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Abstract

An autoencoder network uses a set of recognition weights to convert an input vector

into a representation vector. It then uses a set of generative weights to convert the rep-

resentation vector into an approximate reconstruction of the input vector. We derive an

objective function for training autoencoders based on the Minimum Description Length

(MDL) principle. The aim is to minimize the information required to describe both

the representation vector and the reconstruction error. This information is minimized

by choosing representation vectors stochastically according to a Boltzmann distribution.

Unfortunately, if the representation vectors use distributed representations, it is exponen-

tially expensive to compute this Boltzmann distribution because it involves all possible

representation vectors. We show that the recognition weights of an autoencoder can be

used to compute an approximation to the Boltzmann distribution. This approximation

corresponds to using a suboptimal encoding scheme and therefore gives an upper bound

on the minimal description length. Even when this bound is poor, it can be used as

a Lyapunov function for learning both the generative and the recognition weights. We

demonstrate that this approach can be used to learn distributed representations in which

many di�erent hidden causes combine to produce each observed data vector. Such rep-

resentations can be exponentially more e�cient in their use of hardware than standard

vector quantization or mixture models.
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1 Introduction

The goal of unsupervised neural network learning procedures is to capture the structure un-

derlying a set of observations. A natural approach to this problem is to view the observations

as samples drawn from a stochastic generative model whose behavior is controlled by a set of

parameters. The goal of the learning is then to discover parameter values that maximize the

probability of producing the observations by repeated drawings from the generative model.

Generative models may contain latent variables that are not directly observed. Di�erent

settings of these latent variables allow the same observation to be generated in di�erent

ways and all of these possible representations of an observation must be taken into account

when computing how changes in the parameters a�ect the likelihood of the data. In a mixture

model, the latent variables are booleans and exactly one of them is turned on when generating

an observation. The number of possible representations is therefore equal to the number of

latent variables and it is tractable to explicitly consider all possible representations of each

observation. Unfortunately, mixture models are an exponentially ine�cient way to represent

the structure of the data if each observation is really generated by the combined e�ects of

multiple simultaneous underlying causes. In such cases we need to �t generative models in

which many of the latent variables can be turned on simultaneously. But then each observation

has exponentially many possible distributed representations so it appears to be intractable to

perform maximum likelihood �tting of the model's parameters.

Although maximum likelihood �tting is intractable for generative models that use distributed

representations, we demonstrate an e�ective method of �tting these models to data using a

Minimum Description Length (MDL) approach.
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2 The Minimum Description Length Approach

Inspired by the algorithmic notion of complexity [1,2,3] as well as Akaike's work [4], Rissanen

[5] proposed the description length of some observed data under competing models as a

criterion to select between models. The essence of the MDL principle is that the best model

of the data is the one that minimizes the summed length of the description of the data with

respect to the model and the description of the parameters of the model. Intuitively, this

can be thought of as a tradeo� between the succinctness of the model and its accuracy. To

apply the principle, one decides in advance on a class of models, including a way of coding

their parameters, and then searches within this class for parameters that minimize the total

description length. The approach is interesting when the class of models is quite broad and

the search is nevertheless tractable.

MDL can be formulated based on a communication game, in which a sender observes the

data and must then communicate them to a receiver. Assuming that the data samples are

quantized, we can ask how many bits must be sent to allow the receiver to reconstruct all the

data perfectly using a model. Autoencoders arise when we restrict ourselves to generative

models in which the latent variables are boolean and many of them combine to produce each

observed vector. For an autoencoder, it is convenient to divide the total description length

into three terms. An input vector is communicated to the receiver by sending the activities of

the hidden units and the residual di�erences between the true input vector and the one that

can be reconstructed from the hidden activities. There is a representation cost for the hidden

activities and a reconstruction cost for the residual errors. In addition there is a one-time

model cost for communicating the weights that are required to convert the hidden activities

into the output of the net. The model cost is generally very important within the MDL

framework, but in this paper we will ignore it and focus instead on the tradeo� between the

representation cost and the reconstruction cost. In e�ect, we are considering the limit in

which the model cost is negligible because the complexity of the models we are willing to

consider is small compared with the amount of data.
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Several important aspects of this formulation should be emphasized. First, the communication

game is only a device that we use to derive an MDL objective function which can be used to

train the neural network. Our goal is to develop a good generative model of a data set and

we are not actually interested in communicating the data. Second, the network may have

an arbitrary number of layers between the input and representation layers, and between the

representation and output layers. In the rest of this paper, we refer to the network as if it

only contains these three layers, but the formulation also applies to deeper networks.

