
Restricted Boltzmann Machines

for Collaborative Filtering

Ruslan Salakhutdinov rsalakhu@cs.toronto.edu
Andriy Mnih amnih@cs.toronto.edu
Geoffrey Hinton hinton@cs.toronto.edu

University of Toronto, 6 King’s College Rd., Toronto, Ontario M5S 3G4, Canada

Abstract

Most of the existing approaches to collab-
orative filtering cannot handle very large
data sets. In this paper we show how a
class of two-layer undirected graphical mod-
els, called Restricted Boltzmann Machines
(RBM’s), can be used to model tabular data,
such as user’s ratings of movies. We present
efficient learning and inference procedures for
this class of models and demonstrate that
RBM’s can be successfully applied to the
Netflix data set, containing over 100 mil-
lion user/movie ratings. We also show that
RBM’s slightly outperform carefully-tuned
SVD models. When the predictions of mul-
tiple RBM models and multiple SVD models
are linearly combined, we achieve an error
rate that is well over 6% better than the score
of Netflix’s own system.

1. Introduction

A common approach to collaborative filtering is to as-
sign a low-dimensional feature vector to each user and
a low-dimensional feature vector to each movie so that
the rating that each user assigns to each movie is mod-
eled by the scalar-product of the two feature vectors.
This means that the N ×M matrix of ratings that N

users assign to M movies is modeled by the matrix
X which is the product of an N × C matrix U whose
rows are the user feature vectors and a C ×M matrix
V ′ whose columns are the movie feature vectors. The
rank of X is C – the number of features assigned to
each user or movie.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

Low-rank approximations based on minimizing the
sum-squared distance can be found using Singular
Value Decomposition (SVD). In the collaborative fil-
tering domain, however, most of the data sets are
sparse, and as shown by Srebro and Jaakkola (2003),
this creates a difficult non-convex problem, so a naive
solution is not going work.1

In this paper we describe a class of two-layer undi-
rected graphical models that generalize Restricted
Boltzmann Machines to modeling tabular or count
data (Welling et al., 2005). Maximum likelihood learn-
ing is intractable in these models, but we show that
learning can be performed efficiently by following an
approximation to the gradient of a different objec-
tive function called “Contrastive Divergence” (Hinton,
2002).

2. Restricted Boltzmann Machines

(RBM’s)

Suppose we have M movies, N users, and integer rat-
ing values from 1 to K. The first problem in applying
RBM’s to movie ratings is how to deal efficiently with
the missing ratings. If all N users rated the same
set of M movies, we could treat each user as a single
training case for an RBM which had M “softmax” vis-
ible units symmetrically connected to a set of binary
hidden units. Each hidden unit could then learn to
model a significant dependency between the ratings of
different movies. When most of the ratings are miss-
ing, we use a different RBM for each user (see Fig.
1). Every RBM has the same number of hidden units,
but an RBM only has visible softmax units for the
movies rated by that user, so an RBM has few connec-
tions if that user rated few movies. Each RBM only
has a single training case, but all of the corresponding

1We describe the details of the SVD training procedure
in section 7.

791

Restricted Boltzmann Machines for Collaborative Filtering

M
is

si
ng

M
is

si
ng

M
is

si
ng

M
is

si
ng

W

h
Binary hidden

......

Visible movie
ratings

features

V

Figure 1. A restricted Boltzmann machine with binary
hidden units and softmax visible units. For each user, the
RBM only includes softmax units for the movies that user
has rated. In addition to the symmetric weights between
each hidden unit and each of the K = 5 values of a soft-
max unit, there are 5 biases for each softmax unit and one
for each hidden unit. When modeling user ratings with
an RBM that has Gaussian hidden units, the top layer is
composed of linear units with Gaussian noise.

weights and biases are tied together, so if two users
have rated the same movie, their two RBM’s must use
the same weights between the softmax visible unit for
that movie and the hidden units. The binary states of
the hidden units, however, can be quite different for
different users. From now on, to simplify the nota-
tion, we will concentrate on getting the gradients for
the parameters of a single user-specific RBM. The full
gradients with respect to the shared weight parameters
can then be obtained by averaging over all N users.

