CHAPTER 8 e |

' Learning Internal Representations
" by Error Propagation

D. E. RUMELHART, G. E. HINTON, and R. J. WILLIAMS .

THE PROBLEM : -

We now have a rather good understanding of simple two-layer associ-
ative networks in which a set of input patterns arriving at an input layer
are mapped directly to a set of output patterns at an output layer. Such
networks have no hidden units. They involve only input and output
units. In these cases there is no internal representation. The coding pro-
vided by the external world must suffice. These networks have proved
useful in a wide- variety of applications (cf. Chapters 2, 17, and 18).
Perhaps the essential character of such networks is that they map simi-
lar input patterns to similar output patterns. This is what allows these
networks to make reasonable generalizations and perform reasonably on
- patterns that have never before been presented. The similarity of pat-
terns in a PDP system is determined by their overlap. The overlap in
such networks is determined outside the learning system itself—by
whatever produces the patterns.

The constraint that similar input pattgiris Tead fo simiifaiontputs can—

lead to an inability of the system to learn certain mappings from input
to output. Whenever the representation provided by the outside world

is such that the similarity structure of the input and output patterns are
Cwary diffarent - a natwnrk withant internal reoresentations (i.e.. a

8. LEARNING INTERNAL REPRESENTATIONS 3 19

network without hidden units) will be unable to perform the necessary
mappings. A classic example of this case is the exclusive-or (XOR)
problem illustrated in Table 1. Here we see that those patterns which
overlap least are supposed to generate identical output values. This
problem and many others like it cannot be performed by networks
without hidden units with which to create their own internal representa-
tions of the input patterns. It is interesting to note that had the input
patterns contained a third input taking the value 1 whenever the first
two have value 1 as shown in Table 2, a two-layer system would be able
to solve the problem.

Minsky and Papert (1969} have provided a-very careful analysis of
conditions under which such systems are capable of carrying out the
required mappings. They show that in a large number of interesting
cases, networks of this kind are incapable of solving the problems. On
the other hand, as Minsky and Papert also pointed out, if there is a
layer of simple perceptron-like hidden units, as shown in Figure 1, with
which the original input pattern can be augmented, there is always a
recoding (i.e., an internal representation) of the input patterns in the
hidden units in which the similarity of the patterns among the hidden
units can support any required mapping from the input to the outpui
units. Thus, if we have the right connections from the input units to a
large enough set of hidden units, we can always find a representation
that wilt perform any mapping from input to output through these hid-
den units. In the case of the XOR problem, the addition of a feature
that detects the conjunction of the input units changes the similarity

TABLE t
Input Patterns Qutput Patterns
00 — 0
o1 — 1
10 — 1
11 — 0
TABLE 2
Input Patterns OQutput Patterns
000 — 0
010 — 1
100 — 1
111 — 0

320 BASIC MECHANISMS

Output Patterns

Internal
Representation
Units

lnput Patterns

FIGURE 1. A multilayer network., In this case the information coming to the input
units is recoded into an internal representation and the outputs are generated by the inter-
nal representation rather than by the original pattern. Input paiterns can always be
encoded, if there are encugh hidden units, in a form so that the appropriate output pat-
tern can be generated from any input patters.

structure of the patterns sufficiently to allow the solution to be learned.
As illustrated in Figure 2, this can be done with a single hidden unit.
The numbers on the arrows represent the strengths of the connections
among the units. The numbers written in the circles represent the
thresholds of the units. The value of +1.5 for the threshold of the hid-
den unit insures that it will be turned on only when both input units
are on. The value 0.5 for the output unit insures that it will turn on
only when it receives a net positive input greater than 0.5. The weight
of —2 from the hidden unit to the output unit insures that the output
unit will not come on when both input units are on. Note that from the
point of view of the output unit, the hidden unit is treated as simply
. another input unit. It is as if the input patterns consisted of three
rather than two units.

8. LEARNING INTERNAL REPRESENTATIONS 321

Qutput Unit

+1
Hidden Unit

Input Units

FIGURE 2. A simple XOR network with ong hidden unit. See text for explanation.

The existence of networks such as this illustrates the potential power
of hidden units and internal representations. The problem, as noted by
Minsky and Papert, is that whereas there is a very simple guaranteed
learning rule for all problems that can be solved without hidden units,
namely, the perceptron convergernce procedure {(or the variation due
originally to Widrow and HofT, 1960, which we call the delta rule; see
Chapter 11), there is no equally powerful rule for learning in networks
with hidden units. There have been three basic responses Lo this lack.
One response is represented by competitive learning (Chapter 3) in
which simple unsupervised learning rules are employed so that useful
hidden units develop. Although these approaches are promising, there
is no external force to insure that hidden units appropriate for the
required mapping are developed. The second response is to simply
assume an internal representation that, on some a prioti grounds, seems
reasonable. This is the tack taken in the chapter on verb learning
(Chapter 18) and in the interactive activation model of word perception
{McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982).
The third approach is to attempt to develop a learning procedure capable
of learning an internal representation adequate for performing the task
al hand. One such development is presented in the discussion of
Boltzmann machines in Chapter 7. As we have seen, this procedure
involves the use of stochastic units, requires the network to reach
equilibrium in two different phases, and is limited to symmetric net-
works. Another recent approach, also employing stochastic units, has
been developed by Barto (1985) and various of his colleagues {cf. Barto

322 BASIC MECHANISMS

& Anandan, 1985). In this chapter we present another alternative that
works with deterministic units, that involves only local computations,
and that is a clear generalization of the deita rule. We call this the gen-
eralized delta rule. From other considerations, Parker (1985) has
independently derived a similar generalization, which he calls learning-
Iogic. Le Cun (1985) has also studied a roughly similar learning
scheme. In the remainder of this chapter we first derive the general-
ized delta rule, then we illustrate its use by providing some results of
our simulations, and finally we indicate some further generalizations of
the basic idea.

THE GENERALIZED DELTA RULE

The learning procedure we propose involves the presentation of a set
of pairs of input and output patterns. The system first uses the input
vector to produce its own output vector and then compares this with
the desired output, or target vector. If there is no difference, no learning
takes place. Otherwise the weights are changed to reduce the differ-
ence. In this case, with no hidden units, this generates the standard
delta rule as described in Chapters 2 and 11. The rule for changing
weights following presentation of input/output pair p is given by

Aywi = mlty — 0) bpy= 1By)

where £,; is the target input for jth component of the output pattern for
pattern p, o, is the jth element of the actual output pattern produced
by the presentation of input pattern p, iy; is the value of the ith ele-
ment of the input pattern, 8,, =1, —o,, and A, w; is the change to be
made to the weight from the ith to the jth unit following presentation
of pattern p.

The delta rule and gradient descent. There are many ways of deriv-
ing this rule. For present purposes, it is useful to see that for linear
units it minimizes the squares of the differences between the actual and
the desired output values summed over the output units and all pairs of
input/output vectors. One way to show this is to show that the deriva-
tive of the error measure with respect to each weight is proportional to
the weight change dictated by the delta rule, with negative constant of
proportionality. This corresponds to performing steepest descent on a
surface in weight space whose height at any point in weight space is
equal to the error measure. (Note that some of the following sections

4. LEARNING INTERNAL REPRESENTATIONS 323

are written in italics. These sections constitute informal derivations of
the claims made in the surrounding text and can be omitted by the
reader who finds such derivations tedious.)

To be more specific, then, let

1 2
E, = 52 (ty — 0pj)2 @
j

be our measure of the error on input/output patiern p and let E = ZEP be our
overall measure of the error. We wish to show that the delta rile implements a gra-
dient descent in E when the units are linear. We will proceed by simply showing
that

_ 85

] Wi

which is proportional to Apwy; as prescribed by the delta rule. When there are no
hidden units it is straightforward to compute the relevant derivative. For this purpose
we use the chain rule to write the derivative as the product of two paris: the deriva-

tive of the error with respect to the outpul of the unit times the derivative of the out-
put with respect to the weight.

9E, 9E, doy (3)
aWﬁ Bopj aWﬂ-)

= Bpibpi

The first part tells how the error changes with the owput of the jth unit and the
second part tells how much changing Wj; changes that output. Now, the derivatives
are easy to compute. First, from Equation 2

3E, @

30, =— {1y —oy) == 3,

Not surprisingly, the contribution of unit U; to the error is simply proportional 108 ;.
Moreover, since we have linear units,)

Opp = 2 Wil (3)
i
from which we conclude that
do,
a ij pl.
Thus, substituting back into Equation 3, we see that
0E,)
= 8yjdpi ©)

-5 wj,-_

324 BASIC MECHANISMS

as desired, Now, combining this with the observation that

HE _ 5 05
aWﬁ P BM{,,

should lead us fo conclude that the net change in Wy afier one complete cycle of pat-
tern presentations is proportional to this derivative and hence that the delta rule
implements a gradient descent in E. In fact, this is strictly true only if the values of
the weights are not changed during this cycle. By changing the weights after each
pattern is presented we depart to some extent from a true gradient descent in E.
Nevertheless, provided the learning rate (i.e., the constant of proportionality) is suffi-
ciently small, this departure will be negligible and the delta rule will implement a very
close approximation to gradient descent in sum-squared error. In particular, with
small enough learning rate, the delta rule will find a set of weights minimizing this

error function.