2.1 Coding the residual errors

When the input vector is reconstructed from the representation that has been communicated,

there will generally be residual errors and to achieve lossless communication these errors must

also be communicated. In order to count the number of bits required to send the value, xi;c, of

component i of residual error vector c we must encode this value as a bit string. If the sender

and the receiver have already agreed on a probability distribution that assigns a probability

p(x) to each possible quantized value, x, Shannon's coding theorem implies that x can be

communicated at a cost that is bounded below by � log p(x) bits. Moreover, by using block

coding techniques we can get arbitrarily close to this bound so we shall treat it as the true cost.

For coding residual errors to within a quantization width of t it is often convenient to assume

a Gaussian probability distribution with mean zero and standard deviation �. Provided that

� is large compared with t, the probability mass of a strip of width t under a Gaussian can

be approximated by the product of the strip's width and height. The cost of coding the value

x is therefore:

C � � log
t

p
2��

e
�

x
2

2�2 = � log t + log
p
2�� + x

2
=2�2 (1)

To minimize this cost summed over the training set, �2 should be equal to the variance of

x. For large training sets the additional cost of communicating the optimal value of � is

negligible, especially if we use the same value of � for all the components of the residual error

5



vector.

2.2 Ignoring the Representation Cost

An incorrect but very simple way of handling the representation cost is to ignore it. From

an MDL perspective this is what is done in several familiar learning procedures and it is a

reasonable approach if we place some restriction on the hidden layer that limits its represen-

tational capacity. Since we are also ignoring the model cost and coding the residual errors

using a Gaussian, the full MDL framework then reduces to simply minimizing the squared

reconstruction error.

An obvious restriction to place on the hidden layer is to use only m hidden units. If all of the

units are linear, an autoencoder will then perform a version of principal components analysis.

More precisely, the weight vectors of the m hidden units will span the same space as the �rst

m principal components of the ensemble of input vectors. If additional layers of non-linear

hidden units are introduced, the autoencoder will be an interesting non-linear generalization

of principal components analysis.

A di�erent restriction is to use a winner-take-all competition among the hidden units so that

the one with the greatest input has an activity of 1 and the remainder have activities of 0.

Even if the number of hidden units is large and they all win equally often, it will take at

most logm bits on average to communicate the winner of the competition. When using a

winner-take-all non-linearity it is usually more convenient to replace standard sigmoid units

with radial units that compute the squared Euclidean distance between the input vector and

the unit's weight vector. The winner is then the unit whose weight vector is closest to the

input vector. This is called a vector quantizer because the input vectors are quantized into

m clusters.

If we constrain the incoming and outgoing weight vectors of a radial hidden unit to be identical,

backpropagation in an autoencoder is exactly equivalent to the version of competitive learning
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(or vector quantization or clustering) in which the incoming weights of the winning hidden

unit are moved towards the input vector by an amount proportional to the Euclidean distance

between the two. When we backpropagate through the winner-take-all non-linearity, the

gradient of the non-linear function is zero if the winner does not change and in�nite if it does,

but when the winner changes there is no e�ect on the squared error because the new winner is

exactly the same distance from the input vector. So there is never any error derivative for the

input-to-hidden weights and they only change because they are tied to the hidden-to-output

weights. Unfortunately, if there is more than one winner of the competition at a time, the

error-derivatives of the input-to-hidden weights become in�nite so gradient methods cannot

be used.

Most of the unsupervised learning algorithms that have been suggested for neural networks

can be seen as variations of either vector quantization or principal components analysis, so it

is interesting that both these algorithms can be implemented in an autoencoder. It suggests

that autoencoders may also be able to implement new algorithms that combine the best

aspects of both. Vector quantization is powerful because it uses a very non-linear mapping

from the input vector to the representation but weak because the representation is purely

local. For the representation to contain an average of N bits of information about the input,

there must be at least 2N hidden units. Conversely, principal components analysis is weak

because the mapping is linear but powerful because the representation is distributed over

all the hidden units so the number of e�ectively di�erent representations is exponential in

the number of hidden units. Autoencoders that use binary hidden units should be able to

combine distributed representations with a non-linear mapping. Moreover, if the hidden

units are stochastic the autoencoder should be able to represent a probability distribution

over representations, rather than just a single speci�c representation for each input vector.

