground-plane with respect
to body-centred and not global coordinates. We can represent velocity in the ground-plane by its
magnitude:

αt =

√

ẋt
2+ ẏt

2

and its angle with respect to thex-axis:

βt = tan−1
(

ẏt

ẋt

)

.

Again we make use of the four-quadrant version of tan−1. The velocity is then expressed with
respect to the orientation about the vertical,θt , in both a forward and lateral component:

γ̇t = αt cos(θt −βt) ,

ξ̇t = αt sin(θt −βt)

where we have used “dot” notation to imply that these quantities are incrementalvalues. Taken

collectively,
[

γ̇t ξ̇t zt φt ψt θ̇t
]T

form our invariant representation of the root. Note that
the height,zt , is untouched.

1061

TAYLOR , HINTON AND ROWEIS

A.5 Data Normalization

Any joint angle dimensions that have constant value are not modeled and removed from the training
data (they are re-inserted before playback or export). Each component of the data is normalized to
have zero mean and unit variance.

Appendix B. Approximations

In practice, we make several small modifications to the algorithms for both learning and generation.
These rely on several approximations, most of which are chosen basedon collective experience
of training similar networks. The approximations typically replace sampled values with expected
values, to reduce unnecessary noise.

While training a CRBM, we replacevi,t in Equation 10, 11 and 13 by its expected value and
we also use the expected value ofvi,t when computing the probability of activation of the hidden
units (Equation 8). However, to compute each of theK reconstructions of the data (Equation 9),
we use stochastically chosen binary values of the hidden units. This prevents the hidden activities
from transmitting an unbounded amount of information from the data to the reconstruction (Teh and
Hinton, 2001).

While updating the directed visible-to-hidden connections (Equation 12), thesymmetric undi-
rected connections (Equation 10), and the hidden biases (Equation 14),we use the stochastically
chosen binary values of the hidden units in the first term (under the data),but replaceh j,t by its
expected value in the second term (under the reconstruction). We take thisapproach because the
reconstruction of the data depends on the binary choices made when selecting hidden state. Thus,
when we infer the hiddens from the reconstructed data, the probabilities are highly correlated with
the binary hidden states inferred from the data. On the other hand, we stopafterK reconstructions,
so the binary choice of hiddens from theKth reconstruction does not correlate with any other terms,
and there is no reason to include this extra noise.

The alternating Gibbs sampling used when generating data is similar to the procedure we use to
learn a CRBM. So we make similar approximations during generation: using stochastically chosen
binary values of the hidden units but the expected values of the reconstructed visible units. As
a further step to reduce noise, on thefinal iteration of Gibbs sampling, we use the real-valued
probabilities of the hidden units when updating the visible units.

Appendix C. FCRBM Weight Updates

The CD updates for the parameters of the FCRBM have an intuitive form. Thegradient with respect
to a weight that connects a unit to a factor is the difference of two expectations of products. Each
product involves three terms: the activity of the respective unit, and the total input to the factor from

1062

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

each of the two other sets of units involved in the three-way relationship:

∆Wv
i f ∝ ∑

t

(

〈vi,t ∑
j

Wh
j f h j,t ∑

l

Wz
l f zl ,t〉data−〈vi,t ∑

j

Wh
j f h j,t ∑

l

Wz
l f zl ,t〉recon

)

,

∆Wh
j f ∝ ∑

t

(

〈h j,t ∑
i

Wv
i f vi,t ∑

l

Wz
l f zl ,t〉data−〈h j,t ∑

i

Wv
i f vi,t ∑

l

Wz
l f zl ,t〉recon

)

,

∆Wz
l f ∝ ∑

t

(

〈zl ,t ∑
i

Wv
i f vi,t ∑

j

Wh
j f h j,t〉data−〈zl ,t ∑

i

Wv
i f vi,t ∑

j

Wh
j f h j,t〉recon

)

,

∆Av
im ∝ ∑

t

(

〈vi,t ∑
k

Av<t
kmvk,<t ∑

l

Az
lmzl ,t〉data−〈vi,t ∑

k

Av<t
kmvk,<t ∑

l

Az
lmzl ,t〉recon

)

,

∆Av<t
km ∝ ∑

t

(

〈vk,<t ∑
i

Av
imvi,t ∑

l

Az
lmzl ,t〉data−〈vk,<t ∑

i

Av
imvi,t ∑

l

Az
lmzl ,t〉recon

)

,

∆Az
lm ∝ ∑

t

(

〈zl ,t ∑
i

Av
imvi,t ∑

k

Av<t
kmvk,<t〉data−〈zl ,t ∑

i

Av
imvi,t ∑

k

Av<t
kmvk,<t〉recon

)