The delta rule for semilinear activation functions in feedforward
networks. We have shown how the standard delta rule essentially
implements gradient descent in sum-squared error for linear activation
functions. In this case, without hidden units, the error surface is shaped
like a bow! with only one minimum, so gradient descent is guaranteed
to find the best set of weights. With hidden units, however, it is not so
obvious how to compute the derivatives, and the error surface is not
concave upwards, so there is the danger of getting stuck in local
minima. The main theoretical contribution of this chapter is to show
that there is an efficient way of computing the derivatives. The main
empirical contribution is to show that the apparently fatal problem of
local minima is irrelevant in a wide variety of learning tasks.

At the end of the chapter we show how the generalized delta rule can
be applied to arbitrary networks, but, to begin with, we confine our-
selves to layered feedforward networks. In these networks, the input
units are the bottom layer and the output units are the top layer. There
can be many layers of hidden units in between, but every unit must
send its output to higher layers than its own and must receive its input
from lower layers than its own. Given an input vector, the output vec-
tor is computed by a forward pass which computes the activity levels of
each layer in turn using the already computed activity levels in the ear-
lier layers.

Since we are primarily interested in extending this result to the case
with hidden units and since, for reasons outlined in Chapter 2, hidden
units with linear activation functions provide no advantage, we begin by
generalizing our analysis. to the set of nonlinear activation functions
which we call semilinear (see Chapter 2). A semilinear activation func-
tion is one in which the output of a unit is a nondecreasing and dif-
ferentiable function of the net total output,

8. LEARNING INTERNAL REPRESENTATIONS 325

nety; = ZWJ‘:‘ Opis (N
]

where o, = j; if unit / is an input unit. Thus, a semilinear activation
function is one in which

0y = S (nety;) 8)

and f is differentiable and nondecreasing. The generalized delta rule
works if the network consists of units having semilinear activation func-
tions. Notice that linear threshold units do not satisfy the requirement
because their derivative is infinite at the threshold and zero elsewhere.

To get the correct generalization of the delta rule, we must sef
JE,

3
Iw;
where E is the same sum-squared error function defined earlier. As in the standard
delta rule it is again useful to see this derivative as resulting from the product of two
parts: one part reflecting the change in error as a function of the change in the net

input to the unit and one part representing the effect of changing a particular weight
on the net input. Thus we can write

a9k, 8E, dnety (9

Ap WJ;,' o —

aWﬁ Bnetpj Swﬁ

By Eguation 7 we see that the second factor is

O net,;) (10)

—_— = Wi Opr = Opje
aW‘ Bwﬁzk\’ Jie Cpk L

Now let us define
5 —— ok,
b dnet,;
(By comparing this to Equation 4, note that this is consistent with the definition of

8, used in the original delta rufe for linear units since O, == nety; when unit 4; Is
linear.) Equation 9 thus has the equivalent form
JE,

— =

0,
2i Opi
Wy

This says that to implement gradient descent in E we should make our weight
changes according to

Apwji = M8, 0pi, (1

326 BASIC MECHANISMS

Just as in the standard delta rule. The trick is to figure out what &,; should be for
each unit U; in the network. The interesting result, which we now derive, Is that
there is a simple recursive computation of these 8's which can be implemented by
propagating error signals backward through the network.

To compute & = , we apply the chain rule to write this partial deriva-

Ji]
anetpj
tive as the product of two factors, one factor reflecting the change in error as a finc-
tion of the output of the unit and one reflecting the change in the oulput as a fitnc-
tion of changes in the input. Thus, we have

. __ 0B _ 8L 3o, (12)
B dnet,; do, dnety;

Let us compute the second factor. By Equation 8 we see that

which is simply the derivative of the squashing function f; for the jth unit,
evaluated at the net input nely; to that unit. To compute the first factor, we con-
sider two cases. First, assume that unit U; Is an output unit of the network, In this
case, it follows from the definition of Ep that

dE,
00,

=— {1y — 9y,

which is the same result as we obtained with the standard delta rule. Substituting
Jor the two factors in Equation 12, we get

8py = (ty — 050 ; (mety) (3

Jor any output unit u;. [f t; is not an output unit we tse the chain rile to write
9E, Odnety 0E, 0k,
Zane 90 Zane Zwk: Opj Eaner kj=_28pkwkj'
Lok i i Pk k
In this case, substituting for the two factors in Equation 12 ylelds

8y =) (nety)Eapk Wij (14)
k

whenever U; is not an output unit. Equations 13 and 14 give a recursive procedire
Jor computing the 8°s for all units in the network, which are then used to compute
the weight changes in the network according to Equation 11. This procedure consti-
tutes the generalized delta rule for a feedforward network of semilinear units.

These results can be summarized in three equations. First, the gen-
eralized delta rule has exactly the same form as the standard delta rule
of Equation 1. The weight on each line should be changed by an
amount proportional to the product of an error signal, &, available to

3. LEARNING INTERNAL REPRESENTATIONS 327

the unit receiving input along that line and the output of the unit send-
ing activation along that line. In symbols,

Ap Wﬁ = 'T]SPJ Opf.

The other two equations specify the error signal. Essentially, the deter-
mination of the error signal is a recursive process which starts with the
output units. If a unit is an output unit, its error signal is very similar
to the standard delta rule. It is given by

8y = (1 — 05)f ' (nety;)

where f; (net,;} is the derivative of the semilinear activation function
which maps the total input to the unit to an output value. Finally, the
error signal for hidden units for which there is no specified target is
determined recursively in terms of the error signals of the units to
which it directly connects and the weights of those connections. That is,

By = /' (nety) 28 i Wy
k

whenever the unit is not an output unit.

The application of the generalized delta rule, thus, involves two
phases: During the first phase the input is presented and propagated
forward through the network to compute the output value o, for each
unit. This output is then compared with the targets, resulting in an
error signal 8, for each output unit. The second phase involves a
backward pass through the network (analogous to the initial forward
pass) during which the error signal is passed to each unit in the net-
work and the appropriate weight changes are made. This second, back-
ward pass allows the recursive computation of 8 as indicated above.
The first step is to compute 8 for each of the output units, This is sim-
ply the difference between the actual and desired output values times
the derivative of the squashing function. We can then compute weight
changes for all connections that feed into the final layer. After this is
done, then compute 8’s for all units in the penultimate layer. This
propagates the errors back one layer, and the same process can be
repeated for every layer. The backward pass has the same computa-
tional complexity as the forward pass, and so it is not unduly expensive.

We have now generated a gradient descent method for finding
weights in any feedforward network with semilinear units. Before
reporting our results with these networks, it is useful to note some
further observations. It is interesting that not all weights need be vari-
able. Any number of weights in the network can be fixed. In this
case, error is still propagated as before; the fixed weights are simply not

328 BASIC MECHANISMS

modified. It should also be noted that there is no reason why some
output units might not receive inputs from other output units in earlier
fayers. In this case, those units receive two different kinds of error:
that from the direct comparison with the target and that passed through
the other output units whose activation it affects. In this case, the
correct procedure is to simply add the weight changes dictated by the
direct comparison to that propagated back from the other output units.

SIMULATION RESULTS

We now have a learning procedure which could, in principle, evolve
a set of weights to produce an arbitrary mapping from input to output.
However, the procedure we have produced is a gradient descent pro-
cedure and, as such, is bound by all of the problems of any hill climb-
ing procedure—namely, the problem of local maxima or (in our case)
minima., Moreover, there is a question of how long it might take a sys-
tem to learn. Even if we could guarantee that it would eventually find
a solution, there is the question of whether our procedure could learn
in a reasonable period of time. It is interesting to ask what hidden
units the system actually develops in the solution of particular prob-
lems. This is the guestion of what kinds of internal representations the
system actually creates. We do not yet have definitive answers to these
questions. However, we have carried out many simulations which lead
us to be optimistic about the local minima and time questions and to be
surprised by the kinds of representations our learning mechanism dis-
covers. Before proceeding with our results, we must describe our simu-
lation system in more detail. In particular, we must specify an activa-
tion function and show how the system can compute the derivative of
this function.