To see why it is important to have a probability distribution over representations, and to

derive an appropriate objective function for training such networks we must �rst introduce

the concept of stochastic complexity.
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2.3 Coding Stochastic Representations

The description length of an input vector using a particular representation is the sum of the

representation cost and reconstruction cost. We de�ne this to be the energy of the represen-

tation, for reasons that will become clear later. If the prior probability of representation i is

�i and its squared reconstruction error is x2i the energy of the representation is

Ei = � log �i � k log t + k log
p
2�� +

x
2

i

2�2
(2)

where k is the dimensionality of the input vector, �2 is the variance of the �xed Gaussian

used for encoding the reconstruction errors and t is the quantization width.

Now consider the following situation: For a given input vector, two of the representations are

equally good in the sense that they have equal energies. It may seem that we gain no advantage

from having two equally good representations. We have to send some representation, so cold

logic dictates that only the lowest energy representation is relevant. However, the fact that

we have a choice of two representations should be worth something. It does not matter which

representation we use so if we are vague about the choice of representation we should be able

to save one bit when communicating the representation.

To make this argument precise consider the following communication game: In addition

to communicating some input vectors, the sender must also communicate some additional

unrelated information. This information has already been expressed as a bit string that

cannot be further compressed, so it can be viewed as a string of random bits. Instead of �rst

communicating the input vectors and then communicating the random bit string, the sender

combines the two into a single message. Clearly, the description length of the input vectors

is the total message length minus the length of the random bit string.

When confronted with two equally good representations of an input vector, the sender looks

at the next bit in the random bit string and uses its value to choose one of the two. She

then sends the chosen representation and its reconstruction error which costs a number of bits
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equal to the energy, E, of that representation of the input. The receiver �rst uses this message

to reconstruct the input vector. Then he applies the very same method as the sender used

to arrive at a choice of representations. The receiver now knows what the sender's choices

were, and because he also knows what representation the sender actually chose he can infer

what value the next random bit must have had. So even though E bits were actually sent,

the description length attributable to the input vector is only E � 1 bits.�

More generally, if each of the possible representations has energy Ei and if the sender picks

representations with probability pi the expected message length will be
P

i piEi. The expected

number of bits required to pick one representation is just the entropy of the probability dis-

tribution �
P

i pi log pi and since these random bits are also communicated we must subtract

o� the entropy in order to get the description length attributable to the input vector

F =
X
i

piEi +
X
i

pi log pi (3)

Note that F has exactly the form of a Helmholtz free energy. The advantage of the slightly

baroque \bits-back" argument is that it allows us to give an MDL interpretation to the indi-

vidual terms within the Helmholtz free energy. The free energy captures the tradeo� between

the goodness of an explanation of the data and the number of alternative explanations. The

probability distribution which minimizes F is

pi =
e
�EiP
j e

�Ej

(4)

The idea that a stochastic choice of representations is more e�cient than just choosing the

representation with the smallest value of E is an example of the concept of stochastic com-

plexity [6] and can also be derived in other ways.

�The fact that the receiver needs to be able to reproduce the sender's probability distribution across the

alternative representations for a given input vector suggests that the recognition weights must be communicated

to the receiver. It is su�cient, however, to send only the generative weights. The receiver can discover the

recognition weights by �rst reconstructing all of the input vectors for the entire training set and then running

whatever learning procedure was used by the sender. So when the model cost is taken into account, only the

generative weights need to be simple.

9



We illustrate the idea of stochastic complexity by applying it to a vector quantizer. In a

standard vector quantizer, each input vector is represented by activating the hidden unit

whose weight vector is closest to the input vector and the cost of communicating this winner,

i, is �log�i where �i is the fraction of the whole training set for which i is the winner. In a

\stochastic vector quantizer" we de�ne the energy of hidden unit i using Eq. 2 and choose

hidden units stochastically according to Eq. 4. The probability distribution across hidden

units is then exactly the same as for a mixture of Gaussians model:

pi =
�ie

�x2
iP

j �je
�x2

j

(5)

Using this distribution, the free energy in Eq. 3 is equal to the negative log probability of the

data under the mixture of Gaussians model.

