
Learning Distributed Representations by Mapping

Concepts and Relations into a Linear Space

Alberto Paccanaro alberto@gatsby.ucl.ac.uk

Geo�rey E. Hinton hinton@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, UCL, 17 Queen Square, London WC1N 3AR, UK

Abstract

Linear Relational Embedding is a method of
learning a distributed representation of con-
cepts from data consisting of binary relations
between concepts. Concepts are represent-
ed as vectors, binary relations as matrices,
and the operation of applying a relation to
a concept as a matrix-vector multiplication
that produces an approximation to the re-
lated concept. A representation for concept-
s and relations is learned by maximizing an
appropriate discriminative goodness function
using gradient ascent. On a task involving
family relationships, learning is fast and leads
to good generalization.

1. Introduction

Given data which consists of concepts and relations
among concepts, our goal is to correctly predict un-
observed instances of relationships between concepts.
We do this by representing each concept as a learned
vector in a Euclidean space and each relationship be-
tween concepts as a learned matrix that maps the �rst
concept into an approximation to the second concept.

To illustrate the approach, we start with a very sim-
ple task which we call the number problem. The da-
ta consists of concepts which are integers and rela-
tions which are operations among integers. In the
modular number problem the numbers are integers
in the set V = [0 : : :m � 1] and the set of opera-
tions is R = f+1;�1;+2;�2;+3;�3;+4;�4;+0gm,
where the subscript indicates that the operations are
performed modulo m. The data then consists of
all or some of the triplets (num1; op; num2) where
num1; num2 2 V , op 2 R, and num2 is the result of
applying operation op to number num1; for example,
for m = 10, f(1;+1; 2); (4;+3; 7); (9;+3; 2); � � �g.

The main idea in Linear Relational Embedding (LRE)
is to represent concepts using n-dimensional vectors,
relations as (n�n) matrices, and the operation of ap-
plying a relation to a concept (to obtain another con-
cept) as a matrix-vector multiplication1. Within this
framework, one could easily hand-code a solution for
the number problem with n = 2 andm = 10, where the
numbers are represented by vectors having unit length
and disposed as in �g.1a, while relations are represent-
ed by rotation matrices R(�), where the rotation angle
� is a multiple of 2�=10 (�rst row of table 1). The re-
sult of applying, for example, operation +3 to number
4, is obtained by multiplying the corresponding ma-
trix and vector, which amounts to rotating the vector
located at 144 degrees by 108 degrees, thus obtaining
the vector at 252 degrees, which corresponds exactly
to the vector representing the number 7.

In this paper, we show how LRE �nds an equivalent
solution, which is presented in �g. 1b and in the sec-
ond row of table 1. LRE can �nd this solution when
many of the triplets are omitted from the training set
and once it has learned this way of representing the
concepts and relationships it can complete all of the
omitted triplets correctly. Moreover, LRE works well
not only on toy problems like the one presented above,
but also in other symbolic domains where the task of
generalizing to unobserved triplets is non-trivial.

Our ultimate aim is to be able to take a large set of
facts about a domain expressed as tuples of arbitrary
symbols in a simple and rigid syntactic format and to
be able to infer other \common-sense" facts without
having any prior knowledge about the domain. For
example, given a large set of facts about animals and
their interactions with each other we would like to
learn representations for speci�c animals and specif-
ic types of interaction that make the tuple (cow eat

1The data is represented using arbitrary symbols for
the concepts and relationships. LRE maps these arbitrary
symbols into non-arbitrary vectors and matrices which we
call the representations of the concepts and relations.



1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0

1

23

4

5

6

7
8

9

(a)

6 5 4 3 2 1 0 1 2 3 4 5 6
6

5

4

3

2

1

0

1

2

3

4

5
0 7

4

1

8

52

9

6

3

(b)

Figure 1. (a) vectors of the hand-coded solution for the number problem when n = 2 and m = 9 (b) vectors of the
solution found by Linear Relational Embedding. Only 70 out of the 90 possible triplets were used for training. During
testing, the system was able to correctly complete all the triplets.