A useful activation function. In our above derivations the derivative
of the activation function of unit u;, f;(net;), always played a role.
This implies that we need an activation function for which a derivative
exists. It is interesting to note that the linear threshold function, on
which the perceptron is based, is discontinuous and hence will not suf-
fice for the generalized delta rule. Similarly, since a linear system
achieves no advantage from hidden units, a linear activation function
will not suffice either. Thus, we need a continuous, nonlinear activa-
tion function. In most of our experiments we have used the logistic
activation function in which

8. LEARNING INTERNAL REPRESENTATIONS 329

o (15)
o — (Zwﬂ-op‘-+ ;)
1+e ¢

where 6, is a bias similar in function to a threshold.! In order to apply
our learning rule, we need to know the derivative of this function with
respect to ils total input, net,;, where nef,; = Zwﬂ o+ 0. It is easy to
show that this derivative is given by

80,

O net,; = o (1= 0y)

Thus, for the logistic activation function, the error signal, 8,;, for an
output unit is given by

8y = (4 — 0p) 0y {1 — 0y},
and the error for an arbitrary hidden u; is given by

8y = 0y (1 — 0)) X8 Wiy
k

It should be noted that the derivative, oy (1 — o), reaches its max-
imum for o, = 0.5 and, since 0< 0, < 1, approaches its minimum as
0,; approaches zero or one. Since the amount of change in a given
weight is proportional to this derivative, weights will be changed most
for those units that are near their midrange and, in some sense, not yet
committed to being either on or off. This feature, we believe, contri-
butes to the stability of the learning of the system.

One other feature of this activation function should be noted. The
system can not actually reach its exireme values of 1 or 0 without infin-
itely large weights. Therefore, in a practical learning situation in which
the desired outputs are binary {0,1}, the system can never actually
achicve these values. Therefore, we typically use the values of 0.1 and
0.9 as the targets, even though we will tatk as if values of {0,1} are
sought.

The learning rate. Our learning procedure requires only that the
change in weight be proportional to dE,/8w. True gradient descent
requires that infinitesimal steps be taken. The constant of proportional-
ity is the learning rate in our procedure. The larger this constant, the
larger the changes in the weights. For practical purposes we choose a

1 Note that the values of the bias, 8;, can be learned just like any other weights. We
simply imagine that 8; is the weight from a unit that is always on.

330 BASIC MECHANISMS

learning rate that is as large as possible without leading to oscillation.
This offers the most rapid learning. One way to increase the learning
rate without leading to oscillation is to modify the generalized delta rule
to include a momentum term. This can be accomplished by the follow-
ing rule:

Aw; (r+1) = 1@ ,0,) + adw; (1) (16)

where the subscript # indexes the presentation number, 1 is the learn-
ing rate, and « is a constant which determines the effect of past weight
changes on the current direction of movement in weight space. This
provides a kind of momentum in weight space that effectively filters
out high-frequency variations of the error-surface in the weight space.
This is useful in spaces containing long ravines that are characterized by
sharp curvature across the ravine and a gently sloping floor. The sharp
curvature tends to cause divergent oscillations across the ravine. To
prevent these it is necessary to take very small steps, but this causes
very slow progress along the ravine. The momentum filters out the
high curvature and thus allows the effective weight steps to be bigger.
In most of our simulations & was about 0.9. Our experience has been
that we get the same solutions by setting « = 0 and reducing the size of
7, but the system learns much faster overall with larger values of «
and n.

Symmetry breaking. Our learning procedure has one more problem
that can be readily overcome and this is the problem of symmetry
breaking. If all weights start out with equal values and if the solution
requires that unequal weights be developed, the system can never learn.
This is because error is propagated back through the weights in propor-
tion to the values of the weights. This means that all hidden units con-
nected directly to the output inputs will get identical error signals, and,
since the weight changes depend on the error signals, the weights from
those units to the output units must always be the same. The system is
starting out at a kind of lecal maximum, which keeps the weights equal,
but it is a maximum of the error function, so once it escapes it will
never return. We counteract this problem by starting the system with
small random weights, Under these conditions symmetry problems of
this kind do not arise.

The XOR Problem

It is useful to begin with the exclusive-or problem since it is the clas-
sic problem requiring hidden units and since many other difficult

g LEARNING INTERNAL REPRESENTATIONS 331

problems involve an XOR as a subproblem. We have run the XOR
problem many times and with a couple of exceptions discussed below,
the system has always solved the problem. Figure 3 shows one of the
solutions to the problem. This solution was reached after 558 sweeps
through the four stimulus patterns with a learning rate of n =.0.5. In
this case, both the hidden unit and the output unit have positive biases
so they are on unless turned off. The hidden wunit turns on if neither
input unit is on. When it is on, it turns off the output unit. The con-
nections from input to output units arranged themselves so that they
turn off the output unit whenever both inputs are on. In this case, the
network has settled to a solution which is a sort of mirror image of the
one illustrated in Figure 2.

We have taught the system to solve the XOR problem hundreds of
times. Sometimes we have used a single hidden umit and direct con-
nections to the output unit as illustrated here, and other times we have
allowed two hidden units and set the connections from the input units
to the outputs to be zero, as shown in Figure 4. In only two cases has
the system encountered a local minimum and thus been unable to solve
the problem. Both cases involved the two hidden units version of the

@ Qutput Unit

-42 / \-42
/ f
-9.4l
// _ \\ Hidden Unit
/ N\
/ — \
-y 64
Input Units

FIGURE 3. Observed XOR network. The connection weights are written on the arrows
and the biases are written in the circles. Note a positive bias means that the unit is on
unless turned off.

332 BASIC MECHANISMS

FIGURE 4. A simple architecture for solving XOR with two hidden units and no direct
connections from input to output.

problem and both ended up in the same local minimum. Figure 5
shows the weights for the local minimum. In this case, the system
correctly responds to two of the patterns—namely, the patterns 00 and
10. In the cases of the other two patterns 11 and 01, the output unit
gets a net input of zero. This leads to an output value of 0.5 for both
of these patterns. This state was reached after 6,587 presentations of
each pattern with n=0.25. 2 Although many problems require more
presentations for learning to occur, further trials on this problem
merely increase the magnitude of the weights but do not lead to any
improvement in performance. We do not know the frequency of such
local minima, but our experience with this and other problems is that
they are quite rare. We have found only one other situation in which a
local minimum has occurred in many hundreds of problems of various
sorts. We will discuss this case below.

The XOR problem has proved a useful test case for a number of
other studies. Using the architecture illustrated in Figure 4, a student
in our laboratory, Yves Chauvin, has studied the effect of varying the

2 If we set n = 0.5 or above, the system escapes this minimum. In general, however,
the best way to avoid local minima is probably to use very small values of 5.

8. LEARNING INTERNAL REPRESENTATIONS 333

FIGURE 5. A network at a local minimum for the exclusive-or problem. The dotted
lines indicate negative weights. Note that whenever the right most input unit is on it
turns on both hidden units. The weights connecting the hidden units to the output are
arranged so that when both hidden units are on, the output uriit gets a net input of zero.
This leads to an output value of 0.5. In the other cases the network provides the correct
answer.

number of hidden units and varying the learning rate on time to solve
the problem. Using as a learning criterion an error of 0.01 per pattern,
Yves found that the average number of presentations to solve the prob-
lem with % = 0.25 varied from about 245 for the case with two hidden
units to about 120 presentations for 32 hidden units. The results can
be summarized by P = 280 — 33log,H, where P is the required
number of presentations and H is the number of hidden wunits
employed. Thus, the time to solve XOR is reduced linearly with the
logarithm of the number of hidden units. This result holds for values of
H up to about 40 in the case of XOR. The general result that the time
to solution is reduced by increasing the number of hidden units has
been observed in virtually all of our simulations. Yves also studied the
time to solution as a function of learning rate for the case of eight hid-
den units. He found an average of about 450 presentations with
n = 0.1 to about 68 presentations with 5 = 0.75. He also found that

334 BASIC MECHANISMS

learning rates larger than this led to unstable behavior. However,
within this range larger learning rates speeded the learning substantially.
In most of our problems we have employed learning rates of n = 0.25
or smaller and have had no difficulty.

Parity

One of the problems given a good deal of discussion by Minsky and
Papert (1969) is the parity problem, in which the output required is 1 if
the input pattern contains an odd number of 1s and O otherwise. This
is a very difficult problem because the most similar patterns (those
which differ by a single bit) require different answers. The XOR prob-
lem is a parity problem with input patterns of size two. We have tried a
number of parity problems with patterns ranging from size two to eight.
Generally we have employed layered networks in which direct connec-
tions from the input to the output units are not allowed, but must be
mediated through a set of hidden units. In this architecture, it requires
at least N hidden units to solve parity with patterns of length . Fig-
ure 6 illustrates the basic paradigm for the solutions discovered by the
system. The solid lines in the figure indicate weights of +1 and the
dotted lines indicate weights of —1. The numbers in the circles
represent the biases of the units. Basically, the hidden units arranged

FIGURE 6. A paradigm for the solutions to the parity problem discovered by the learn-
ing system. See text for explanation.