The concept of stochastic complexity is unnecessarily complicated if we are only interested

in �tting a mixture of Gaussians. Instead of thinking in terms of a stochastically chosen

representation plus a reconstruction error, we can simply use Shannon's coding theorem

directly by assuming that we code the input vectors using the mixture of Gaussians probability

distribution. However, when we start using more complicated coding schemes in which the

input is reconstructed from the activities of several di�erent hidden units, the formulation in

terms of F is much easier to work with because it liberates us from the constraint that the

probability distribution over representations must be the optimal one. There is generally no

e�cient way of computing the optimal distribution, but it is nevertheless possible to use F

with a suboptimal distribution as a Lyapunov function for learning [7]. In MDL terms we are

simply using a suboptimal coding scheme in order to make the computation tractable.

One particular class of suboptimal distributions is very attractive for computational reasons.

In a factorial distribution the probability distribution over md alternatives factors into d in-

dependent distributions over m alternatives. Because they can be represented compactly,

factorial distributions can be computed conveniently by a non-stochastic feed-forward recog-

nition network.
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3 Factorial Stochastic Vector Quantization

Instead of coding the input vector by a single, stochastically chosen hidden unit, we could use

several di�erent pools of hidden units and stochastically pick one unit in each pool. All of the

selected units within the di�erent pools are then used to reconstruct the input. This amounts

to using several di�erent stochastic vector quantizersy which cooperate to reconstruct the

input. The number of possible distributed representations is md where d is the number of

vector quantizers and m is the number of units within a vector quantizer.

The weights from the hidden units to the output units determine what output is produced

by each possible distributed representation. Once these weights are �xed, they determine the

reconstruction error that would be caused by using a particular distributed representation.

If the prior probabilities of each representation are also �xed, Eq. 4 de�nes the optimal

probability distribution over distributed representations, where the index j now ranges over

the md possible representations.

Computing the correct distribution requires an amount of work that is exponential in d, so

we restrict ourselves to the suboptimal distributions that can be factored into d independent

distributions, one for each vector quantizer. The fact that the posterior distributions within

the di�erent vector quantizers are not really independent given the input will not lead to

major problems as it does in mean �eld approximations of Boltzmann machines [8]. It will

simply lead to an overestimate of the description length but this overestimate can still be used

as a bound when learning the weights. Also the excess bits caused by the non-independence

will force the generative weights towards values that cause the correct distribution to be

approximately factorial.

yInstead of using radial units that compute a Euclidean distance within each vector quantizer, we used

units that compute a scalar product. This is combined with a bias term to yield the energy that is used in Eq.

4 for normalizing the hidden activities within one vector quantizer.
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3.1 Computing the Expected Representation Cost

Since the stochastic choices within the d vector quantizers are independent given the input,

the expected representation cost for a given input vector is just the sum of d separate costs.

For stochastic vector quantizer v, we assume that the sender communicates which unit, i,

was chosen by coding the choice relative to the frequency, �vi , with which that unit is chosen

over the whole training set. If the probability of picking unit i in vector quantizer v is pvi , the

expected representation cost is

Expected representation cost =
X
v

X
i�v

 
p
v
i log

1

�vi

� p
v
i log

1

pvi

!
(6)

The �rst term inside the summations corresponds to the number of bits required to commu-

nicate the stochastically chosen representation and the second term subtracts the number of

random bits that are also successfully communicated.

3.2 Computing the Expected Reconstruction Cost

To perform gradient descent in the description length given in Eq. 3, it is necessary to

compute, for each training example, the derivative of the expected reconstruction cost with

respect to the activation probability of each hidden unit. An obvious way to approximate

this derivative is to use Monte Carlo simulations in which we stochastically pick one hidden

unit in each pool. This way of computing derivatives is faithful to the underlying stochastic

model, but it is inevitably either slow or inaccurate. Fortunately, it can be replaced by a fast

exact method when the output units are linear and there is a squared error measure for the

reconstruction. Given the probability, pvi , of picking hidden unit i in vector quantizer v, we

can compute the expected reconstructed output yj for output unit j on a given training case

yj = bj +
X
v

w
v
jip

v
i (7)
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where bj is the bias of unit j and w
v
ji is the generative weight from i to j in vector quantizer

v. We can also compute the variance in the reconstructed output caused by the stochastic

choices within the vector quantizers. Under the assumption that the stochastic choices within

di�erent vector quantizers are independent, the variances contributed by the di�erent vector

quantizers can simply be added.