Table 1. Angles, expressed in degrees, of the rotation matrices of the solutions to the number problem with n = 2 and
m = 10, corresponding to the vectors in �g.1. The small errors of the LRE solution are due to the fact that only 70
triplets randomly chosen out of the 90 were used during training.

OPERATION -4 -3 -2 -1 +0 +1 +2 +3 +4

Hand-coded Solution -144 -108 -72 -36 0 36 72 108 144

LRE Solution 72.00 -35.97 -144.01 108.01 0.00 -108.02 144.02 35.98 -71.97

sheep) very implausible. Although we have not yet
demonstrated a system that can do this for a large and
diverse set of facts, LRE can already solve problems
of this type in very limited domains.

Several methods already exist for learning sensible dis-
tributed representations from relational data2. Multi-
dimensional Scaling (Kruskal, 1964; Young & Hamer,
1987) �nds a representation of concepts as vectors in
a multi-dimensional space, in such a way that the dis-
similarity of two concepts is modeled by the Euclidean
distance between their vectors. Unfortunately, dissim-

2We use the term \distributed representation" to stand
for a particular kind of relationship between two descriptive
languages. Individual symbols in one language correspond
to conjunctions of symbols in the other language. For ex-
ample, the concept represented by the symbol \Pat" in one
language might be represented by the conjunction of the
features \pedantic", \young", and \female" in the other
language.

ilarity is the only relationship used by multidimension-
al scaling so it cannot make use of the far more speci�c
information about concepts contained in a triplet like
\John is the father of Mary".

Latent Semantic Analysis (LSA) (Deerwester et al.,
1990; Landauer & Dumais, 1997; Landauer et al.,
1998) assumes that the meaning of a word is re
ected
in the way in which it co-occurs with other words. LSA
�nds features by performing singular value decomposi-
tion on a large matrix and taking the eigenvectors with
the largest eigenvalues. Each row of the matrix corre-
sponds to a paragraph of text and the entry in each
column is the number of times a particular word occurs
in the paragraph or a suitably transformed representa-
tion of this count. Each word can then be represented
by its projection onto each of the learned features, and
words with similar meanings will have similar projec-
tions. Again, LSA is unable to make use of the speci�c
relational information in a triplet.



Victoria = JamesMargaret = Arthur Jennifer = Charles

Colin

Christopher = Penelope Andrew = Christine

Charlotte

Bortolo = Emma

Giannina = Pietro

Aurelio = Maria

Grazia = Pierino Doralice = Marcello

Alberto Mariemma

Figure 2. Two isomorphic family trees. The symbol \="
means \married to".

Hinton (1986) showed that a multilayer neural net-
work trained using backpropagation (Rumelhart et al.,
1986) could make explicit the semantic features of con-
cepts and relations present in the data. Unfortunately,
the system had problems in generalizing when many
triplets were missing from the training set. This was
shown on a simple task called the family tree problem.
In this problem, the data consists of people and re-
lations among people belonging to two families, one
Italian and one English, shown in �gure 2. All the in-
formation in these trees can be represented in simple
propositions of the form (person1, relation, person2).
Using the relations father, mother, husband, wife, son,
daughter, uncle, aunt, brother, sister, nephew, niece
there are 112 such triplets in the two trees.

The next section presents the details of Linear Rela-
tional Embedding, while section 3 presents the results
obtained using LRE on the number problem and the
family tree problem, as well as the results obtained on
a much larger version of the family tree problem that
uses data from a real family tree. Finally section 4
concludes by indicating ways in which LRE could be
extended.

2. Linear Relational Embedding

Let us assume that our data consists of C triplets
(concept1, relation, concept2) containing N distinc-
t concepts and M binary relations. As anticipat-
ed in section 1, the main idea of Linear Relational
Embedding is to represent each concept with an n-
dimensional vector, and each relation with an (n� n)
matrix. We shall call: V = fv1; :::;vNg the set of
vectors, R = fR1; :::; RMg the set of matrices and
D = f(ac; Rc;bc)gCc=1 the set of all the triplets, where

ac;bc 2 V and Rc 2 R . The operation that relates a
pair fac; Rcg to a vector bc is the matrix-vector mul-
tiplication, Rc � ac, which produces an approximation
to bc.