3. LEARNING INTERNAL REPRESENTATIONS 335

themselves so that they count the number of inputs. In the diagram,
the one at the far left comes on if one or more input units are on, the
next comes on if two or more are on, etc. All of the hidden units
come on if all of the input lines are on. The first m hidden units come
on whenever m bits are on in the input pattern. The hidden units then
connect with alternately positive and negative weights. In this way the
net input from the hidden units is zero for even numbers and +1! for
odd numbers. Table 3 shows the actual solution attained for one of our
simulations with four input lines and four hidden units. This solution
was reached after 2,825 presentations of each of the sixteen patterns
with y = 0.5. Note that the solution is roughly a mirror image of that
shown in Figure 6 in that the number of hidden units turned on is
equal to the number of zero input values rather than the number of
ones. Beyond that the principle is that shown above. It should be noted
that the internal representation created by the learning rule is to
arrange that the number of hidden units that come on is equal to the
number of zetos in the input and that the particular hidden units that
come on depend onfy on the number, not on which input units are on.
This is exactly the sort of recoding reguired by parity. It is not the kind
of representation readily discovered by unsupervised learning schemes
such as competitive learning.

The Encoding Problem

Ackley, Hinton, and Sejnowski (1985) have posed a problem in
which a set of orthogonal input patterns are mapped to a set of orthogo-
nal output patterns through a small set of hidden units. In such cases
the internal representations of the patterns on the hidden units must be
rather efficient. Suppose that we attempt to map N- input. patterns onto
N output patterns. Suppose further that log,V hidden units are pro-
vided. In this case, we expect that the system will learn to use the

TABLE 3

Number of Or Hidden Unit Qutput
Input Units Patterns Value

0 — 1111 — 0

1 — 1011 — 1

2 — 1010 - 0

3 - 0010 — 1

4 — (000 — 0

336 BASIC MECHANISMS

FIGURE 7. A network for solving the encoder problem. In this problem there are ¥
orthogenal input patterns each paired with one of N orthogonal output patterns. There
arc only log, N hidden units. Thus, if the hidden uniis take on binary values, the hidden
units must form a binary number to encode cach of the input patterns. This is exactly
what the system learns to do.

hidden units to form a binary code with a distinct binary pattern for
each of the N input patterns. Figure 7 illustrates the basic architecture
for the encoder problem. TFssentially, the problem is to learn an encod-
ing of an N bit pattern into a log,N bit pattern and then learn to
decode this representation into the output pattern. We have presented
the system with a number of these problems. Here we present a prob-
lem with eight input patterns, eight output patterns, and three hidden
units. In this case the required mapping is the identity mapping illus-
trated in Table 4. The problem is simply to turn on the same bit in the

TABLE 4
Input Patterns Output Patterns
10000000 — 10000600
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — (0001000
00000100 — 00000100
00000010 - 00000010
00000001 — 00000001

8. LEARNING INTERNAL REPRESENTATIONS 337

output as in the input. Table 5 shows the mapping generated by our
learning system on this example. It is of some interest that the system
employed its ability to use intermediate values in solving this problem.
It could, of course, have found a solution in which the hidden units
took on only the values of zero and one. Often it does just that, but in
this instance, and many others, there are solutions that use the inter-
mediate values, and the learning system finds them even though it has
a bias toward extreme values, It is possible to set up problems that
require the system to make use of intermediate values in order to solve
a problem. We now turn to such a case.

Table 6 shows a very simple problem in which we have to convert
from a distributed representation over two units into a local representation
over four units. The similarity structure of the distributed input pat-
terns is simply not preserved in the local output representation.

We presented this problem to our learning system with a number of
constraints which made it especially difficult. The two input units were
only allowed to connect to a single hidden unit which, in turn, was
allowed to connect to four more hidden units. Only these four hidden
units were allowed to connect to the four output units. To solve
this problem, then, the system must first convert the distributed

TABLE §

Input Hidden Unit Qutput
Patterns Patterns Patterns
10000000 — 5 0 0 — 10000000
0to0p000 — 0 1 0 — 01000000
ooloo000 — 1 1 0 — 00100000
00010000 — 1 1 1 — 00010000
00001000 — 0 1 1 — 00001000
00000100 — 5 0 1 — 00000100
00000010 — 1 O 5 — 00000010
00000001 — O O 5 — 00000001

TABLE 6
Input Patterns Quiput Patterns
00 — 1000
01 — 0100
10 — 0010
11 — 0001

338 BASIC MECHANISMS

representation of the input patterns into various intermediate values of
the singleton hidden unit in which different activation values
correspond to the different input patterns. These continuous values
must then -be converted back through the next layer of hidden units—
first to another distributed representation and then, finally, to a local
representation. This problem was presented to the system and it
reached a solution after 5,226 presentations with = 0.05.7 Table 7
shows the sequence of representations the system actually developed in
order to transform the patterns and solve the problem. Note each of
the four input patterns was mapped onto a particular activation value of
the singleton hidden unit. These values were then mapped onto distri-
buted patterns at the next layer of hidden units which were finally
mapped into the required local representation at the output level. In
principle, this trick of mapping patterns into activation values and then
converting those activation values back into patterns could be done for
any number of patterns, but it becomes increasingly difficult for the
system to make the necessary distinctions as ever smaller differences
among activation values must be distinguished. Figure 8 shows the
network the system developed to do this job. The connection weights
from the hidden units to the output units have been suppressed for
clarity. (The sign of the connection, however, is indicated by the form
of the connection—e.g., dashed lines mean inhibitory connections).
The four different activation values were generated by having relatively
large weights of opposite sign. One input line turns the hidden unit full
on, one turns it full off. The two differ by a relatively small amount so
that when both turn on, the unit attains a value intermediate between 0
and 0.5. When neither turns on, the near zero bias causes the unit to
attain a value slightly over 0.5. The connections to the second layer of
hidden units is likewise interesting. When the hidden unit is full on,

TABLE 7
Input Singleton Remaining QOutput
Patterns Hidden Unit Hidden Units Patterns
10 - 0 - 111 0 - 0010
11 — 2 - 11 0¢6 0 — 0001
00 — 6 - 500 3 - 1000
1) — 1 - 00 0 ! - 0100

3 Relatively small learning rates make units employing intermediate values easier to
obtain,

3. LEARNING INTERNAL REPRESENTATIONS 339

Hidden
Units

Input
Units

FIGURE 8. The network illustrating the use of intermediate values in solving a preblem.
See text for explanation.

the right-most of these hidden units is turned on and all others turned
off. When the hidden unit is turned off, the other three of these hid-
den units are on and the left-most unit off. The other connections
from the singleton hidden unit to the other hidden units are graded so
that a distinct pattern is turned on for its other two values. Here we
have an example of the flexibility of the learning system.

Qur experience is that there is a propensity for the hidden units to
take on extreme values, but, whenever the learning problem calls for it,
they can learn to take on graded values. It is likely that the propensity
to take on extreme values follows from the fact that the logistic is a sig-
moid so that increasing magnitudes of its inputs push it toward zero or
one. This means that in a problem in which intermediate values are
required, the incoming weights must remain of moderate size. It is
interesting that the derivation of the generalized delta rule does not
depend on all of the units having identical activation functions, Thus,
it would be possible for some units, those required to encode informa-
tion in a graded fashion, to be linear while others might be logistic.
The linear unit would have a much wider dynamic range and could
encode more different vatues. This would be a useful role for a linear
unit in a network with hidden units.

340 BASIC MECHANISMS

Symmetry

Another interesting problem we studied is that of classifying input
strings as to whether or not they are symmetric about their center. We
used patterns of various lengths with various numbers of hidden units,
To our surprise, we discovered that the problem can always be solved
with only two hidden units. To understand the derived representation,
- consider one of the solutions generated by our system for strings of
length six. This solution was arrived at after 1,208 presentations of each
six-bit pattern with n = 0.1. The final network is shown in Figure 9.
For simplicity we have shown the six input units in the center of the
diagram with one hidden unit above and one below. The output unit,
which signals whether or not the string is symmetric about its center, is
shown at the far right. The key point to see about this solution is that
for a given hidden unit, weights that are symmetric about the middle
are equal in magnitude and opposite in sign, That means that if 2 sym-
metric pattern is on, both hidden units will receive a net input of zero
from the input units, and, since the hidden units have a negative bias,
both will be off. In this case, the output unit, having a positive bias,

Hidden Unit

@ Output

7 Unit

N
A I/ —
-~
@ Hidden Unit

FIGURE 9. Network for solving the symmetry problem. The six open circles represent
the input units. There are two hidden units, one shown above and one below the input
units, The output unit is shown to the far right. See text for explanation.