Vj =
X
v

X
i

p
v
i

 
w
v
ji �

X
k

w
v
jkp

v
k

!
2

(8)

The expected squared reconstruction error for each output unit is Vj + (yj � dj)
2 where dj

is the desired output. So if the reconstruction error is coded assuming a zero-mean Gaus-

sian distribution the expected reconstruction cost can be computed exactly.z It is therefore

straightforward to compute the derivatives, with respect to any weight in the network, of all

the terms in Eq. 3.

Early in the learning when the representation vectors are randomly related to the input vectors

that cause them, the network almost eliminates the representation cost by using an almost

identical, high entropy distribution across representations for every input vector. So almost

all the information is in the reconstruction cost. The high entropy across representations

contributes additional variance to the output units, but this is minimized by using small

hidden-to-output weights. As learning progresses and the representation vectors begin to

capture the regularities in the inputs, it is worth using very di�erent, low-entropy distributions

for each input vector because the increase in representation cost is more than o�set by the

reduction in reconstruction cost.

zEach vector quantizer contributes non-Gaussian noise and the combined noise is also non-Gaussian. But

since its variance is known, the expected cost of coding the reconstruction error using a Gaussian prior can be

computed exactly. The fact that this prior is not ideal simply means that the computed reconstruction cost is

an upper bound on the cost using a better prior.
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3.3 Simulation results

Zemel [9] presents several di�erent data sets for which factorial vector quantization produces

e�cient encodings. We brie
y describe two of those examples.

The weights of the network were adjusted using a conjugate gradient training procedure. The

parameters �vi that are used for coding the representations were set to the mean value of pvi

on the previous sweep through the training set. After a few experiments with di�erent values,

the variance of the Gaussian used to code the reconstruction errors was �xed at 0:1 for all

the simulations described here.

The other variables in these experiments concern the architecture of the network, and par-

ticularly, the number of vector quantizers and the number of units in each. There is some


exibility in these choices because the learning algorithm can e�ectively eliminate excess units

or entire vector quantizers. It does this by setting the outgoing weights to zero so that the ac-

tivities of units do not e�ect the reconstruction cost and setting the incoming weights so that

units have a constant activity level across the training set and thus have zero representation

cost.

3.3.1 The Cartesian Product of Two Simple Tasks

Consider a set of 22-component input vectors which each contain two halves. Each half is

drawn from a vocabulary of 13 di�erent binary vectors that contain three 1's and eight 0's.

The whole ensemble of 169 vectors is the Cartesian product of two much simpler ensembles,

but a standard vector quantizer has no way of taking advantage of this factorial structure in

the data.

We trained a factorial vector quantizer on this task using a hidden layer that contained 30

di�erent vector quantizers each with 2 units. A 2-unit vector quantizer is equivalent to a

single binary variable because the activity of one unit can be interpreted as the probability

that that variable is 1, and the other unit's activity is the probability that the variable is 0. As
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anticipated, the network �nds the underlying vocabulary. It assigns one vector quantizer to

each of the 13 11-component vectors on either side, for a total of 26 useful features and the 4

remaining vector quantizers are e�ectively eliminated by the algorithm. The network can then

represent each input vector fairly e�ciently using two active features, but it is suboptimal

because its representation fails to capture the fact that the 13 vectors are mutually exclusive

on each half, so slightly more than one bit is wasted in specifying that the other 12 binary

features for each half should be inactive.

We changed the network architecture to contain two vector quantizers each containing 15

units. This architecture consistently learns a solution where each vector quantizer learns to

pay attention to one half of the input, and 13 of the representation units in each come to

represent (i.e., respond to, and reconstruct on the output units) one of the 13 vectors. The

other two units in each vector quantizer are eliminated. For each input example, one unit in

each vector quantizer has an activity close to 1. If one of the input vectors is withheld from the

training set, this network still represents it appropriately producing a squared reconstruction

error of 0:00 on the test example. For this network, the total reconstruction and representation

costs over the full training set are almost exactly equal to the entropy of the distribution over

the input vectors.

