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Introduction

One reason for scepticism about connectionist mod-
els that use distributed representations is that there
are currently no convincing demonstrations of how
these models can represent comnplex, articulated
structures. Drew McDermott (personal communi-
cation} has suggested that the approach would be
far more convincing if it could come up with a sen-
sible scheme for representing the meaning of a sen-
tence such as: “She seems to be more at ease with
her fellow students than with me, her adviser.” This
meaning is clearly composed of several major con-
stituents with relationships between them, and each
major constituent has its own, complex, internal
structure. A representational scheme for dealing
with meanings of this complexity must, at the very
least, specify how the meanings of whole expressions
are related to the meanings of their constituents and
how 1t is possible, in some sense, to have the whole
meaning in mind at once.

The example given above is typical of examples from
many different domains. It appears that whenever
people have to deal with complexity they impose
part-whole hierarchies in which objects at one level
are composed of inter-related objects at the next
level down. In representing a visual sceme or an
everday plan or the structure of a sentence we use
hierarchical structures of this kind. The main issue
addressed in this paper is how to tepresent complex
part-whole hierarchies in a connectionist network.
Three different methods are described.

Symbols and the conventional imple-
mentation of hierarchical structures

It will be helpful to begin by reviewing the standard
way of implementing hierarchical data-structures
in a conventional digital computer. There are
obviously many minor variations, but a suitable
paradigm example is the kind of record structure
that is found in languages like Pascal (but without
the type constraints).

Each instancs of a record is composed of a pre-
determined set of fields (sometimes called “slots”
or “roles”) each of which contains a pointer to the
contents of the field which may be either another in-
stance of a record, or a primitive object. Since the
pointers can be arbitrary addresses, this is a very
flexible way of implementing a hierarchical data-
structure, but the flexibility is bought at the price of
the von Neumann bottleneck: The addressing mech-
anism means that only one pointer can be followed
at a time. ® '

The essence of a symbol is this: It is a small rep-
resentation of an object that provides an “remote
access” path to a fuller representation of the same
object. ? For example, the address of a record
structure is a small representation and the whole
record that it points to is a fuller representation.
In general, this fuller representation is itself com-
posed of small representations (e. g. addresses)
of the structures that fill the fields of the record.
Because a symbol is small, many symbols can be
put together to create a “fully-articulated” repre-
sentation of some larger structure and the size of
this fully-articulated represention need not be any
larger than the fully-articulated representations of
its constituents.

When addresses are used as symbols, there is nor-
mally a purely arbitrary relationship between the in-
ternal structure of a symbol and the fully articalated
representation that it provides access to. Looking
at the individual bits in the symbol provides no in-
formation about what it represents. Occasionally
this is not quite true. If, for example, one type of
data-structure is kept in the top half of memory and
another type in the bottom half, the first bit of a
symbol reveals the type of the data-structure that
it provides access to. So it is possible to check the
type without following the pointer. This trick can
obviously be extended so that many of the bits in

1 Architectures such as the Connection Machine {Hillis,
1985) use routing hardware that allows many pointers to be
followed at once, but even with hardware support, the routing
is quite siow.

2There is, of course, mnch debate about the meaning
of the word “symbol”. The informal definition given here
emerged from conversations with Allen Newell.
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a symbol convey useful information. A symbol can
then be viewed as a “reduced description” of the
object.

The conclusion of this paper is that patterns of ac-
tivity in parts of a connectionist network need to ex-
hibit the double life that is characteristic of symbols.
The patterns must allow remote access to fuller rep-
resentations, but so long as the patterns are also
reduced descriptions this remote access need only
be used very occasionally (e.g. a few times per sec-
ond). Most of the processing can be done by parallel
constraint-satisfaction on the patterns themselves.