§. LEARNING INTERNAL REPRESENTATIONS 341

will be on. The next most important thing to note about the solution is
that the weights on each side of the midpoint of the string are in the
ratio of 1:2:4. This insures that each of the eight patterns that can
occur on each side of the midpoint sends a unique activation sum to
the hidden unit. This assures that there is no pattern on the left that
will exactly balance a non-mirror-image pattern on the right. Finally,
the two hidden units have identical patterns of weights from the input
units except for sign. This insures that for every nonsymmetric pat-
tern, at least one of the two hidden units will come on and turn on the
output unit. To summarize, the network is arranged so that both hid-
den units will Teceive exactly zero activation from the input units when
the pattern is symmetric, and at least one of them will receive positive
input for every nonsymmetric pattern.

This problem was interesting to us because the learning system
developed a much more elegant solution to the problem than we had
previously considered. This problem was not the only one in which this
happened. The parity solution discovered by the learning procedure
was also one that we had not discovered prior to testing the problem
with our learning procedure. Indeed, we frequently discover these
more elegant solutions by giving the system more hidden units than it
needs and observing that it does not make use of some of those pro-
vided. Some analysis of the actual solutions discovered often leads us
to the discovery of a better solution involving fewer hidden units.

Addition

Another interesting problem on which we have tested our learning
algorithm is the simple binary addition problem, This problem is
interesting because there is a very elegant solution to it, because it is
the one problem we have found where we can reliably find local
minima and because the way of avoiding these local minima gives us
some insight into the conditions under which local minima may be
found and avoided. Figure 10 illustrates the basic problem and a
minimal solution to it. There are four input units, three output units,
and two hidden units. The output patterns can be viewed as the binary
representation of the sum of two two-bit binary numbers represented
by the input patterns. The second and fourth input units in the
diagram correspond to the low-order bits of the two binary numbers
and the first and third units correspond to the two higher order bits.
The hidden units correspond to the carry bits in the summation. Thus
the hidden unit on the far right comes on when both of the lower order
bits in the input pattern are turned on, and the one on the left comes

342 BASIC MECHANISMS

Output Units

input Units

FIGURE 10. Minimal network for adding two two-bit binary numbers. There are four
input units, three output units, and two hidden units. The output patterns can be viewed
as the binary representation of the sum of two two-bit binary numbers represented by the
input patierns. The second and fourth input units in the diagram correspond 1o the low-
order bits of the two binary numbers, and the first and third units correspond to the two
higher order bits, The hidden units correspond to the carry bits in the summation. The
hidden unit on the far right comes on when both of the lower order bits in the input pat-
fern are turned on, and the one on the left comes on when both higher order bits are
turned on or when one of the higher order bits and the other hidden unit is turned on.
The weights on all lines are assumed to be +1 except where noted. Negative connec-
tions are indicated by dashed lines. As usual, the.biases are indicated by the numbers in
the circles.

on when both higher order bits are turned on or when one of the
higher order bits and the other hidden unit is turned on. In the
diagram, the weights on all lines are assumed to be +1 except where
noted. Inhibitory connections are indicated by dashed lines. As usual,
the biases are indicated by the numbers in the circles. To understand
how this network works, it is useful to note that the lowest order out-
put bit is determined by an exclusive-or among the two low-order input
bits. One way to solve this XOR problem is to have a hidden unit
come on when both low-order input bits are on and then have it inhibit
the output unit, Otherwise either of the low-order input units can turn
on the low-order output bit. The middle bit is somewhat more

8. LEARNING INTERNAL REPRESENTATIONS 343

difficult. Note that the middle bit should come on whenever an odd
number of the set containing the two higher order input bits and the
lower order carry bit is turned on. Observation will confirm that the
network shown performs that task. The left-most hidden unit receives
inputs from the two higher order bits and from the carry bit. Its bias is
such that it will come on whenever (wo Or more of its inputs are turned
on. The middle output unit receives positive inputs from the same
three units and a negative input of —7 from the second hidden unit.
This insures that whenever just one of the three are turned on, the
second hidden unit will remain off and the output bit will come on.
Whenever exactly two of the three are on, the hidden unit will turn on
and counteract the two units exciting the output bit, so it will stay off.
Finally, when all three are turned on, the output bit will receive —2
from its carry bit and +3 from its other three inputs. The net is posi-
tive, so the middle unit will be on. Finally, the third cutput bit should
turn on whenever the second hidden unit is on—that is, whenever
there is a carry from the second bit. Here then we have a minimal net-
work to carry out the job at hand. Moreover, it should be noted that
the concept behind this network is generalizable to an arbitrary number
of input and output bits. In general, for adding two m bit binary
numbers we will require 2m input units, m hidden units, and m+1 out-
put units.

Unfortunately, this is the one problem we have found that reliably
teads the system into local minima. At the start in our learning trials
on this problem we allow any input unit to connect to any output unit
and to any hidden unit. We allow any hidden unit to connect to any
output unit, and we allow one of the hidden units to connect to the
other hidden unit, but, since we can have no loops, the connection in
the opposite direction is disallowed. Sometimes the system will discover
essentially the same network shown in the figure.* Often, however, the
system ends up in a local minimum. The problem arises when the XOR
problem on the tow-order bits is not solved in the way shown in the
diagram. One way it can fail is when the "higher" of the two hidden
units is "selected” to solve the XOR problem. This is a problem
because then the other hidden unit cannot "see” the carry bit and there-
fore cannot finally solve the problem. This problem seems to stem
from the fact that the learning of the second output bit is always depen-
dent on learning the first (because information about the carry is neces-
sary to learn the second bit) and therefore lags behind the learning of
the first bit and has no influence on the selection of a hidden unit to

4 The network is the same except for the highest order bit. The highest order bit is
always on whenever three ot more of the input units are on. This is always learned first
and always learned with direct connections to the input units.

344 BASIC MECHANISMS

solve the first XOR problem. Thus, about half of the time (in this
problem) the wrong unit is chosen and the problem cannot be solved.
In this case, the system finds a solution for all of the sums except the
11+11 — 110 (3+3 = 6) case in which it misses the carry into the
middie bit and gets 11+11 — 100 instead. This problem differs from
others we have solved in as much as the hidden units are not "equi-
potential” here. In most of our other problems the hidden units have
been equipotential, and this problem has not arisen.

it should be noted, however, that there is a relatively simple way out
of the problem—namely, add some extra hidden units. In this case we
can afford to make a mistake on one or more selections and the system
can still solve the problems. For the problem of adding two-bit
numbers we have found that the system always solves the problem with
one extra hidden unit. With larger numbers it may require two or three
more. For purposes of illustration, we show the results of one of our
runs with three rather than the minimum two hidden units. Figure 11
shows the state reached by the network after 3,020 presentations of
each input pattern and with a learning rate of n = 0.5. For conveni-
ence, we show the network in four parts. In Figure 11A we show the
connections to and among the hidden units. This figure shows the
internal representation generated for this problem. The "lowest” hid-
den unit turns off whenever either of the low-order bits are on. In
other words it detects the case in which no low-order bit is turn on,
The "highest" hidden unit is arranged so that it comes on whenever the
sum is less than two. The conditions under which the middie hidden
unit comes on are more complex. Table 8 shows the patterns of hidden
units which occur to each of the sixteen input patterns. Figure 11B
shows the connections to the lowest order output unit. Noting that the
relevant hidden unit comes on when neither low-order input unit is on,
it is clear how the system computes XOR. When both low-order inputs
are off, the output unit is turned off by the hidden unit. When both
low-order input units are on, the output is turned off directly by the
two input units. If just one is on, the positive bias on the output unit
keeps it on. Figure 11C gives the connections to the middle output
unit, and in Figure 11D we show those connections to the left-most,
highest order output unit. It is somewhat difficult to see how these
connections always lead to the correct output answer, but, as can be
verifted from the figures, the network is balanced so that this works.

It should be pointed out that most of the problems described thus far
have involved hidden units with quite simple interpretations. It is
much more often the case, especially when the number of hidden units
exceeds the minimum number required for the task, that the hidden
units are not readily interpreted. This follows from the fact that there
is very little tendency for localisi representations to develop. Typically

8. LEARNING INTERNAL REFRESENTATIONS 345

Output Units

000

Hidden
Units

Input Units

A

Qutput Units

Hidden
Units

Input Units

C

FIGURE 11. Network found for the summation problem. 4: The co
input units to the three hidden units and t
The connections from the input and hidden units to the lowest order o

Qutput Units

00®

\
f! “ N -10
RN

/ \
f’ \\
/ 1
/ L
OO 0O
Input Units
B

Output Units

Input Units

D

nneclions from the
we connections among the hidden units. B
utput unit. € The

connections from the input and hidden units to the middle output unit. D: The connec-
tions from the input and hidden units 1o the fighest order output unit.

346 BASIC MECHANISMS

TABLE 8

Input Hidden Unit Cutput
Patterns Patterns Patterns
0+00 — 111 — 000
W+01 — 1o — 001
00+10 - 011 — 010
60+ 11 — 010 — o1
01+00 — 110 — 001
H+01 — 010 — 010
01+10 — 010 — 011
o1+11 - 000 —_ 100
10+00 — 011 - 010
10+0 — 010 — 011
H+10 - 001 — 100
0+11 — 000 — 101
11+00 — 010 — 011
mH+m - 000 — 100
1T+ 10 — 000 — 101
11+1i1 - 000 — 110

the internal representations are distributed and it is the pattern of
activity over the hidden units, not the meaning of any particular hidden
unit that is important.