The goal of learning is to �nd suitable vectors and ma-
trices such that for each triplet (ac; Rc;bc) 2 D, bc is
the vector closest to Rc � ac. The obvious approach
is to minimize the squared distance between Rc � ac

and bc but this is no good because it causes all of the
vectors or matrices to collapse to zero. In addition to
minimizing the squared distance to bc we must also
maximize the squared distances to the other concept
vectors. This can be achieved by imagining that Rc �ac

is a noisy version of one of the concept vectors and
maximizing the probability that it is a noisy version
of the correct answer, bc, rather than any of the other
possibilities. We imagine that a concept has an aver-
age location in the space but that each \observation"
of the concept is a noisy realization of this average
location. If we assume spherical Gaussian noise with
a variance of 1=2 on each dimension, the probability
that a realization of concept i would occur at Rc �ac is
proportional to exp(�jjRc �ac�vijj

2). So the posterior
probability that Rc �ac matches concept bc given that
it must match one of the known concepts is:

e�jjRc�ac�bcjj2

X

vi2V

e�jjRc�ac�vijj
2

A discriminative goodness function that correspond-
s to the log probability of getting the right answer,
summed over all training triplets is:

G =

CX

c=1

log
e�jjRc�ac�bcjj2

X

vi2V

e�jjRc�ac�vijj
2

(1)

The goodness function, G, ensures that the learning
does not stop when the concept closest to Rc �ac is the
correct answer. Instead, the learning continues until
the correct answer is several standard deviations closer
than any other, if that is possible.

The results which we present in the next section were
obtained by maximizing G using gradient ascent. All
the vector and matrix components were updated si-
multaneously at each iteration. One e�ective method
of performing the optimization is scaled conjugate gra-
dient (M�ller, 1993). Learning was fast, usually re-
quiring only a few hundred updates and learning vir-
tually ceased as the probability of the correct answer



approached 1 for every data point. We have also de-
veloped an alternative optimization method which is
less likely to get trapped in local optima when the task
is diÆcult. The objective function is modi�ed to in-
clude a temperature that divides the exponents in eq.
1. The temperature is annealed during the optimiza-
tion. This method uses a line search in the direction of
steepest ascent of the modi�ed objective function. A
small amount of weight decay helps to ensure that the
exponents in eq. 1 do not cause numerical problems
when the temperature becomes small.

In general, di�erent initial con�gurations and opti-
mization algorithms caused the system to arrive at
di�erent solutions, but these solutions were almost
always equivalent in terms of generalization perfor-
mance.

3. Results

We shall �rst present the results obtained applying
LRE to the number problem and to the family tree
problem. After learning a representation for matrices
and vectors, we checked, for each triplet c, whether
the vector with the smallest Euclidean distance from
Rc � ac was indeed bc. We checked both how well the
system learned the training set and how well it gener-
alized to unseen triplets. Unless otherwise stated, in
all the experiments we optimized the goodness func-
tion using scaled conjugate gradient. Two conditions
had to be met simultaneously in order for the algo-
rithm to terminate: the changes in the components of
the vectors and matrices at two successive steps had
to be less than 10�4 and the value of the objective
function had to change by less than 10�8. All the ex-
periments presented here were repeated several times,
starting from di�erent initial conditions and randomly
splitting training and test data3. In general the solu-
tions found were equivalent in terms of generalization
performance. The algorithm usually converged within
a few hundred iterations, and rarely got stuck in poor
local minima.