Method 1: The fully-parallel imple-
mentation

Perhaps the most obvious way to implement part-
whole hierarchies in a connectionist network is to
use the connections themselves as pointers. Figure 1
shows an example taken from the work of Rumelhart
and McClelland (1981). It is a network that recog-
nizes a word when given partial information about
the features of the letters in the word. We use this as
the standard, concrete example of a part-whole hi-
erarchy because it has clearly defined levels and the
parts have convenient names, but this paper is not
about word recognition. Because each relationship
in the hierarchical tree-structure is implemented by
its own dedicated comnection, it is possible to do a
lot of parallel processing during recognition. Simul-
taneously, many different letters can check whether
the features they require are present, and many dif-
ferent words can check whether the letiers they re-
quire are present.

One very important aspect of the Rumelhart and
McClelland network is that each of the letter units
has to be replicated for each of the four possible
positions of a letter within the word (they restrict
themselves to four-letter words). There is a separate
unit for an H as first letter and an H as second letter.
All the letier features and all the knowledge about
which combinations of letter features make an H
must also be replicated for each of the four positions.
This replication is a natural consequence of imple-
menting part-whole relationships with pairwise con-
nections. A part-whole relationship invelves three
different things: The part, the whole, and the role
that the part plays within the whole. In the con-
ventional implementation using pointers, the role is

words. Only a few of the units and connections
are shown. The connections between alternative hy-
potheses at the same level are inhibitory.

encoded by which field the pointer is in. A pairwise
connection between neuron-like units does not have
anything equivalent to a field, and so the destina-
tion of the connection is used to represent both the
field and the contents of the field. Thus, instead of
having a single role-independent representation of
H which is pointed to from many different fields, we
have many different “role-specific” representations.
Activity in any one of these units then represents

- the conjunction of an identity and a role.

At first sight, the fully-parallel implementation
seems very wasteful because it replicates the appa-
ratus for representing and recognizing letters across
all the different roles. However, the replication has
some useful consequences. It makes it possible to
recognize different instances of the same letter in
parallel without any of the contention that would
occur if several different processes needed to access
a single, central store of knowledge simultaneously.
Also, when letters are used as cues for words, it is
not just the letter identities that are important. It
is the conjunction of the identity and the spatial
role within the word that is the real cue. So it is
very convenient to have units that explictly repre-
sent such conjunctions. :

In addition to the expense of replicating the recog-
nition apparatus across all roles, the fully-parallel
network has several other problems :

1. The replication raises the question of how, if
at ail, the multiple different role-specific repre-
sentations of a given letter are related to one
another. ' '
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2. As we go down the hierarchy, there are less and
less units available for representing each con-
stituent.

3. In a network which is not fully connected, it is
not at all obvious how new knowledge can be
incorporated without growing new connections.

For relatively shallow, man-made hierarchies of the
kind that are important in reading or speech recog-
nition, it may be tolerable to always devote less
units to representing smaller fragments of the over-
all structure. But for domains like normal visual
scenes this strategy will not work. A room, for ex-
ample, may contain a wall, and the wall may con-
tain a picture, and the picture may depict a room.
We need to be able to devote just as much appa-
ratus to representing the depicted room as the real
one. Moreover, the very same knowledge that is
applied in recognizing the real room needs to be ap-
plied in recognizing the room in the picture. If this
knowledge is in the form of connections and if the
knowledge is not duplicated there must be a way
of mapping the depicted room into an activity pat-
tern on the very same set of units as are used for
representing the real room.

The distributed version of method 1

The Rumethart and McClelland metwork unses lo-
calist representations in which each entify is rep-
resented by activity in a single unit. Localist repre-
sentations are efficient if a significant fraction of the
possible entities are present on any one occasion or
if the knowledge associated with each entity has lit-
tle in common with the knowledge associated with
other, alternative entities. Both these conditions
hold quite well at the level of letter recognition. For
the more natural part-whole hierarchies that occur
in everyday scenes, neither condition holds. Only a
tiny fraction of the possible objects are present on

any one occasion, so if one unit is devoted to each

possible object almost all the units will be inactive.
This is a very inefficient way to use the representa-
tional capacity. Also, different objects, like a cup
and a mug, may have similar appearances and may
make similar predictions. This means that there can
be a lot of useful sharing of units and connections.
Most of what we know about cups and mugs could
be associated with a unit that is active for either a
cup or a mug. If this method of sharing is taken to

its logical conclusion we arrive at distributed rep-
resentations in which each object is represented by
activity in many units and each unit is involved in
the representation of many objects (Hinton, McClel-
land, and Rumeihart, 1986).