Suppose a user rated m movies. Let V be a K × m

observed binary indicator matrix with vk
i = 1 if the

user rated movie i as k and 0 otherwise. We also let
hj , j = 1, ..., F , be the binary values of hidden (la-
tent) variables, that can be thought of as representing
stochastic binary features that have different values for
different users.

2.1. The Model

We use a conditional multinomial distribution (a “soft-
max”) for modeling each column of the observed
“visible” binary rating matrix V and a conditional
Bernoulli distribution for modeling “hidden” user fea-
tures h (see Fig. 1):

p(vk
i = 1|h) =

exp (bk
i +

∑F
j=1

hjW
k
ij)

∑K

l=1
exp

(

bl
i +

∑F

j=1
hjW

l
ij

)
(1)

p(hj = 1|V) = σ(bj +

m
∑

i=1

K
∑

k=1

vk
i W k

ij) (2)

where σ(x) = 1/(1 + e−x) is the logistic function, W k
ij

is a symmetric interaction parameter between feature
j and rating k of movie i, bk

i is the bias of rating k for
movie i, and bj is the bias of feature j. Note that the
bk
i can be initialized to the logs of their respective base

rates over all users.

The marginal distribution over the visible ratings V

is:

p(V) =
∑

h

exp (−E(V,h))
∑

V
′,h′ exp (−E(V′,h′))

(3)

with an “energy” term given by:

E(V,h) = −

m
∑

i=1

F
∑

j=1

K
∑

k=1

W k
ijhjv

k
i +

m
∑

i=1

log Zi

−
m

∑

i=1

K
∑

k=1

vk
i bk

i −
F

∑

j=1

hjbj (4)

where Zi =
∑K

l=1
exp

(

bl
i +

∑

j hjW
l
ij

)

is the normal-

ization term that ensures that
∑K

l=1
p(vl

i = 1|h) = 1.
The movies with missing ratings do not make any con-
tribution to the energy function.

2.2. Learning

The parameter updates required to perform gradient
ascent in the log-likelihood can be obtained from Eq.
3:

∆W k
ij = ε

∂ log p(V)

∂W k
ij

=

= ε

(

<vk
i hj>data − <vk

i hj>model

)

(5)

where ε is the learning rate. The expectation
<vk

i hj>data defines the frequency with which movie i

with rating k and feature j are on together when the
features are being driven by the observed user-rating
data from the training set using Eq. 2, and <·>model is
an expectation with respect to the distribution defined
by the model. The expectation < ·>model cannot be
computed analytically in less than exponential time.
MCMC methods (Neal, 1993) can be employed to ap-
proximate this expectation. These methods, however,
are quite slow and suffer from high variance in their
estimates.

To avoid computing < ·>model, we follow an approxi-
mation to the gradient of a different objective function

792

Restricted Boltzmann Machines for Collaborative Filtering

called “Contrastive Divergence” (CD) (Hinton, 2002):

∆W k
ij = ε(<vk

i hj>data − <vk
i hj>T) (6)

The expectation < ·>T represents a distribution of
samples from running the Gibbs sampler (Eqs. 1,2),
initialized at the data, for T full steps. T is typi-
cally set to one at the beginning of learning and in-
creased as the learning converges. By increasing T

to a sufficiently large value, it is possible to approx-
imate maximum likelihood learning arbitrarily well
(Carreira-Perpinan & Hinton, 2005), but large values
of T are seldom needed in practice. When running the
Gibbs sampler, we only reconstruct (Eq. 1) the distri-
bution over the non-missing ratings. The approximate
gradients of CD with respect to the shared weight pa-
rameters of Eq. 6 can be then be averaged over all N

users.

It was shown (Hinton, 2002) that CD learning is quite
efficient and greatly reduces the variance of the es-
timates used for learning. The learning rule for the
biases is just a simplified version of Eq. 6.