3.1 Results on the Number Problem

Let us consider the modular number problem which
we saw in section 1. With numbers [0 : : : 9] and op-
erations f+1;�1;+2;�2;+3;�3;+4;�4;+0g10, there
exist 90 triplets (num1, op, num2). LRE was able to
learn all of them correctly using 2-dimensional vectors

3In principle, if the random splitting caused all the
triplets containing a certain concept or relation to be miss-
ing from the training set, then that concept or relation
could not possibly be learned, and the system would per-
form poorly when tested on these triplets.

and matrices (n = 2). Figure 1 shows a typical solu-
tion that we obtained after training with 70 triplets
randomly chosen out of the 90. The scaled conjugate
gradient algorithm converged within the desired toler-
ance in 125 iterations which took 8.2 seconds running
the Matlab code on a 667MHz alpha-EV6. We see that
all the vectors have about the same length, and make
an angle of about 2�=10 with each other. The matrices
turn out to be approximately orthogonal, with all their
row and column vectors having about the same length.
Therefore each can be approximately decomposed in-
to a constant factor which multiplies an orthonormal
matrix. The degrees of rotation of each orthonormal
matrix are shown in the second row of table 1. The
matrices' multiplicative factor causes the result of the
rotation to be longer than the second vector of the
triplet. Because the concept vectors lie at the ver-
tices of a regular polygon centered at the origin, this
lengthening increases the squared distance from the in-
correct answers by more than it increases the squared
distance from the correct answer, thus improving the
discriminative goodness function in Eq. 1.

Let us now consider a non-modular version of the
number problem with numbers [1 : : : 50] and opera-
tions f+1;�1;+2;�2;+3;�3;+4;�4;+0g. When the
result of the operation is outside [1 : : : 50] the corre-
sponding triplet is simply omitted from the data set.
In two dimensions LRE was able to �nd the correct
solution for all the 430 valid triplets of the problem,
after training on 330 randomly chosen triplets for a
few hundred iterations. Figure 3 shows a typical vec-
tor con�guration after learning. For the non-modular
number problem, LRE increases the separation be-
tween the numbers by using di�erent lengths for the
concept vectors so that the numbers lie on a spiral. In
the �gure we also indicated with a cross the result of
multiplying R � a when the result of the operation is
outside [1 : : : 50]. Notice how the crosses are clustered,
on the \ideal" continuation of the spiral - the answer
to 49 + 3 is located at almost exactly the same point
as the answers to 48 + 4, 50 + 2, and so on.

Now consider the non-modular numbers problem with
numbers [1 : : : 50] and operations
f+1;�1;+2;�2;+3;�3;+0;�3;�2;�2;�3g. When
we tried to solve it in 2 dimensions LRE could not �nd
a solution that satis�ed all the triplets. Using gradi-
ent ascent to optimize the modi�ed goodness function
while annealing the temperature, LRE found a solu-
tion that gave the correct answer for all the addition
and subtraction operations but the matrices represent-
ing multiplications and divisions mapped all vectors to
the origin. In 3 dimensions, however, LRE is able to
�nd a perfect solution in a few hundred iterations.



30 20 10 0 10 20 30

20

15

10

5

0

5

10

15

20

25

Figure 3. Vectors obtained after learning the non-modular
number problem with numbers [1 : : : 50], operations
f+1;�1;+2;�2;+3;�3;+4;�4;+0g in two dimensions.
Vector endpoints are marked with stars and a solid line
connects the ones representing consecutive numbers. S-
maller numbers are in the center of the spiral. The dots
are the result of the multiplication Rc � ac for each triplet,
c. The crosses are the result of the multiplication R � a
when the result of the operation is outside [1 : : : 50].

LRE is able to generalize well. The solutions shown
in �gure 1 and 3 answer correctly all the triplets in
their problem databases even though they were trained
on only 70=90 and 330=430 triplets respectively. It is
worth pointing out that in order to do this the system
had to discover structure implicit in the data.

3.2 Results on the Family Tree Problem

We used LRE in 3 dimensions on the family tree prob-
lem. When trained on all the data, LRE could correct-
ly complete all 112 triplets and the resulting concept
vectors are shown in �gure 4. We can see that the Ital-
ian and English families are symmetric with respect to
the origin and are linearly separable. When more than
one answer was correct (as in the aunts of Colin) the
two concept vectors corresponding to the two correct
answers were always the two vectors closest to Rc � ac.