One major advantage of using descriptions rather
than single units as representations is that it is
possible to create representations of novel objects
{and also novel role-specific representations) by us-
ing novel combinations of the same set of primitive
descriptors. This avoids the problem of having to
find a suitably connected unit for each novel ob-
ject. However, the other two difficulties of the fully
parallel method are not solved by simply using dis-
tributed representations.

Method 2: Sharing recognition appa-
ratus within a level

Distributed representations provide a way of sharing

units and connections between alternative objects or
alternative role-specific representations. In this re-
spect they work just like pointers in a conventional
computer memory. Instead of using a separate bit
for each possible object that could be pointed to,
each bit is shared between many possible alterna-
tive objects. As a result, a word of memory can
only point to one object at a time. 3 The following
analysis of the functions performed by a role-specific
tepresentation suggests a quite different and com-
plementary method of sharing which can be used to
share connectionist apparatus between the different
role-specific instances that occur within one whole.
In the Rumethart and McClelland model each role-
specific letter unit has three functions:

1. ¥ recognizes the occurence of that letter in that
spatial role. The recognition is accomplished
by having appropriately weighted connections
coming from units at the feature level.

2. It contributes to the recognition of words. This
is accomplished by iis connections to units at
the word level.

3. Its activity level stores the results of letter
recognition.

3Some ancient implementations of LISP actually use two
separate role-specific representations within one word so that
the first part of a word can point to one ohject and the second
part can point to another.
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There is an alternative model which uses role-
specific letter units for functions 2 and 3, but not
for function 1. Instead, it uses a single letter-
recognition module which is applied to one position
within the word at a time. Once the lefter at the
current position has been recognized, the combina-
tion of its identity and its position within the word
activates a role-specific letter unit which acts as a
temporary memory for the results of the recognition
and also contributes to the recognition of the word
(see figure 2).

The letter-recognition module must be applied to
one letter at a time and so there must be extra “at-
tentional” apparatus which selects out one portion
of the parallel input (which contains features of all
the letters), maps this portion into the input of the
letter-recognition module, and also creates an ex-
plicit representation of where the currently selected
letter lies within the word. Actually, the Rumel-
hart and McClelland model presupposes that there
is apparatus of a similar kind in order to pick out
the features of one word within a sentence or to cope
with changes in the position of a word. So the new
model does not require any qualitatively new atten-
tional apparatus, it just requires it at the level of
letters instead of at the level of words.

A connectionist dilemma

By sharing the recognition apparatus within a level,
the network captures the regularity in the appear-
ance of different instances of the same letter but it
loses the ability to recognize all the letters of a word
in parallel. This illustrates an important dilemma:
If the knowledge is in the connections we can ei-
ther capture the regularity by using a single module
sequentially or we can have parallel recognition by
using many modules at once. McClelland (1986)
describes a clever but imefficient way out of this
dilemma: There is a single central representation
of the knowledge that is copied during recognition
to produce the required parallel recognizers.

Figure 2 suggests an alternative way out. The serial
recognizer could be used to train the parallel, role-
" specific recognizers. A network that time-shares a
serial recognizer already requires role-specific units
for storing its successive outpuis. If these role-
specific units had some connections to the percep-
tual input, they could learn to use these connec-
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Figure 2: Some of the apparatus required to store
the sequence of outputs of a single, sequential let-
ter-recognition madule in order to recognize a word.
The network is “attending” to the second letter of
the word. Notice that the role-specific units do not

need to be able to recognize letters. The apparatus

required for mapping the appropriate part of the in-
put into the letter recognition module is not shown.

tions to predict the outcome of the serial recogni-
tion. The canonical, time-shared representation of
the knowledge would then be acting as a superviser
for the parallel recognition hardware. So the canon-
ical knowledge would be transferred to the parallel

recognition apparatus during learning which is much

less demanding than transferring it during recogni-
tion. The hard part of learning is deciding what
internal representations to use. Once this has been
decided by the serial recognizer, it should be rela-
tively easy to replicate this knowledge.