2.3. Making Predictions

Given the observed ratings V, we can predict a rating
for a new query movie q in time linear in the number
of hidden units:

p(vk
q = 1|V) ∝

∑

h1,...,hp

exp(−E(vk
q ,V,h)) (7)

∝ Γk
q

F
∏

j=1

∑

hj∈{0,1}

exp
(

∑

il

vl
ihjW

l
ij + vk

q hjW
k
qj + hjbj

)

= Γk
q

F
∏

j=1

(

1 + exp
(

∑

il

vl
iW

l
ij + vk

q W k
qj + bj

)

)

where Γk
q = exp (vk

q bk
q). Once we obtain unnormalized

scores, we can either pick the rating with the maximum
score as our prediction, or perform normalization over
K values to get probabilities p(vq = k|V) and take
the expectation E[vq] as our prediction. The latter
method works better.

When asked to predict ratings for n movies q1, q2,...,
qn, we can also compute

p(vk1

q1
= 1, vk2

q2
= 1, ..., vkn

qn
= 1|V) (8)

This, however, requires us to make Kn evaluations for
each user.

Alternatively, we can perform one iteration of the
mean field updates to get the probability distribution

over K ratings for a movie q:

p̂j = p(hj = 1|V) = σ(bj +

m
∑

i=1

K
∑

k=1

vk
i W k

ij) (9)

p(vk
q = 1|p̂) =

exp (bk
q +

∑F

j=1
p̂jW

k
qj)

∑K

l=1
exp

(

bl
q +

∑F

j=1
p̂jW

l
qj

)
(10)

and take an expectation as our prediction. In our expe-
rience, Eq. 7 makes slightly more accurate predictions,
although one iteration of the mean field equations is
considerably faster. We use the mean field method in
the experiments described below.

3. RBM’s with Gaussian Hidden Units

We can also model “hidden” user features h as Gaus-
sian latent variables (Welling et al., 2005). This model
represents an undirected counterpart of pLSI (Hof-
mann, 1999):

p(vk
i = 1|h) =

exp (bk
i +

∑

F

j=1
hjW k

ij)

∑

K

l=1
exp

(

bl
i
+
∑

F

j=1
hjW l

ij

)

p(hj = h|V) = 1√
2πσj

exp

(

−

(

h−bj−σj

∑

ik
vk

i W k
ij

)

2

2σ2

j

)

where σ2
j is the variance of the hidden unit j.

The marginal distribution over visible units V is given
by Eq. 3. with an energy term:

E(V,h) = −
∑

ijk

W k
ijhjv

k
i +

∑

i

log Zi

−
∑

ik

vk
i bk

i +
∑

j

(hj − bj)
2

2σ2
j

(11)

We fix variances at σ2
j = 1 for all hidden units j, in

which case the parameter updates are the same as de-
fined in Eq. 6.

4. Conditional RBM’s

Suppose that we add w to each of the K weights from
the K possible ratings to each hidden feature and we
subtract w from the bias of the hidden feature. So long
as one of the K ratings is present, this does not have
any effect on the behaviour of the hidden or visible
units because the “softmax” is over-parameterized. If,
however, the rating is missing, there is an effect of −w

on the total input to the hidden feature. So by using
the over-parametrization of the softmax, the RBM can
learn to use missing ratings to influence its hidden fea-
tures, even though it does not try to reconstruct these

793

Restricted Boltzmann Machines for Collaborative Filtering

M
is

si
ng

M
is

si
ng

M
is

si
ng

M
is

si
ng

W

Binary hidden

......

features

V

...
...

h

r

ratings
movie
Visible

D

Figure 2. Conditional RBM. The binary vector r, indi-
cating rated/unrated movies, affects binary states of the
hidden units.

missing ratings and it does not perform any computa-
tions that scale with the number of missing ratings.

There is a more subtle source of information in the
Netflix database that cannot be captured by the “stan-
dard” multinomial RBM. Netflix tells us in advance
which user/movie pairs occur in the test set, so we
have a third category: movies that were viewed but
for which the rating is unknown. This is a valuable
source of information about users who occur several
times in the test set, especially if they only gave a
small number of ratings in the training set. If, for ex-
ample, a user is known to have rated “Rocky 5”, we
already have a good bet about the kinds of movies he
likes.