The Negation Problem

Consider a situation in which the input to a system consists of pat-
terns of n+1 binary values and an output of # values. Suppose further
that the general rule is that # of the input units should be mapped
directly to the output patterns. One of the input bits, however, is spe-
cial. It is a negation bit. When that bit is off, the rest of the pattern is
supposed to map straight through, but when it is on, the complement
of the pattern is to be mapped to the outpui. Table 9 shows the
appropriate mapping. In this case the left element of the input pattern
is the negation bit, but the system has no way of knowing this and
must learn which bit is the negation bit. In this case, weights were
allowed from any input unit to any hidden or output unit and from any
hidden unit to any output unit. The system learned to set ail of the
weights to zero except those shown in Figure 12. The basic structure
of the problem and of the solution is evident in the figure. Clearly the
problem was reduced to a set of three XORs between the negation bit

8. LEARNING INTERNAIL REPRESENTATIONS 347

TABLE 9
Input Patterns Qutput Patterns
0000 — 000
0001 — 001
0010 — 010
0011 — 011
0100 — 100
0101 — 101
0110 — 110
o111 — 111
1000 — 111
1001 - 110
1010 — 101
1011 — 100
1100 — 01!
1101 — 010
1110 - 001
1111 — 000

and each input. In the case of the two right-most input units, the XOR
problems were solved by recruiting a hidden unit to detect the case in
which neither the negation unit zor the corresponding input unit was on.
In the third case, the hidden unit detects the case in which both the
negation unit and relevant input were on. In this case the problem was
solved in less than 5,000 passes through the stimulus set withn = 0.25.

FIGURE 12. The soiution discovered for the negation problem. The left-most unit is
the negation unit. The problem has been reduced and solved as three exclusive-ors
between the negation unit and each of the other three units.

348 BASIC MECHANISMS

The T-C Problem

Most of the problems discussed so far (except the symmetry prob-
lem) e rather abstract mathematical problems. We now turn to a
more jeometric problem—that of discriminating between a T and a
C—in‘ependent of translation and rotation. Figure 13 shows the
stimi s patterns used in these experiments. Note, these patterns are
each -nade of five squares and differ from one another by a single
squatc. Moreover, as Minsky and Papert (1969) point out, when con-
sidering the set of patterns over all possible translations and rotations
(of 90°, 180°, and 270°), the patterns do not differ in the set of dis-
tances among their pairs of squares. To see a difference between the
sets of patterns one must look, at least, at configurations of triplets of
squares. Thus Minsky and Papert call this a problem of order three.’
In order to facilitate the learning, a rather different architecture was
employed for this problem. Figure 14 shows the basic structure of the
network we employed. Input patterns were now conceptualized as two-
dimensional patterns superimposed on a rectangular grid. Rather than
allowing each input unit to connect to each hidden unit, the hidden
units themselves were organized into a two-dimensional grid with each
unit receiving input from a square 3x 3 region of the input space. In
this sense, the overlapping square regions constitute the predefined
receptive fleld of the hidden units. Each of the hidden units, over the
entire field, feeds into a single output unit which is to take on the value

_ _ _
I] T
n | NEE N
] o
T] C

FIGURE 13. The stimulus set for the T-C problem. The set consists of a block T and a
block C in each of four orientations. One of the eight patterns is presented on each trial.

5 Terry Sejnowski pointed out to us that the T-C problem was difficult for models of
this sert to learn and therefore worthy of study.

8. LEARNING INTERNAL REPRESENTATIONS 349

Output
Unit

Hidden
Units

G oo g

09 0oooaoa

i) input
/ - Units

FIGURE 14. The network for solving the T-C problem. See text for explanation.

1 if the input is a T (at any location or orientation) and 0 if the input is
a C. Further, in order that the learning that occurred be independent
of where on the field the pattern appeared, we constrained all of the
units to learn exactly the same pattern of weights. In this way each unit
was constrained to compute exacily the same function over its receptive
field—the receptive fields were constrained to all have the same shape.
This guarantees translation independence and avoids any possible "edge
effects” in the learning. The learning can readily be extended to arbi-
trarily large fields of input units. This constraint was accomplished by
simply adding together the weight changes dictated by the delta rule for
each unit and then changing all weights exactly the same amount. In

350 BASIC MECHANISMS

this way, the whole field of hidden units consists simply of replications
of a single feature detector centered on different regions of the input
space, and the learning that occurs in one part of the field is automati-
cally generalized to the rest of the field.®

We have run this problem in this way a number of times. As a
result, we have found a number of solutions. Perhaps the simplest way
to understand the system is by looking at' the form of the receptive
field for the hidden units. Figure 15 shows several of the receptive
fields we have scen.” Figure 15A shows the most local representation
developed. This on-center-off-surround detector turns out to be an
excellent T detector. Since, as illustrated, a T can extend into the on-
center and achieve a net input of +1, this detector will be turned on for
a T at any orientation. On the other hand, any C extending into the
center must cover at least fwo inhibitory cells, With this detector the
bias can be set so that only one of the whole field of inhibitory units
will come on whenever a T is presented and none of the hidden units
will be turned on by any €. This is a kind of protrusion detector which
differentiates between a T and C by detecting the protrusion of the 7.

The receptive field shown in Figure 15B is again a kind of 7 detector.
Every T activates one of the hidden units by an amount +2 and none
of the hidden units receives more than +1 from any of the C’s. As
shown in the figure, 7’s at 90° and 270° send a total of +2 to the hid-
den units on which the crossbar lines up. The T’s at the other two
orientations receive +2 from the way it detects the vertical protrusions
of those two characters. Figure 15C shows a more distributed represen-
tation. As illustrated in the figure, each T activates five different hid-
den units whereas each C excites only three hidden units. In this case
the system again is differentiating between the characters on the basis
of the protruding end of the T which is not shared by the C.

Finally, the receptive field shown in Figure 15D is even more
interesting. In this case every hidden unit has a positive bias so that it
is on unless turned off. The strength of the inhibitory weights are such
that if a character overlaps the receptive field of a hidden unit, that unit
turns off. The system works because a C is more compact than 2 7 and
therefore the T turns off more units that the C. The T turns off 21
hidden units, and the C turns off only 20. This is a truly distributed

& A similar procedure has been employed by Fukushima (1980} in his reocognitron and
by Kienker, Sejnowski, Hinton, and Schumacher (1985).

7 The ratios of the weights are about right. The actual values can be larger or smaller
than the vafues given in the figure.

g LEARNING INTERNAL REPRESENTATIONS 351

D =2.2-2
-2 -2 -2
2 -2 -2

FIGURE 15. Receptive fields found in different runs of the T-C problem. A4: An on-
center-off-surround receptive field for detecting s, 8: A vertical bar detector which
responds 1o T’s more strongly than C’s. €1 A diagonal bar detector. A T activates five
such detectors whereas a C activates only three such detectors. D: A compactness detec-
tor. This inhibitory receptive field turns off whenever an input covers any region of its
receptive field. Since the C is more compact than the T it turns off 20 such detectors
whereas the T turns off 21 of them. ’

representation. In each case, the solution was reached in from about
5,000 to 10,000 presentations of the set of eight patterns.®

It is interesting that the inhibitory type of receptive field shown in
Figure 15D was the most common and that there is a predominance of
inhibitory connections in this and indeed all of our simulations. This
can be understood by considering the trajectory through which the
learning typically moves. At first, when the system is presented with a

8 Since translation independence was built into the learning procedure, it makes no
difference where the input occurs; the same thing will be learned wherever ihe pattern is
presented. Thus, there are only eight distinct patterns to be presented to the system.

352 BASIC MECHANISMS

difficult problem, the initial random connections are as likely to mislead
as to give the correct answer. In this case, it is best for the output
units to take on a value of 0.5 than to take on a more extreme value.
This follows from the form of the error function given in Equation 2.
The output unit can achieve a constant output of 0.5 by turning off
those units feeding into it. Thus, the first thing that happens in virtu-
ally every difficult problem is that the hidden units are turned off. One
way to achieve this is to have the input units inhibit the hidden units.
As the system begins to sort things out and to learn the appropriate
function some of the connections will typically go positive, but the
majority of the connections will remain negative. This bigs for solu-
tions involving inhibitory inputs can often lead to nonintuitive results
in which hidden units are often on uniess turned off by the input.