Method 3: Sharing across levels

There is one limitation of within-level sharing that
is unimportant in the domain of reading but is very

" important in most other domains where the same

knowledge can be applied at many different levels.
For reading the knowledge is quite different at each
level: Knowledge about the shape of a letter is quite
different from knowledge about which sequences of
letters make words, so there is little peint in try-
ing to use the same set of connections to encode
both kinds of knowledge. In most natural domains,
however, wholes and their parts have much in com-
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mon. One example has already been given in which
a room contains a picture that depicts a room. An-
other example is the sentence “Bill was annoyed that
John disliked Mary.” One of the constituents of this
sentence “John disliked Mary” has a lot in common
with the whole sentence. The same kind of knowl-
edge is needed for understanding the constituent as
is needed for understanding the whole. This is also
typical of visual scenes which generally have just as
much richness at every level.

If we consider how to map a part-whole hierarchy
into a finite amount of parallel hardwazre there are
three broad approaches:

1. The fully-parallel model uses a one-to-one map-
ping. Each object in the part-whole hierarchy is
always mapped into the same set of units, and
each set of units is always used to represent the
same object.

2. Within-level sharing uses a many-to-one map-
ping. Many different objects at the same level
can be mapped into the same set of units in the
serial recognition apparatus. But whenever one
of these objects is represented, it is represented
in the same units.

3. Between-level sharing uses a many-to-many
mapping. It allows many different objects at
the same level to be mapped into the same set
of units, but it also allows the same object to
be mapped into different sets of units depend-
ing on the level at which attention is focussed.

The idea that the same type of object might be
mapped to different sets of units is inherent in the
idea of role-specific representations, but the idea
that the very same instance can be represented in
different ways depending of the focus of attention
is a much more radical proposal. It is equivalent
to viewing the hardware as a window that can be
moved up and down (in discrete steps) over the part-
whole hierarchy (see figure 3). One node in the hi-
erarchy is chosen as the current whole and all of the
units in the main network are then devoted to rec-
ognizing and representing this whole. Some units
are used for describing the global properties of the
whole, and others are used for role-specific descrip-
tions of the major comstituents of the whole. The
entire pattern of activity will be called the “Gestalt”
for the current whole.

Figure 3: The solid and dashed lines show two dif-
ferent ways of mapping a part-whole hierarchy (on
the left) into the same connectionist hardware (on
the right). Notice that node D in the hierarchy can
be represented by two totally different activity pat-
terns that have nothing in common.

The crucial property of the moveable window
scheme is that the pattern of activity that repre-
sents the current whole is totally different from the
pattern of activity that represents the very same ob-
ject when it is viewed as being a constituent of some
other whole. In one case the representation occupies
all of the main network and in the other case it is a
role-specific description that occupies only the units
devoted to that role.

The use of a many-to-many mapping raises many
issues that do not arise or are not so important in
the fixed mapping approach:

1. When the mapping between the world and the
network is changed in such a way that one con-
stituent of the previous whole becomes the new
focus of attention, what kind of internal opera-
tions are required to convert the previous, role-
specific description of that constituent into a
full description that occupies the whole of the
main network?

2. How is information about previous (Gestalts
stored so that the network can return to-them
later? The information cannot be stored as
the activity pattern that the network settles to
when the Gestalt is created because the very
same network is needed for creating the n
Gestalt. :

3. How is the next mapping chosen?
There is not space here to address issue 3, but the

following sections give a brief description of one way
of handling issues 1 and 2.
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Moving up and down the part-whole
hierarchy

Figure 4 shows some of the exira apparatus that
might be required to allow a connectionist network
to move down the part-whole hierarchy by expand-
ing a role-specific, reduced description into a full
description of the role-filler. This corresponds to
following a pointer in a conventional implementa-
tion. Notice that it is a slow and cumbersome pro-
cess. Moving back up the hierarchy is more diffi-
cult. First, the full description of a part must be
used to create the appropriate role-specific, reduced
description of that part. This involves using the ap-
paratus of figure 4 in the reverse direction. Then
the role-specific, reduced description must be used
to recreate the earlier full description of which it is
a constituent. This requires some kind of content-
addressable working memory for earlier Gestalts.