,

∆Bh
jn ∝ ∑

t

(

〈h j,t ∑
k

Bv<t
kn vk,<t ∑

l

Bz
lnzl ,t〉data−〈h j,t ∑

k

Bv<t
kn vk,<t ∑

l

Bz
lnzl ,t〉recon

)

,

∆Bv<t
kn ∝ ∑

t

(

〈vk,<t ∑
j

Bh
jnh j,t ∑

l

Bz
lnzl ,t〉data−〈vk,<t ∑

j

Bh
jnh j,t ∑

l

Bz
lnzl ,t〉recon

)

,

∆Bz
ln ∝ ∑

t

(

〈zl ,t ∑
j

Bh
jnh j,t ∑

k

Bv<t
kn vk,<t〉data−〈zl ,t ∑

j

Bh
jnh j,t ∑

k

Bv<t
kn vk,<t〉recon

)

,

∆ai ∝ ∑
t
(〈vi,t〉data−〈vi,t〉recon) ,

∆b j ∝ ∑
t
(〈h j,t〉data−〈h j,t〉recon) .

References

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann machines.
Cognitive Science, 9(1):147–169, 1985.

O. Arikan and D. A. Forsyth. Interactive motion generation from examples. In Proceedings of the
29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2002),
pages 483–490. ACM Press, 2002.

O. Arikan, D. A. Forsyth, and J. F. O’Brien. Motion synthesis from annotations. InProceedings
of the 30th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
2003), pages 402–408. ACM Press, 2003.

Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence.Neural Computa-
tion, 21(1):1–21, 2008.

1063

TAYLOR , HINTON AND ROWEIS

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks.
In B. Scḧolkopf, J. Platt, and T. Hoffman, editors,Advances in Neural Information Processing
Systems (NIPS 19): Proceedings of the 2006 Conference, pages 153–160. MIT Press, 2007.

A. Bissacco. Modeling and learning contact dynamics in human motion. InProceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005),
pages 421–428. IEEE, 2005.

M. Brand and A. Hertzmann. Style machines. InProceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH 2000), pages 183–192. ACM Press,
2000.

M. Carreira-Perpinan and G. E. Hinton. On contrastive divergence learning. InProceedings of
the 10th International Conference on Artificial Intelligence and Statistics (AISTATS 2005), pages
59–66, 2005.

Y. Freund and D. Haussler. Unsupervised learning of distributions of binary vectors using 2-layer
networks. In J. Moody, S. H. Hanson, and R. Lippmann, editors,Advances in Neural Information
Processing Systems (NIPS 4): Proceedings of the 1991 Conference, pages 912–919. Morgan-
Kaufmann, 1992.

P. V. Gehler, A. D. Holub, and M. Welling. The rate adapting poisson model for information
retrieval and object recognition. InProceedings of the 23rd International Conference on Machine
Learning (ICML 2006), pages 337–344. ACM Press, 2006.

Z. Ghahramani. Learning dynamic Bayesian networks. In C. Giles and M. Gori, editors,Adaptive
Processing of Sequences and Data Structures, pages 168–197. Springer-Verlag, Berlin, 1998.

F. S. Grassia. Practical parameterization of rotations using the exponential map.Journal of Graphics
Tools, 3(3):29–48, 1998.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.Neural Compu-
tation, 14(8):1771–1800, 2002.

G. E. Hinton. Learning multiple layers of representation.Trends in Cognitive Sciences, 11(10):
428–434, 2007.

G. E. Hinton.A practical guide to training restricted Boltzmann machines. Technical Report UTML
TR 2010-000, University of Toronto, 2010.

G. E. Hinton and A. D. Brown. Spiking Boltzmann machines. In S. A. Solla, T. K. Leen, and K.-R.
Müller, editors,Advances in Neural Information Processing Systems (NIPS 12): Proceedings of
the 1999 Conference, pages 122–128. MIT Press, 2000.

G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504 – 507, 2006.

G. E. Hinton, P. Dayan, B. J. Frey, and R. Neal. The wake-sleep algorithm for self-organizing neural
networks.Science, 268:1158–1161, 1995.

1064

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets.Neural
Computation, 18(7):1527–1554, 2006.

E. Hsu, K. Pulli, and J. Popović. Style translation for human motion. InProceedings of the 32nd
Annual Conference on Computer Graphics and Interactive Techniques(SIGGRAPH 2005), pages
1082–1089. ACM Press, 2005.

A. Hyvärinen. Estimation of non-normalized statistical models by score matching.Journal of
Machine Learning Research, 6:695–709, 2005. ISSN 1532-4435.