LRE generalized perfectly when 12 triplets were held
out during training. In particular, even when all the
information on \who are the aunts of Colin" (i.e both
triplets (Colin, aunt, Jennifer) and (Colin, aunt, Mar-
garet)) was held out during training, the system was
still able to answer correctly. Notice how, in order to
do this, the system had �rst to use the implicit in-
formation in the other triplets to �gure out both the
meaning of the relation aunt and the relative position
of Colin, Margaret and Jennifer in the tree, and then

4
2

0
2

4

5

0

5

6

4

2

0

2

4

6

ITALIAN

ENGLISH

Figure 4. Layout of the vectors in 3D space obtained for
the family tree problem. Vectors are represented by *, the
ones in the same family tree are connected to each other.
The dots are the result of the multiplication Rc � ac for
each triplet, c. The solution shown here was obtained using
gradient ascent to optimize the modi�ed goodness function
while the temperature was annealed.

use this information to make the correct inference.

The generalization achieved by LRE is much bet-
ter than the neural networks of Hinton (1986) and
O'Reilly (1996) which typically made one or two errors
even when only 4 cases were held out during training.

3.3 Results on the Family Tree Problem with

Real Data

We have used LRE to solve a much bigger family tree
task. The tree is a branch of the real family tree of
one of the authors containing 49 people over 5 genera-
tions. Using the 12 relations seen earlier it generates a
data set of 644 triplets. The goodness function in Eq.1
was modi�ed to behave more sensibly when there were
many alternative correct completions of a triplet. In
such cases each completion was given a weight inverse-



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

number of triplets omitted during training

nu
m

be
r 

of
 e

rr
or

s

Figure 5. Plot of the errors made by the system when test-
ed on the whole set of 644 triplets vs. the number of triplets
which were omitted during training, using 10 dimensions.
Omitted triplets were chosen randomly.

ly proportional to the number of alternatives. LRE
was usually able to learn the tree in 6 dimensions us-
ing scaled conjugate gradient, taking about 4 minutes
to run the Matlab code on a 667MHz alpha-EV6.

The generalization performance was very good. Fig-
ure 5 is the plot of the number of errors made by the
system when tested on the whole data set after being
trained on a subset of it using 10 dimensions. Triplets
were held out randomly from the training set and the
system was run for 5000 iterations, or until the con-
vergence criteria were met. The results shown are the
median of the number of errors over 3 di�erent runs,
since the system very occasionally failed to converge.
We can see that the performance degrades slowly as
an increasing number of triplets is omitted from the
training data.

4. Discussion and further Developments

Linear Relational Embedding is a new method for dis-
covering distributed representations of concepts and
relations from data consisting of binary relations be-
tween concepts. On the task on which we tried it, it
was able to learn sensible representations of the data,
and this allowed it to generalize well.

In the family tree task, the great majority of the gen-
eralization errors were of a speci�c form. The system
appears to believe that \brother of" means \son of
parents of". It fails to model the extra restriction that
people cannot be their own brother. This failure nice-
ly illustrates the problems that arise when there is no
explicit mechanism for variable binding.

A minor modi�cation, which we have not tried yet,
should allow the system to make use of negative da-
ta of the form \Christopher is not the father of Col-
in". This could be handled by minimizing G instead of

maximizing it, while using Christopher as the \correct
answer".

Another minor modi�cation would be required to han-
dle erroneous answers in the training data. Instead
of assuming Gaussian noise on each concept vector we
could assume a mixture of Gaussian and uniform noise.
This would mean that every concept had some small
probability of being chosen as the answer however far
away it was from Rc � ac. So if the allegedly correct
answer, bc, was very far from Rc � ac the derivative
of the goodness function would exert very little force
on bc. LRE would then be unwilling to modify its
representations to incorporate assertions that it found
extremely implausible.