The obviocus way to implement this working memory
is to set aside a separate group of “working mem-
ory” units. If it is only necessary to remember one
Gestalt at a time, this group can simply contain a
copy of the pattern of activity in the network where
Gestalts are formed. If several Gestalts need to be
remembered at a time, several different groups could
be used. Alternatively, a single group could be used
provided that the various patterns of activity that
need to be stored are first recoded in such a way
that they can be superimposed without confusing
them with one another. Examples of such encodings
are described by Hinton {1981b) and Touretzky and
Hinton (1985). Touretzky (1986) shows how this
kind of working memory can be used to traverse
and transform tree structures.

An interesting alternative implementation of work-
ing memory uses temporary modifications of the
connection strengths in the network that is used
for creating the Gestalt. Each internal connection
in this network can be given two different weights:
A long-term weight which changes relatively slowly
and a short-term weight which is limited in mag-
nitude, changes rapidly, and spontaneously decays
towards zero. The effective connection strength at
any time is simply the sum of the short-term and
long-term weights. The long-term weights encode
knowledge about which patterns of activity consti-
tute good interpretations of the input to the network
(i.e. familiar or plausible Gestalts). The short-term
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Figure 4: One way of using some additional hard-
ware to allow the network to access the full deserip-
tion of node D from a role-specific reduced desecrip-
tion. Even though the two descriptions correspond
to quite different patterns of activity, their relation-
ship should be non-arbitrary.

weights act as a contextual overlay ¢ that encodes
information about which patterns of activity oc-
curred recently. If the network receives a rich exter-

- pal input which is incompatible with recently occur-

ring Gestalts, it will settle to a new Gestalt and the
short-term weights will act as noise (to which these
networks are very resistant). I, however, parts of
the external input are missing and the remainder
fits some recently cccuring Gestalt, the short-term
weights will favor this Gestalt over other alterna-
tive Gestalts which would fit the partial input just

4Hinton and Plaut (1987) describe a very different use of
this contextual overlay. It can be used to approximately can-
cel out recent changes in the 1ong-term weights, thus allowing
earlier memories to be “deblurred”.
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as well if the short-term weights were not consid-
ered. So the shori-term weights will implement
a content-addressable memory for recent Gestalts,
Simulations (Hinton, 1973, unpublished) show that
short-term weights can be used to allow the network
to return to a partially completed higher-level pro-
cedure after executing a recursive call of the same
procedure. :

Conclusions

The combination of massively parallel constraint-
satisfaction using reduced descriptions and rela-
tively slow sequential access to full descriptions is a
style of computation that is well-suited to networks
of richly connected but rather slow processing ele-
ments. There is an inner loop of parallel, iterative
processing in which the network performs a great
deal of computation by settling into a state that
satisfies constraints that are encoded in the connes-
tions. More elaborate computations which cannot
be performed in a single settling are performed by
a sequence of settlings, and after each settling the
mapping between the world and the network may be
changed. Changing the mapping corresponds to fol-
lowing a pointer (i.e. performing a remote access).

It is tempting to identify each change in the map-
ping between the world and the network with a sin-
gle step in the network’s “train of thought”. This
leads to an interesting view of what happens when
a conscious cognitive process becomes automatic.
Prolonged experience in a2 domain allows the net-

work to develop reduced descriptions that make ex-
plicit the important regularities of the domain (see
Hinton, 1986, for an example). This allows more of
the computation to be done by interactions between
the reduced descriptions, so there is less need to per-
form inherently sequential operations that change
the way in which pieces of the task are mapped onto
the parallel hardware.
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