L. Kovar and M. Gleicher. Automated extraction and parameterization of motions in large data sets.
In Proceedings of the 31st Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 2004), pages 559–568. ACM Press, 2004.

L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. InProceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH 2002), pages 473–482. ACM
Press, 2002.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. Anempirical evaluation of deep
architectures on problems with many factors of variation. InProceedings of the 24th International
Conference on Machine Learning (ICML 2007), pages 473–480. ACM Press, 2007.

N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional
data. In S. Thrun, L. Saul, and B. Schölkopf, editors,Advances in Neural Information Processing
Systems (NIPS 16): Proceedings of the 2003 Conference, pages 329–326. MIT Press, 2004.

N. D. Lawrence. The Gaussian process latent variable model. Technical Report CS-06-05, Univer-
sity of Sheffield, 2006.

N. D. Lawrence. Learning for larger datasets with the Gaussian process latent variable model. In
Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (AIS-
TATS 2007), pages 243–250, 2007.

N. D. Lawrence and A. J. Moore. Hierarchical Gaussian process latent variable models. In
Z. Ghahramani, editor,Proceedings of the 24th International Conference on Machine Learning
(ICML 2007), pages 481–488. ACM Press, 2007.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model forvisual area V2. In J. C.
Platt, D. Koller, Y. Singer, and S. T. Roweis, editors,Advances in Neural Information Processing
Systems (NIPS 20): Proceedings of the 2007 Conference, pages 873–880. MIT Press, 2008.

J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive control of avatars
animated with human motion data. InProceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 2002), pages 491–500. ACM Press, 2002.

1065

TAYLOR , HINTON AND ROWEIS

Y. Li, T. Wang, and H.-Y. Shum. Motion texture: A two-level statistical model for character motion
synthesis. InProceedings of the 29th Annual Conference on Computer Graphics andInteractive
Techniques (SIGGRAPH 2002), pages 465–472. ACM Press, 2002.

C. K. Liu, A. Hertzmann, and Z. Popovic. Learning physics-based motion style with nonlinear
inverse optimization. InProceedings of the 32nd Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 2005), pages 1071–1081. ACM Press, 2005.

K. Matsuoka. Noise injection into inputs in back-propagation learning.IEEE Trans. on Systems,
Man, and Cybernetics, 22(3):436–440, 1992.

R. Memisevic and G. E. Hinton. Unsupervised learning of image transformations. InProceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2007), 2007.

R. Memisevic and G. E. Hinton. Learning to represent spatial transformations with factored higher-
order boltzmann machines.Neural Computation, 22:1473–1492, 2010.

A. Mnih and G. E. Hinton. Three new graphical models for statistical language modelling. In
Z. Ghahramani, editor,Proceedings of the 24th International Conference on Machine Learning
(ICML 2007), pages 641–648. ACM Press, 2007.

T. Mukai and S. Kuriyama. Geostatistical motion interpolation. InProceedings of the 32nd Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2005), pages 1062–
1070. ACM Press, 2005.

K. P. Murphy. Dynamic bayesian networks : representation, inference and learning. PhD thesis,
University of California, Berkeley, 2002.

V. Nair and G. E. Hinton. 3-d object recognition with deep belief nets. InAdvances in Neural
Information Processing Systems22, pages 1339–1347. MIT Press, Cambridge, MA, 2009.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and
other variants. In M. I. Jordan, editor,Learning in Graphical Models, pages 355–368. Kluwer
Academic Publishers, 1998.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basisset: A strategy employed
by V1? Vision Research, 37(23):3311–3325, 1997.

S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of Markov random
fields. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,Advances in Neural Information
Processing Systems (NIPS 20): Proceedings of the 2007 Conference, pages 1121–1128. MIT
Press, 2008.

S. I. Park, H. J. Shin, and S. Y. Shin. On-line locomotion generation based on motion blending.
In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA 02), pages 105–111. ACM Press, 2002.

V. Pavlovic, J. M. Rehg, and J. MacCormick. Learning switching linear models of human motion.
In Advances in Neural Information Processing Systems (NIPS 13): Proceedings of the 2000
Conference, pages 981–987. MIT Press, 2001.

1066

TWO DISTRIBUTED-STATE MODELS FORGENERATING HIGH-DIMENSIONAL TIME SERIES

J. Pearl.Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference. Morgan
Kaufmann, Santa Mateo, CA, USA, September 1988.

K. Pullen and C. Bregler. Motion capture assisted animation: Texturing and synthesis. InPro-
ceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH 2002), pages 501–508. ACM Press, 2002.

M. Ranzato, C. S. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations
with an energy-based model. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors,Advances in
Neural Information Processing Systems (NIPS 19): Proceedings of the 2006 Conference, pages
1137–1144. MIT Press, 2006.