More Simulation Results

We have offered a sample of our results in this section. In addition
to having studied our learning system on the problems discussed here,
we have employed back propagation for learning to multiply binary
digits, to play tic-tac-toe, to distinguish between vertical and horizontal
lines, to perform sequences of actions, to recognize characters, to asso-
ciate random vectors, and a host of other applications. In all of these
applications we have found that the generalized delta rule was capable
of generating the kinds of internal representations required for the
problems in question. We have found local minima to be very rare and
that the system learns in a reasonable period of time. Still more studies
of this type will be required to understand precisely the conditions
under which the system will be plagued by local minima. Suffice it to
say that the problem has not been serious to date. We now turn to a
painter te some future developments.

SOME FURTHER GENERALIZATIONS

We have intensively studied the learning characteristics of the gen-
eralized delta rule on feedforward networks and semilinear activations
functions. Interestingly these are not the most general cases to which
the learning procedure is applicable. As yet we have only studied a few
examples of the more fully generalized system, but it is relatively easy
to apply the same learning rule to sigma-pi units and to recurrent net-
works. We will simply sketch the basic ideas here.

8. LEARNING INTERNAL REPRESENTATIONS 333

The Generalized Delta Rule and Sigma-Pi Units

Tt will be recalled from Chapter 2 that in the case of sigma-pi units
we have

0, =f; (Z_WﬁI];[Oik) (17)

where / varies over the set of conjuncts feeding into unit j and & varies
over the elements of the conjuncts. For simplicity of exposition, we
restrict ourselves to the case in which no conjuncts involve more than
two elements. In this case we can notate the weight from the conjunc-
tion of units i and j to unit k& by wy;. The weight on the direct con-
nection from unit i to unit j would, thus, be wy;, and since the relation
is multiplicative, wy; = Wi We can now rewrite Equation 17 as

Oj = f;,'(IEthijhOj).
iy

We now set

85,
awk,j)

Ap kaj «

Taking the derivative and simplifying, we get a rule for sigma-pi units
strictly analogous to the rule for semilinear activation functions:

Ay Wiy = 8k 0:10;-

We can see the correct form of the error signal, 8, for this case by
inspecting Figure 16. Consider the appropriate value of §; for unit #
in the figure. As before, the correct value of §; is given by the sum of
the §’s for all of the units into which #; feeds, weighted by the amount
of effect due to the activation of #; times the derivative of the activa-
tion function. In the case of semilinear functions, the measure of a
unit’s effect on another unit is given simply by the weight w connect-
ing the first unit to the second. In this case, the u;’s effect on
depends not only on w;, but also on the value of &;. Thus, we have

5, =14 (netf)ZSkwkg 0;
ik

if 4 is not an output unit and, as before,
8; = f'; (net;) (t—0;)

if it is an output unit.

354 BASIC MECHANISMS

FIGURE 16. The generalized delta rule for sigma-pi units. The products of activation
values of individual units activate output units. See text for explanation of how the §
values are computed in this case.

Recurrent Nets

We have thus far restricted ourselves to feedforward nets. This may
seem like a substantial restriction, but as Minsky and Papert point out,
there is, for every recurrent network, a feedforward network with ident-
ical behavior (over a finite period of time}. We wiil now indicate how
this construction can proceed and thereby show the correct form of the
learning rule for the recurrent network. Consider the simple recurrent
network shown in Figure 17A. The same network in a feedforward
architecture is shown in Figure 17B. The behavior of a recurrent net-
work can be achieved in a feedforward network at the cost of duplicat-
ing the hardware many times over for the feedforward version of the
network.® We have distinct units and distinct weights for each point in
time. For naming convenience, we subscript each unit with its unit
number in the corresponding recurrent network and the time it
represents. As long as we constrain the weights at each level of the
feedforward network to be the same, we have a feedforward network
which performs identically with the recurrent network of Figure 17A.

% Note that in this discussion, and indeed in our entire development here, we have
assumed a discrete time system with synchronous update and with each connection
involving a unit delay.

8 LEARNING INTERNAL REPRESENTATIONS 3353

W11 w22

Time

1+1

FIGURE 17. A comparison of a recurrent network and a feedforward network with
identical behavior. 4: A completely connected recurrent network with two units. B: A
feedforward network which behaves the same as the recurrent network. In this case, we
have a separate unit for each time step and we require that the weights connecting each
layer of units to the nexi be the same for all layers. Moreover, they must be the same as
the analogous weights in the recurrent case.

The appropriate method for maintaining the constraint that all weights
be equal is simply to keep track of the changes dictated for each weight
at each level and then change each of the weights according to the sum
of these individually prescribed changes. Now, the general rule for
determining the change prescribed for a weight in the system for a par-
ticular time is simply to take the product of an appropriate error

356 BASIC MECHANISMS

measure 8 and the input along the relevant line both for the appropriate
times. Thus, the problem of specifying the correct learning rule for
recurrent networks is simply one of determining the appropriate value
of 8 for each time. In a feedforward network we determine 8 by multi-
plying the derivative of the activation function by the sum of the 8’s
for those units it feeds into weighted by the connection strengths. The
same process works for the recurrent network—except in this case, the
value of & associated with a particular unit changes in time as a unit
passes error back, sometimes to itself. After each iteration, as error is
being passed back through the network, the change in weight for that
iteration must be added to the weight changes specified by the preced-
ing iterations and the sum stored. This process of passing error
through the network should continue for a number of iterations equal
to the number of iterations through which the activation was originally
passed. At this point, the appropriate changes to all of the weights can
be made.

In general, the procedure for a recurrent network is that an input
(generaily a sequence) is presented to the system while it runs for some
number of iterations. At certain specified times during the operation of
the system, the output of certain units are compared to the target for
that unit at that time and error signals are generated. Each such error
signal is then passed back through the network for a number of itera-
tions equal to the number of iterations used in the forward pass.
Weight changes are computed at each iteration and a sum of all the
weight changes dictated for a particular weight is saved. Finally, after
all such error signals have been propagated through the system, the
weights are changed. The major problem with this procedure is the
memory required. Not only does the system have to hold its summed
weight changes while the error is being propagated, but each unit must
somehow record the sequence of activation values through which it was
driven during the original processing. This follows from the fact that
during each iteration while the error is passed back through the system, -
the current § is relevant to a point earlier in time and the required
weight changes depend on the activation levels of the units at that time.
It is not entirely clear how such a mechanism could be implemented in
the brain. Nevertheless, it is tantalizing to realize that such a procedure
is potentially very powerful, since the problem it is attempting to solve
amounts to that of finding a sequential program (like that for a digital
computer) that produces specified input-sequence/output-sequence
pairs. Furthermore, the interaction of the teacher with the system can
be quite flexible, so that, for example, should the system get stuck in a
local . minimum, the teacher could introduce "hints" in the form of
desired output values for intermediate stages of processing. Our experi-
ence with recurrent networks is limited, but we have carried out some

8. LEARNING INTERNAL REPRESENTATIONS 357

experiments. We turn first to a very simple problem in which the sys-
tem is induced to invent a shift register to solve the problem.

Learning to be a shift register. Perhaps the simplest class of
recurrent problems we have studied is one in which the input and out-
put units are one and the same and there are no hidden units. We sim-
ply present a pattern and let the system process it for a period of time.
The state of the system is then compared to some target state. If it
hasn’t reached the target state at the designated time, error is injected
into the system and it modifies its weights. Then it is shown a new
input pattern and restarted. In these cases, there is no constraint on
the connections in the system. Any unit can connect to any other unit.
The simplest such problem we have studied is what we call the shift
register problem. In this problem, the units are conceptualized as a cir-
cular shift register. An arbitrary bit pattern is first established on the
units. They are then allowed to process for two time-steps. The target
state, after those two time-steps, is the original pattern shifted two
spaces to the left. The interesting question here concerns the state of
the units between the presentation of the start state and the time at
which the target state is presenied. One solution to the problem is for
the system to become a shift register and shift the pattern exactly one
unit to the left during each time period. If the system did this then it
would surely be shifted two places to the left after two time units. We
have tried this problem with groups of three or five units and, if we
constrain the biases on all of the units to be negative (so the units are
off unless turned on), the system always learns to be a shift register of
this sort, ' Thus, even though in principle any unit can connect to any
other unit, the system actually learns to set all weights to zero except
the ones connecting a unit to its left neighbor. Since the target states
were determined on the assumption of a circular register, the left-most
unit developed a strong connection to the right-most unit. The system
learns this relatively quickly. With = 0.25 it learns perfecily in fewer
than 200 sweeps through the set of possible patterns with either three-
or five-unit systems.

The tasks we have described so far are exceptionally simple, but they
do illustrate how the algorithm works with unrestricted networks. We
have attempted a few more difficult problems with recurrent networks.

10 If the constraint that biases be negative is not imposed, other solutions are possible.
These solutions can involve the units passing through the complements of the shifted
pattern or even through more complicated intermediate states. These trajectories are
interesting in that they match a simple shift register on all even numbers of shifts, but do
not match Following an odd number of shifts.