The conditional RBM model takes this extra informa-
tion into account. Let r ∈ {0, 1}M be a binary vec-
tor of length M (total number of movies), indicating
which movies the user rated (even if these ratings are
unknown). The idea is to define a joint distribution
over (V,h) conditional on r. In the proposed condi-
tional model, a vector r will affect the states of the
hidden units (see Fig. 2):

p(vk
i = 1|h) =

exp (bk
i +

∑F

j=1
hjW

k
ij)

∑K

l=1
exp

(

bl
i +

∑F

j=1
hjW

l
ij

)

p(hj = 1|V, r) = σ

(

bj +

m
∑

i=1

K
∑

k=1

vk
i W k

ij +

M
∑

i=1

riDij

]

)

where Dij is an element of a learned matrix that mod-
els the effect of r on h. Learning D using CD is similar

to learning biases and takes the form:

∆Dij = ε

(

<hj>data − <hj>T

)

ri (12)

We could instead define an arbitrary nonlinear func-
tion f(r|θ). Provided f is differentiable with respect
to θ, we could use backpropagation to learn θ:

∆θ = ε

(

<hj>data − <hj>T

)

∂f(r|θ)

∂θ
(13)

In particular, f(r|θ) can be parameterized as a multi-
layer neural network.

Conditional RBM models have been successfully used
for modeling temporal data, such as motion cap-
ture data (Taylor et al., 2006), or video sequences
(Sutskever & Hinton, 2006). For the Netflix task, con-
ditioning on a vector of rated/unrated movies proves
to be quite helpful – it significantly improves perfor-
mance.

Instead of using a conditional RBM, we can impute
the missing ratings from the ordinary RBM model.
Suppose a user rated a movie t, but his/her rating is
missing (i.e. it was provided as a part of the test set).
We can initialize vt to the base rate of movie t, and
compute the gradient of the log-probability of the data
with respect to this input (Eq. 3). The CD learning
takes form:

∆vk
t = ε

(

<
∑

j

W k
t hj>data − <

∑

j

W k
t hj>T

)

After updating vk
t , for k = 1, ..,K, vk

t are renormalized
to obtain probability distribution over K values. The
imputed values vt will now contribute to the energy
term of Eq. 4 and will affect the states of the hidden
units. Imputing missing values by following an ap-
proximate gradient of CD works quite well on a small
subset of the Netflix data set, but is slow for the com-
plete data set. Alternatively, we can use a set of mean
field equations Eqs. 9, 10 to impute the missing val-
ues. The imputed values will be quite noisy, especially
at the early stages of training. Nevertheless, in our
experiments, the model performance was significantly
improved by using imputations and was comparable to
the performance of the conditional RBM.

5. Conditional Factored RBM’s

One disadvantage of the RBM models we have de-
scribed so far is that their current parameterization of
W ∈ RM×K×F results in a large number of free param-
eters. In our current implementation, with F = 100

794

Restricted Boltzmann Machines for Collaborative Filtering

0 5 10 15 20 25 30 35 40 45 50
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

Epochs

R
M

S
E

RBM

RBM with Gaussian
hidden units

CD T=3
Start Start Start

CD T=5 CD T=9

Netflix Score

0 5 10 15 20 25 30 35 40 45 50
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Epochs

R
M

S
E

RBM

Conditional
RBM

CD T=3 CD T=5

0 5 10 15 20 25 30 35 40 45 50
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Epochs

R
M

S
E Conditional

RBM

Conditional
Factored
RBM

CD T=3 CD T=5 CD T=9

Figure 3. Performance of various models on the validation data. Left panel: RBM vs. RBM with Gaussian hidden
units. Middle panel: RBM vs. conditional RBM. Right panel: conditional RBM vs. conditional factored RBM. The
y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs, or passes through the entire
training dataset.

(the number of hidden units), M = 17770, and K = 5,
we end up with about 9 million free parameters. By
using proper weight-decay to regularize the model, we
are still able to avoid serious overfitting. However, if
we increase the number of hidden features or the num-
ber of movies,2 learning this huge parameter matrix
W becomes problematic. Reducing the number of free
parameters by simply reducing the number of hidden
units does not lead to a good model because the model
cannot express enough information about each user in
its hidden state.