3.3.2 Spline Images

The spline data set consists of 200 images of simple curves as shown in Figure 4. A network

containing 4 vector quantizers, each with 6 hidden units, is trained on this data set. After

training, the �nal outgoing weights for the hidden units are as shown in Figure 4. Each vector

quantizer has learned to represent the height of the spline segment that connects a pair of

control points. By chaining these four segments together the image can be reconstructed fairly

accurately. For new images generated in the same way, the description length is approximately

18 bits for the reconstruction cost and 7 bits for the code. By contrast, a stochastic vector

quantizer with 24 hidden units in a single competing group has a reconstruction cost of 36

15



bits and a code cost of 4 bits. A set of 4 separate stochastic vector quantizers each of which

is trained on a di�erent 8x3 vertical slice of the image also does slightly worse than the

factorial vector quantizer (by 5 bits) because it cannot smoothly blend the separate segments

of the curve together. A purely linear network with 24 hidden units that performs a version

of principal components analysis has a slightly lower reconstruction cost but a much higher

code cost.

4 Discussion

A natural approach to unsupervised learning is to use a generative model that de�nes a

probability distribution over observable vectors. The obvious maximum likelihood learning

procedure is then to adjust the parameters of the model so as to maximize the sum of the

log probabilities of a set of observed vectors. This approach works very well for generative

models, such as a mixture of Gaussians, in which it is tractable to compute the expectations

that are required for the application of the EM algorithm. It can also be applied to the wider

class of models in which it is tractable to compute the derivatives of the log probability of

the data with respect to each model parameter. However, for non-linear models that use

distributed representations it is usually intractable to compute these derivatives since they

require that we integrate over all of the exponentially many representations that could have

been used to generate each particular observed vector.

The MDL principle suggest a way of making learning tractable in these more complicated

generative models. The optimal way to code an observed vector is to use the correct posterior

probability distribution over representations given the current model parameters. However, we

are free to use a suboptimal probability distribution that is easier to compute. The description

length using this tractable, suboptimal method can still be used as a Lyapunov function for

learning the parameters of the generative model because it is an upper bound on the optimal

description length. The excess description length caused by using the wrong distribution

has the form of a Kullback-Liebler distance and acts as a penalty term that encourages the
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recognition weights to approximate the correct distribution as well as possible. The penalty

also pushes the parameters of the generative model towards values that cause the correct

posterior distribution to be close to the distribution computed by the recognition weights.

There is an interesting relationship to statistical physics. Given an input vector, each possi-

ble representation acts like an alternative con�guration of a physical system. The function E

de�ned in Eq. 2 is the energy of this con�guration. The function F in Eq. 3 is the Helmholtz

free energy which is minimized by the thermal equilibrium or Boltzmann distribution. The

probability assigned to each representation at this minimum is exactly its posterior proba-

bility given the parameters of the generative model. The di�culty of performing maximum

likelihood learning corresponds to the di�culty of computing properties of the equilibrium

distribution. Learning is much more tractable if we use the non-equilibrium Helmholtz free

energy as a Lyapunov function [7]. We can then use the recognition weights of an autoencoder

to compute some non-equilibrium distribution. The derivatives of F encourage the recogni-

tion weights to approximate the equilibrium distribution as well as they can, but we do not

need to reach the equilibrium distribution before adjusting the generative weights that de�ne

the energy function of the analogous physical system.

In this paper we have shown that an autoencoder network can learn factorial representations

by using the description length as an objective function. In related work [10] we apply

the same approach to learning population codes. We anticipate that the general approach

described here will be useful for a wide variety of complicated generative models. It may even

be relevant for gradient descent learning in situations where the model is so complicated that

it is seldom feasible to consider more than one or two of the innumerable ways in which the

model could generate each observation.
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Figure Legends

Figure 1: The MDL cost function for the autoencoder is derived from the communication game

illustrated above. The sender uses the autoencoder to develop representations for the training

set. The receiver uses the weights, W , to convert the representation into an approximate

reconstruction of the input vector and then adds the residual error vector. Ignoring the cost

of communicating W , the aim of the learning is to minimize the sum of the representation

cost and the reconstruction cost. The sender trains the network by back-propagating the

derivatives of the reconstruction-cost from the output units, and then adding in the derivatives

of the representation-cost at the representation layer.

Figure 2: Each image in the spline data set is generated by �tting a spline to 5 control

points with randomly chosen y-positions. An image is formed by blurring the spline with a

Gaussian. The intensity of each pixel is indicated by the area of white in the display. The

resulting images are 8x12 pixels, but have only 5 underlying degrees of freedom.

Figure 3: The outgoing weights of the hidden units for a network containing 4 vector quantiz-

ers with 6 units in each, trained on the spline data set. Each 8x12 weight block corresponds

to a single unit, and each row of these blocks corresponds to one vector quantizer.
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