One limitation of the version of LRE presented here is
that it always picks some answer to any question even
if the correct answer is not one of the concepts present-
ed during training. This limitation can be overcome
by modifying the denominator of eq. 1 to include an
extra learned term that is speci�c to each relationship:

G =
CX

c=1

log
exp(�jjRc � ac � bcjj2)

exp(�r2Rc) +
X

vi2V

exp(�jjRc � ac � vijj
2)

(2)

where each relationship matrix, Ri 2 R, has its own
extra parameter rRi

so that the value of i speci�ed by
Rc determines rRc . The e�ect of this modi�cation is
that the probabilities of the known concepts add to
less than 1. On training examples for which the cor-
rect answer is \unknown", the term exp(�r2

Rc) is also
used as the numerator. LRE is presumed to give the
answer \don't know" if the most probable known con-
cept is further than rRc away from Rc �ac. Preliminary
experiments with the non-modular number problems
have been very successful. If, for example, the largest
known number is 10, LRE learns to make the answer
to 9+3 be further than the threshold distance from all
the known numbers. Moreover it locates the answer to
9 + 3 at almost exactly the same point as the answers
to 10 + 2 and 8 + 4. In a sense, it has constructed a
new concept. See �gure 6.

It is interesting to compare LRE to a system like FOIL
(Quinlan, 1990). FOIL assumes that relational infor-
mation can be represented as a set of predicates, i.e.
mappings from k-tuples of concepts (constants) onto
truth values. Given data consisting of these mappings
for a particular set of concepts (and under the closed-
world assumption) FOIL learns a de�nition of each
predicate in terms of the other ones and itself. This
is particularly interesting when the data contain a set



−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Figure 6. Vectors obtained after learning the num-
ber problem with numbers [1 : : : 10], operations
f+1;�1;+2;�2;+3;�3;+4;�4;+0g. The dots are
the result of the multiplication Rc � ac for each triplet c

such that the answer is among the known concepts. The
crosses are the result of the multiplication Rk � ak for each
triplet k such that the correct answer is \don't know". In
all cases the system answered correctly to all the questions
in the data set. All the triplets were used for training.

of basic predicates: FOIL is then able to learn other
predicates that can be expressed as a combination of
the basic ones. The de�nitions which are learned are
very similar to Horn clauses and will then hold for any
other set of data.

The approach taken by LRE is quite di�erent, since it
learns a representation for both relations and concept-
s for a given training set. Relations are now seen as
functions rather than predicates: the result of applying
a relation to a concept is another concept. Relations
are represented as linear mappings between concept-
s in some vector space. The idea behind the scenes
is that the distributed representation should make ex-
plicit the semantic features implicit in the data: each
concept is a combination of semantic features, and re-
lations compute an approximation to the features of
one concept from the features of another.

Let us see how FOIL and LRE compare in terms of
generalization performance and learning. Given a set
of data, LRE is able to learn a representation that
allows perfect generalization on that set of data with

many more missing triplets than FOIL. 4 On the other
hand, the de�nitions for the predicates which are found
by FOIL are general, not speci�c to the set of data
from which they are learned. Thus it is e�ortless to
use them on new data, while LRE needs additional
learning for the new concept vectors.

As regards learning, FOIL can learn the de�nition of a
predicate only when it is possible to de�ne that pred-
icate in terms of the predicates available. Thus, if in
the family tree example the data contains only the
predicates: parent, child and spouse, FOIL could not
possibly learn a de�nition for mother or uncle since the
predicates available do not carry information about
the sex of a person, which is fundamental in order
to de�ne mother and uncle. Similarly, in the number
problem, if only relation +1 was given, there is noth-
ing that FOIL could possibly learn. This is irrelevant
to LRE, which is able to learn a predicate, no matter
what the other predicates are.

It is interesting to consider how LRE could be im-
proved by incorporating the idea of a set of basis re-
lations. At present a separate matrix is needed for
each relation and this requires a lot of parameters
because the number of parameters in each matrix is
the square of the dimensionality of the concept vec-
tor space. When there are many di�erent relations
it should be advantageous to model their matrices as
combinations of a smaller set of learned basis matri-
ces. It is fairly straightforward to modify LRE so that
the relationship matrices are modeled as linear com-
binations of a learned set of basis matrices. This has
some similarity to the work of Tenenbaum and Free-
man (1996). It is much more diÆcult to see how LRE
can be modi�ed so that it learns basis matrices which
are multiplied together to form the relationship ma-
trices because the order of multiplication matters and
orderings do not form a continuous space.