We address this problem by factorizing the parameter
matrix W into a product of two lower-rank matrices
A and B. In particular:

W k
ij =

C
∑

c=1

Ak
icBcj (14)

where typically C � M and C � F . For example,
setting C = 30, we reduce the number of free parame-
ters by a factor of three. We call this model a factored
RBM. Learning matrices A and B is quite similar to
learning W of Eq. 6:

∆Ak
ic = ε

(

<
[

∑

j

Bcjhj

]

vk
i >data −

<
[

∑

j

Bcjhj

]

vk
i >T

)

∆Bcj = ε

(

<
[

∑

ik

Ak
icv

k
i

]

hj>data −

<
[

∑

ik

Ak
icv

k
i

]

hj>T

)

2Netflix’s own database contains about 65000 movie ti-
tles.

In our experimental results section we show that a con-
ditional factored RBM converges considerably faster
than a conditional unfactored RBM.

6. Experimental Results

6.1. Description of the Netflix Data

According to Netflix, the data were collected between
October, 1998 and December, 2005 and represent the
distribution of all ratings Netflix obtained during this
period. The training data set consists of 100,480,507
ratings from 480,189 randomly-chosen, anonymous
users on 17,770 movie titles. As part of the training
data, Netflix also provides validation data, containing
1,408,395 ratings. In addition to the training and vali-
dation data, Netflix also provides a test set containing
2,817,131 user/movie pairs with the ratings withheld.
The pairs were selected from the most recent ratings
from a subset of the users in the training data set,
over a subset of the movies. To reduce the uninten-
tional fine-tuning on the test set that plagues many
empirical comparisons in the machine learning litera-
ture, performance is assessed by submitting predicted
ratings to Netflix who then post the root mean squared
error (RMSE) on an unknown half of the test set. As a
baseline, Netflix provided the score of its own system
trained on the same data, which is 0.9514.

6.2. Details RBM Training

We train the RBM with F = 100, and the condi-
tional factored RBM with F = 500, and C = 30.
To speed-up the training, we subdivided the Netflix
dataset into small mini-batches, each containing 1000
cases (users), and updated the weights after each mini-
batch. All models were trained for between 40 and 50
passes (epochs) through the entire training dataset.

795

Restricted Boltzmann Machines for Collaborative Filtering

The weights were updated using a learning rate of
0.01/batch-size, momentum of 0.9, and a weight de-
cay of 0.001. The weights were initialized with small
random values sampled from a zero-mean normal dis-
tribution with standard deviation 0.01. CD learning
was started with T = 1 and increased in small steps
during training.

6.3. Results

We compare different models based on their perfor-
mance on the validation set. The error that Netflix
reports on the test set is typically larger than the er-
ror we get on the validation set by about 0.0014. When
the validation set is added to the training set, RMSE
on the test set is typically reduced by about 0.005.

Figure 3 (left panel) shows performance of the RBM
and the RBM with Gaussian hidden units. The y-
axis displays RMSE, and the x-axis shows the number
of epochs. Clearly, the nonlinear model substantially
outperforms its linear counterpart. Figure 3 (middle
panel) also reveals that conditioning on rated/unrated
information significantly improves model performance.
It also shows (right panel) that, when using a condi-
tional RBM, factoring the weight matrix leads to much
faster convergence.

7. Singular Value Decomposition (SVD)

SVD seeks a low-rank matrix X = UV ′, where U ∈
RN×C and V ∈ RM×C , that minimizes the sum-
squared distance to the fully observed target matrix
Y . The solution is given by the leading singular vec-
tors of Y . In the collaborative filtering domain, most
of the entries in Y will be missing, so the sum-squared
distance is minimized with respect to the partially ob-
served entries of the target matrix Y . Unobserved en-
tries of Y are then predicted using the corresponding
entries of X.

Let X = UV ′, where U ∈ RN×C and V ∈ RM×C de-
note the low-rank approximation to the partially ob-
served target matrix Y ∈ RN×M . Matrices U and
V are initialized with small random values sampled
from a zero-mean normal distribution with standard
deviation 0.01. We minimize the following objective
function:

f =

N
∑

i=1

M
∑

j=1

Iij

(

uivj

′ − Yij

)2

+λ
∑

ij

Iij

(

‖ ui ‖
2
Fro + ‖ vj ‖

2
Fro

)

(15)

where ‖ · ‖2Fro denotes the Frobenius norm, and Iij is

0 5 10 15 20 25 30 35 40 45
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Epochs

R
M

S
E SVD

Conditional
Factored
RBM

SVD

CD T=3

Figure 4. Performance of the conditional factored RBM
vs. SVD with C = 40 factors. The y-axis displays
RMSE (root mean squared error), and the x-axis shows
the number of epochs, or passes through the entire train-
ing dataset.

the indicator function, taking on value 1 if user i rated
movie j, and 0 otherwise. We then perform gradient
descent in U and V to minimize the objective function
of Eq. 15.