358 BASIC MECHANISMS

One of the more interesting involves learning to complete sequences of
patterns. OQur final example comes from this domain.

Learning to complete sequences. Table 10 shows a set of 25
sequences which were chosen so that the first two items of a sequence
uniquely determine the remaining four. We used this set of sequences
to test out the learning abilities of a recurrent network. The network
consisted of five input units (A, B, C, D, E), 30 hidden units, and
three output units (1, 2, 3). At Time 1, the input unit corresponding
to the first item of the sequence is turned on and the other input units
are turned off. At Time 2, the input unit for the second item in the
sequence is turned on and the others are all turned off. Then all the
input units are turned off and kept off for the remaining four steps of
the forward iteration. The network must learn to make the output units
adopt states that represent the rest of the sequence. Unlike simple
ieedforward networks (or their iterative equivalents), the errors are not
only assessed at the final layer or time. The output units must adopt
the appropriate states during the forward iteration, and so during the
back-propagation phase, errors are injected at each time-step by com-
paring the remembered actual states of the output units with their
desired states,

The learning procedure for recurrent nets places no constraints on
the allowable connectivity structure.!! For the sequence completion
problem, we used one-way connections from the input units to the hid-
den units and from the hidden units to the output units. Every hidden
unit had a one-way connection to every other hidden unit and to itself,

TABLE 10

25 SEQUENCES TO BE LEARNED

AAl1212 AB1223 ACI231 ADI1221 AE1213
BA2312 BB2323 BC2331 BD2321 BE2313
CA3I12 CB3123 CC3131 CD3121 CE3113
Da2112 DB2123 DC2131 DD2121 DE2113
EA1312 EB1323 ECi1331 ED1321 EE1313

11 The constraint in feedforward networks is that it must be possible to arrange the
units into layers such that units do not influence units in the same or lower layers. In
recurrent networks this amounts to the constraint that during the forward iteration,
future states must not affect past ones.

2. LEARNING INTERNAL REPRESENTATIONS 359

and every output unit was also connecied to every other output unit
and to itself. All the connections started with small random weights
uniformiy distributed between —0.3 and +0.3. All the hidden and out-
put units started with an activity level of 0.2 at the beginning of each
sequence.

We used a version of the learning procedure in which the gradient of
the error with respect to each weight is computed for a whole set of
examples before the weights are changed. This means that each con-
nection must accumulate the sum of the gradients for all the examples
and for all the time steps involved in each example. During training,
we used a particular set of 20 examples, and after these were learned
almost perfectly we tested the network on the remaining examples to
see if it had picked up on the obvious regularity that relates the first
two items of a sequence to the subsequent four. The results are shown
in Tabie 11. For four out of the five test sequences, the output units
all have the correct values at all times (assuming we treat values above
0.5 as 1 and values below 0.5 as 0). The network has clearly captured
the rule that the first item of a sequence determines the third and
" fourth, and the second determines the fifth and sixth. We repeated the
simulation with a different set of random initial weights, and it got all
five test sequences correct.

The learning required 260 sweeps through all 20 training sequences.
The errors in the output units were computed as follows: For a unit
that should be on, there was no error if its activity level was above 0.8,
otherwise the derivative of the error was the amount below 0.8. Simi-
larly, for output units that should be off, the derivative of the error was
the amount above 0.2. After each sweep, each weight was decremented
by .02 times the total gradient accumulated on that sweep plus 0.9
times the previous weight change.

We have shown that the learning procedure can be used to create a
network with interesting sequential behavior, but the particular problem
we used can be solved by simply using the hidden units to create "delay
lines" which hold information for a fixed length of time before aliowing
it to influence the output. A harder problem that cannot be solved
with delay lines of fixed duration is shown in Table 12. The output is
the same as before, but the two input items can arrive at variable times
so that the item arriving at time 2, for example, could be either the
first or the second item and could therefore determine the states of the
output units at either the fifth and sixth or the seventh and eighth
times. The new task is equivalent to requiring a buffer that receives
two input "words" at variable times and outputs their *phonemic reali-
zations" one after the other. This problem was solved successfully by a
network similar to the one above except that it had 60 hidden units and
half of their possible interconnections were omitted at random. The

360 BASIC MECHANISMS

TABLE 11

PERFORMANCE OF THE NETWORK ON FIVE NOVEL TEST SEQUENCES

Input Sequence A D - — — —
Desired Outputs — — 1 2 2 1

Actual States of:
~Qutput Unit 1 02 0.12 0.90 0.22 0.11 0.83
Outpul Unit 2 0.2 (.16 0.13 0.82 0.88 0.03
Output Unit 3 0.2 0.07 .08 0.03 0.01 022

Input Sequence B E — - — —
Desired Outputs - — 2 3 1 3

Actual States of:
Qutput Unit 1 0.2 0.12 0.20 0.25 0.48 0.26
Output Unit 2 0.2 0.16 0.80 0.05 0.04 0.09
Output Unit 3 0.2 0.07 0.02 0.79 0.48 0.53

Input Seguence C A - - - -
Desired Qutputs - — 3 1 1 2

Actual States of:
Output Unit 1 0.2 0.12 0.19 0.80 0.87 0.11
Output Unit 2 0.2 0.16 .19 0.00 0.13 0.70
Qutput Unit 3 0.2 0.07 0.80 0.13 0.01 0.25

Input Sequence D B — - — —
Desired Qutputs — — 2 1 2 3

Actual States of: .
Output Unit 1 0.2 0.12 0.16 0.79 0.07 0.1t
QOutput Unit 2 0.2 0.16 0.80 0.15 0.87 0.05
Output Unit 3 0.2 0.07 0.20 0.01 0.13 0.96

Input Sequence E C - - _ _
Desired Outputs - - 1 3 3 -1

Actual States of:
Cutput Unit 1 0.2 0.12 0.80 0.09 0.27 0.78
Qutput Unit 2 0.2 0.16 0.20 0.13 0.01 0.02
Qutput Unit 3 0.2 0.07 0.07 0.94 0.76 0.13

learning was much slower, requiring thousands of sweeps through all
136 training examples. There were also a few more errors on the 14
test examples, but the generalization was still good with most of the
test sequences being completed perfectly.

8. LEARNING INTERNAL REPRESENTATIONS 361

TABLE 12

SIX VARIATIONS OF THE SEQUENCE EA1312 PRODUCED BY
PRESENTING THE FIRST TWO ITEMS AT VARIABLE TIMES

EA——1312 E—A—1312 E——Al3l2
—EA-1312 —E—Al1312 ——EA1312

Note: With these temporal variations, the 25 sequences shown in
Table 10 can be used to generate 150 different sequences.

CONCLUSION

In their pessimistic discussion of perceptrons, Minsky and Papert
(1969) finalty discuss multilayer machines near the end of their book.
They state: :

The perceptron has shown itself worthy of study despite (and
even because of!) its severe limitations. It has many features
that attract attention: its linearity; its intriguing learning
theorem; its clear paradigmatic simplicity as a kind of parallel
computation, There is no reason to supposc that any of these
virtues carry over to the many-layered version. Nevertheless,
we consider it to be an important research problem to elucidate
{or reject) our intuitive judgement that the extension is sterile.
Perhaps some powerful convergence theorem will be
discovered, or some profound reason for the failure to produce
an interesting "learning theorem” for the multilayered machine
will be found. (pp. 231-232)

Although our learning results do not guarantee that we can find a solu-
tion for all solvable problems, our analyses and results have shown that
as a practical matter, the error propagation scheme leads to solutions in
virtually every case. In short, we believe that we have answered Min-
sky and Papert’s challenge and have found a learning result sufficiently
powerful to demonstrate that their pessimism about learning in mul-
tilayer machines was misplaced.

One way to view the procedure we have been describing is as a paral-
lel computer that, having been shown the appropriate input/output
exemplars specifying some function, programs itself to compute that
function in general. Paraliel computers are notoriously difficuit to pro-
gram. Here we have a mechanism whereby we do not actually have to
know how to write the program in order to get the system to do it.
Parker (1985) has emphasized this point.

362 BASIC MECHANISMS

On many occasions we have been surprised to learn of new methods
of computing interesting functions by observing the behavior of our
learning algorithm. This also raised the question of generalizaiion. In
most of the cases presented above, we have presented the system with
the entire set of exemplars. It is interesting to ask what would happen
if we presented only a subset of the exemplars at training time and then
watched the system generalize to remaining exemplars. In small prob-
lems such as those presented here, the system sometimes finds solu-
tions to the problems which do not properly generalize. However, pre-
liminary results on larger problems are very encouraging in this regard.
This research is still in progress and cannot be reported here. This is
currently a very active interest of ours.

Finally, we should say that this work is not yet in a finished form.
We have only begun our study of recurrent networks and sigma-pi
units. We have not yet applied our learning procedure to many very
complex problems. However, the results to date are encouraging and
we are continuing our work.