In this paper, we have assumed that the concepts and
relations are presented as arbitrary symbols so there is
no inherent constraint on the mapping from concept-
s to the vectors that represent them. LRE can also
be applied when the \concepts" already have a rich
and informative representation. Consider the task of
mapping pre-segmented intensity images into the pose
parameters of the object they contain. This mapping
is non-linear because the average of two intensity im-
ages is not an image of an object at the average of
the positions, orientations and scales of the objects in
the two images. Suppose we have a discrete sequence

4The generalization results of LRE presented here on
the Family Tree problem are better than the 78 out of 80
achieved by Quinlan (1990) on the same problem.



of images I(1) : : : I(t) : : : I(T ) of a stationary object
taken with a moving camera and we know the camera
motionM(t; t+1) between each successive image pair.

In an appropriately parameterized space of pose pa-
rameters, the camera motion can be represented as a
transformation matrix, R(t; t + 1), that converts one
pose vector into the next:

R(t; t+ 1)v(t) = v(t+ 1) (3)

The central assumption of LRE is therefore exactly
satis�ed by the representation we wish to learn. So it
should be possible to learn a mapping from intensity
images to pose vectors and from sensory representa-
tions of camera motions to transformation matrices by
backpropagating the derivatives obtained from Eq. 1
through a non-linear function approximator such as a
multilayer neural network. Preliminary simulations by
Sam Roweis (personal communication) show that it is
feasible to learn the mapping from preprocessed inten-
sity images to pose vectors if the mapping from camera
motions to the appropriate transformation matrices is
already given.

Acknowledgments

The authors would like to thank Peter Dayan, Sam
Roweis, Carl van Vreeswijk, Hagai Attias and Marco
Buiatti for many useful discussions.

References

Deerwester, S., Dumais, S. T., Furnas, G., Landauer,
T. K., & Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society
for Information Science, 41, 391{407.

Hinton, G. E. (1986). Learning distributed representa-
tions of concepts. In Proceedings of the eighth annual
conference of the cognitive science society, 1{12. NJ:
Erlbaum.

Kruskal, J. B. (1964). Multidimensional scaling by
optimizing goodness of �t to a nonmetric hypothesis.
Psychometrika, 29, 1, 1{27.

Landauer, T. K., & Dumais, S. T. (1997). A solution
to Plato's problem: The latent semantic analysis
theory of acquisition, induction and representation
of knowledge. Psychological Review, 104, 2, 211{
240.

Landauer, T. K., Laham, D., & Foltz, P. (1998).
Learning human-like knowledge by singular value
decomposition: A progress report. In M. I. Jor-
dan, M. J. Kearns and S. A. Solla (Eds.), Advances

in neural processing information systems 10, 45{51.
Cambridge Massachusetts: The MIT Press.

M�ller, M. (1993). A scaled conjugate gradient algo-
rithm for fast supervised learning. Neural Networks,
6, 525{533.

O'Reilly, R. C. (1996). The leabra model of neural
interactions and learning in the neocortex. Doctor-
al dissertation, Department of Psychology, Carnegie
Mellon University, Pittsburgh, PA.

Quinlan, J. R. (1990). Learning logical de�nitions from
relations. Machine Learning, 5, 239{266.

Rumelhart, D. E., Hinton, G. E., & Williams, R.
(1986). Learning internal representation by error
propagation. In D. E. Rumelhart, J. L. McClelland
and the PDP research Group (Eds.), Parallel dis-
tributed processing, vol. 1, 283{317. The MIT Press.

Tenenbaum, J. B., & Freeman, W. T. (1996). Sepa-
rating style and content. In M. C. Mozer, M. I. Jor-
dan and T. Petsche (Eds.), Advances in neural pro-
cessing information systems 9, 662{668. Cambridge
Massachusetts: The MIT Press.

Young, F. W., & Hamer, R. M. (1987). Multidi-
mensional scaling: History, theory and applications.
Hillsdale, NJ: Lawrence Erlbaum Associates, Pub-
lishers.