To speed-up the training, we subdivided the Netflix
data into mini-batches of size 100,000 (user/movie
pairs), and updated the weights after each mini-batch.
The weights were updated using a learning rate of
0.005, momentum of 0.9, and regularization parameter
λ = 0.01. Regularization, particularly for the Netflix
dataset, makes quite a significant difference in model
performance. We also experimented with various val-
ues of C and report the results with C = 40, since it
resulted in the best model performance on the valida-
tion set. Values of C in the range of [20, 60] also give
similar results.

We compared the conditional factored RBM with
an SVD model (see Fig. 4). The conditional fac-
tored RBM slightly outperforms SVD, but not by
much. Both models could potentially be improved by
more careful tuning of learning rates, batch sizes, and
weight-decay. More importantly, the errors made by
various versions of the RBM are significantly different
from the errors made by various versions of SVD, so
linearly combining the predictions of several different
versions of each method, using coefficients tuned on
the validation data, produces an error rate that is well
over 6% better than the Netflix’s own baseline score.

796

Restricted Boltzmann Machines for Collaborative Filtering

8. Future extensions

There are several extensions to our model that we are
currently pursuing.

8.1. Learning Autoencoders

An alternative way of using an RBM is to treat this
learning as a pretraining stage that finds a good re-
gion of the parameter space (Hinton & Salakhut-
dinov, 2006). After pretraining, the RBM is “un-
rolled” as shown in figure 5 to create an autoencoder
network in which the stochastic activities of the bi-
nary “hidden” features are replaced by deterministic,
real-valued probabilities. Backpropagation, using the
squared error objective function, is then used to fine-
tune the weights for optimal reconstruction of each
user’s ratings. However, overfitting becomes an issue
and more careful model regularization is required.

8.2. Learning Deep Generative Models

Recently, (Hinton et al., 2006) derived a way to per-
form fast, greedy learning of deep belief networks one
layer at a time, with the top two layers forming an
undirected bipartite graph which acts as an associa-
tive memory.

The learning procedure consists of training a stack of
RBM’s each having only one layer of latent (hidden)
feature detectors. The learned feature activations of
one RBM are used as the “data” for training the next
RBM in the stack.

An important aspect of this layer-wise training proce-
dure is that, provided the number of features per layer
does not decrease, each extra layer increases a lower
bound on the log probability of data. So layer-by-layer
training can be recursively applied several times3 to
learn a deep, hierarchical model in which each layer
of features captures strong high-order correlations be-
tween the activities of features in the layer below.

Learning multi-layer models has been successfully ap-
plied in the domain of dimensionality reduction (Hin-
ton & Salakhutdinov, 2006), with the resulting mod-
els significantly outperforming Latent Semantic Anal-
ysis, a well-known document retrieval method based
on SVD (Deerwester et al., 1990). It has also been
used for modeling temporal data (Taylor et al., 2006;
Sutskever & Hinton, 2006) and learning nonlinear em-
beddings (Salakhutdinov & Hinton, 2007). We are
currently exploring this kind of learning for the Net-
flix data. For classification of the MNIST digits,

3In fact, one can proceed learning recursively for as
many layers as desired.

WT

W

r

Squared Error
Backpropagate

D

Figure 5. The “unrolled” RBM used to create an autoen-
coder network which is then fine-tuned using backpropa-
gation of error derivatives.

deep networks reduce the error significantly (Hinton
& Salakhutdinov, 2006) and our hope is that they will
be similarly helpful for the Netflix data.

9. Summary and Discussion

We introduced a class of two-layer undirected graph-
ical models (RBM’s), suitable for modeling tabular
or count data, and presented efficient learning and
inference procedures for this class of models. We
also demonstrated that RBM’s can be successfully ap-
plied to a large dataset containing over 100 million
user/movie ratings.