M. Ranzato, Y. Boureau, S. Chopra, and Y. LeCun. A unified energy-based framework for unsu-
pervised learning. InProceedings of the 11th International Conference on Artificial Intelligence
and Statistics (AISTATS 2007), 2007.

M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning fordeep belief networks. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors,Advances in Neural Information Processing Systems
(NIPS 20): Proceedings of the 2007 Conference. MIT Press, 2008.

C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimensional motion interpo-
lation. IEEE Computer Graphics and Applications, 18(5):32–40, 1998.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. InProceed-
ings of the 25th International Conference on Machine Learning (ICML 2008), pages 872–879.
ACM Press, 2008.

R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collaborative
filtering. In Z. Ghahramani, editor,Proceedings of the 24th International Conference on Machine
Learning (ICML 2007), pages 791–798. ACM Press, 2007.

P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In
D. E. Rumelhart, J. L. McClelland, et al., editors,Parallel Distributed Processing: Volume 1:
Foundations, pages 194–281. MIT Press, Cambridge, MA, 1986.

I. Sutskever and G. E. Hinton. Learning multilevel distributed representations for high-dimensional
sequences. InProceedings of the 11th International Conference on Artificial Intelligence and
Statistics (AISTATS 2007), 2007.

I. Sutskever and G. E. Hinton. Deep narrow sigmoid belief networks are universal approximators.
Neural Computation, 20(11):2629–2636, 2008.

I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporalrestricted Boltzmann machine.
In Advances in Neural Information Processing Systems (NIPS 21): Proceedings of the 2008
Conference, volume 21. MIT Press, 2009.

L. Tanco and A. Hilton. Realistic synthesis of novel human movements from a database of motion
capture examples. InProceedings of the Workshop on Human Motion (HUMO ’00), pages 137–
142. IEEE Computer Society, 2000.

1067

TAYLOR , HINTON AND ROWEIS

G. Taylor and G. Hinton. Factored conditional restricted Boltzmann machinesfor modeling motion
style. InProceedings of the 26th International Conference on Machine Learning(ICML 2009),
pages 1025–1032, 2009.

G. W. Taylor, G. E. Hinton, and S. T. Roweis. Modeling human motion using binary latent variables.
In B. Scḧolkopf, J. Platt, and T. Hoffman, editors,Advances in Neural Information Processing
Systems (NIPS 19): Proceedings of the 2006 Conference, pages 1345–1352. MIT Press, 2007.

Y. W. Teh and G. E. Hinton. Rate-coded restricted Boltzmann machines for face recognition. In
Advances in Neural Information Processing Systems (NIPS 13): Proceedings of the 2000 Con-
ference. MIT Press, 2001.

J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models.Neural
Computation, 12(6):1247–1283, 2000.

T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gra-
dient. InProceedings of the 25th International Conference on Machine Learning(ICML 2008),
pages 1064–1071. ACM Press, 2008.

T. Tieleman and G. E. Hinton. Using fast weights to improve persistent contrastive divergence.
In Proceedings of the 26th International Conference on Machine Learning(ICML 2009). ACM
Press, 2009.

L. Torresani, P. Hackney, and C. Bregler. Learning motion style synthesis from perceptual obser-
vations. In B. Scḧolkopf, J. C. Platt, and T. Hoffman, editors,Advances in Neural Information
Processing Systems (NIPS 19): Proceedings of the 2006 Conference, pages 1393–1400. MIT
Press, 2007.

R. Urtasun, P. Glardon, R. Boulic, D. Thalmann, and P. Fua. Style-based motion synthesis.Com-
puter Graphics Forum, 23(4):1–14, 2004.

R. Urtasun, D. Fleet, and P. F. P. 3D people tracking with gaussian process dynamical models. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR 2006), pages 238–245. IEEE, 2006.

R. Urtasun, D. J. Fleet, A. Geiger, J. Popović, T. Darrell, and N. D. Lawrence. Topologically-
constrained latent variable models. InProceedings of the 25th International Conference on Ma-
chine Learning (ICML 2008), pages 1080–1087. ACM Press, 2008.

J. M. Wang, D. J. Fleet, and A. Hertzmann. Multifactor Gaussian processmodels for style-content
separation. InProceedings of the 24th International Conference on Machine Learning(ICML
2007), pages 975–982. ACM Press, 2007.

J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamicalmodels for human motion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):283–298, 2008.

M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums withan applica-
tion to information retrieval. InAdvances in Neural Information Processing Systems (NIPS 17):
Proceedings of the 2004 Conference, pages 1481–1488. MIT Press, 2005.

1068