A variety of models have recently been proposed for
minimizing the loss corresponding to a specific prob-
abilistic model (Hofmann, 1999; Canny, 2002; Marlin
& Zemel, 2004). All these probabilistic models can
be viewed as graphical models in which hidden factor
variables have directed connections to variables that
represent user ratings. Their major drawback(Welling
et al., 2005) is that exact inference is intractable due
to explaining away, so they have to resort to slow or
inaccurate approximations to compute the posterior
distribution over hidden factors.

Instead of constraining the rank or dimensionality of
the factorization X = UV ′, i.e. the number of factors,
(Srebro et al., 2004) proposed constraining the norms
of U and V . This problem formulation termed “Max-
imum Margin Matrix Factorization” could be seen as
constraining the overall “strength” of factors rather
than their number. However, learning MMMF re-
quires solving a sparse semi-definite program (SDP).
Generic SDP solvers run into difficulties with more
than about 10,000 observations (user/movie pairs), so

797

Restricted Boltzmann Machines for Collaborative Filtering

direct gradient-based optimization methods have been
proposed in an attempt to make MMMF scale up to
larger problems. The Netflix data set, however, con-
tains over 100 million observations and none of the
above-mentioned approaches can easily deal with such
large data sets.

Acknowledgments

We thank Vinod Nair, Tijmen Tieleman and Ilya
Sutskever for many helpful discussions. We thank Net-
flix for making such nice data freely available and for
providing a free and rigorous model evaluation service.

References

Canny, J. F. (2002). Collaborative filtering with pri-
vacy via factor analysis. SIGIR (pp. 238–245).
ACM.

Carreira-Perpinan, M., & Hinton, G. (2005). On
contrastive divergence learning. 10th Int. Work-
shop on Artificial Intelligence and Statistics (AIS-
TATS’2005).

Deerwester, S. C., Dumais, S. T., Landauer, T. K.,
Furnas, G. W., & Harshman, R. A. (1990). Indexing
by latent semantic analysis. Journal of the American
Society of Information Science, 41, 391–407.

Hinton, & Salakhutdinov (2006). Reducing the dimen-
sionality of data with neural networks. Science, 313.

Hinton, G. E. (2002). Training products of experts by
minimizing contrastive divergence. Neural Compu-
tation, 14, 1711–1800.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554.

Hofmann, T. (1999). Probabilistic latent semantic
analysis. Proceedings of the 15th Conference on Un-
certainty in AI (pp. 289–296). San Fransisco, Cali-
fornia: Morgan Kaufmann.

Marlin, B., & Zemel, R. S. (2004). The multiple mul-
tiplicative factor model for collaborative filtering.
Machine Learning, Proceedings of the Twenty-first
International Conference (ICML 2004), Banff, Al-
berta, Canada, July 4-8, 2004. ACM.

Neal, R. M. (1993). Probabilistic inference using
Markov chain Monte Carlo methods (Technical Re-
port CRG-TR-93-1). Department of Computer Sci-
ence, University of Toronto.

Salakhutdinov, R., & Hinton, G. E. (2007). Learning a
nonlinear embedding by preserving class neighbour-
hood structure. AI and Statistics.

Srebro, N., & Jaakkola, T. (2003). Weighted low-rank
approximations. Machine Learning, Proceedings
of the Twentieth International Conference (ICML
2003), August 21-24, 2003, Washington, DC, USA
(pp. 720–727). AAAI Press.

Srebro, N., Rennie, J. D. M., & Jaakkola, T. (2004).
Maximum-margin matrix factorization. Advances in
Neural Information Processing Systems.

Sutskever, I., & Hinton, G. E. (2006). Learn-
ing multilevel distributed representations for high-
dimensional sequences (Technical Report UTML
TR 2006-003). Dept. of Computer Science, Univer-
sity of Toronto.

Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2006).
Modeling human motion using binary latent vari-
ables. Advances in Neural Information Processing
Systems. MIT Press.

Welling, M., Rosen-Zvi, M., & Hinton, G. (2005). Ex-
ponential family harmoniums with an application
to information retrieval. NIPS 17 (pp. 1481–1488).
Cambridge, MA: MIT Press.

798

