
Recognizing Handwritten Digits Using
Hierarchical Products of Experts

Guy Mayraz and Geoffrey E. Hinton

Abstract—The product of experts learning procedure [1] can discover a set of stochastic binary features that constitute a nonlinear

generative model of handwritten images of digits. The quality of generative models learned in this way can be assessed by learning a

separate model for each class of digit and then comparing the unnormalized probabilities of test images under the 10 different class-

specific models. To improve discriminative performance, a hierarchy of separate models can be learned for each digit class. Each

model in the hierarchy learns a layer of binary feature detectors that model the probability distribution of vectors of activity of feature

detectors in the layer below. The models in the hierarchy are trained sequentially and each model uses a layer of binary feature

detectors to learn a generative model of the patterns of feature activities in the preceding layer. After training, each layer of feature

dectectors produces a separate, unnormalized log probabilty score. With three layers of feature detectors for each of the 10 digit

classes, a test image produces 30 scores which can be used as inputs to a supervised, logistic classification network that is trained on

separate data. On the MNIST database, our system is comparable with current state-of-the-art discriminative methods, demonstrating

that the product of experts learning procedure can produce effective hierarchies of generative models of high-dimensional data.

Index Terms—Neural networks, products of experts, handwriting recognition, feature extraction, shape recognition, Boltzmann

machines, model-based recognition, generative models.

�

1 LEARNING PRODUCTS OF STOCHASTIC BINARY EXPERTS

HINTON [1] describes a learning algorithm for probabil-
istic generative models that are composed of a number

of experts. Each expert specifies a probability distribution
over the visible variables and the experts are combined by
multiplying these distributions together and renormalizing.

pðdj�1:::�nÞ ¼
�mpmðdj�mÞP
c �mpmðcj�mÞ

; ð1Þ

where d is a data vector in a discrete space, �m is all the
parameters of individual model m, pmðdj�mÞ is the prob-
ability of d under model m, and c is an index over all
possible vectors in the data space.

It is very difficult to generate data from the “Product of
Experts” generative model defined by (1). One very
inefficient approach, based on rejection sampling, is to
allow each expert separately to choose values for its internal
latent variables from their prior distributions and then to
produce a data vector from these latent values. If all of the
experts happen to exactly agree on which data vector to
produce, that vector is produced as output. Otherwise, we
try again. The fraction of times that we must try again is
given by the intractable denominator on the RHS of (1).
Fortunately, we do not want to use the model as a
generator. The purpose of the generative model is to
provide a basis for doing inference and learning. Having
a clearly specified generative model allows us to infer the

probability distribution over the states of the latent
variables inside each expert when data is observed. It also
allows us to specify how the parameters of each expert
should be changed to maximize the probability that the
generative model would produce the observed data. For
inference and learning, the product of experts model can be
very efficient, though, as we shall see, the learning needs to
optimize a function which differs from the standard log
likelihood of the data.

A Restricted Boltzmann Machine (RBM) [2], [3] is a

special case of a product of experts in which each expert is a

single, binary stochastic hidden unit that has symmetrical

connections to a set of visible units and connections

between the hidden units are forbidden. Inference in an

RBM is much easier than in a general Boltzmann machine

because there is no need to perform any iteration to

determine the activities of the hidden units. The hidden

states, sj, are conditionally independent given the visible

states, si, and the distribution of sj is given by the standard

logistic function:

pðsj ¼ 1Þ ¼ 1

1þ expð�
P

i wijsiÞ
: ð2Þ

Conversely, the hidden states of an RBM are marginally

dependent: If we average over data that is generated by the

model, hidden units will typically have highly correlated

activities. So, it is easy for an RBM to learn population codes

in which the activities of units may be highly redundant,

thus providing robustness against hardware failures. It is

hard to learn redundant population codes in causal belief

nets with one hidden layer because the generative model of

a causal belief net assumes that the hidden units choose

their activities independently (i.e., they are marginally

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 2, FEBRUARY 2002 189

. The authors were with Gatsby Computational Neuroscience Unit,
University College London, 17 Queen Square, London WC1N 3AR, UK.
E-mail: {gmz, hinton}@gatsby.ucl.ac.uk.

Manuscript received 01 Aug. 2000; revised 13 Mar. 2001; accepted 01 May
2001.
Recommended for acceptance by T.K. Ho.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 112633.

0162-8828/02/$17.00 � 2002 IEEE

independent).1 It is also much harder to infer the states of the

hidden variables in a causal belief net becasue they are

conditionally dependent given the observed data. For causal

belief nets that are nonlinear and densely connected, this

typically means that the hidden variables need to commu-

nicate iteratively to decide on their posterior distributions

given the data.
An RBM can be trained using the standard Boltzmann

machine learning algorithm which follows a noisy, but
unbiased estimate of the gradient of the log likelihood of
the data. One way to implement this algorithm is to start
the network with a data vector on the visible units and
then to alternate between updating all of the hidden units
in parallel and updating all of the visible units in parallel
(see Fig. 1). Each update picks a binary state for a unit
from its posterior distribution given the current states of
all the units in the other set. If this alternating Gibbs
sampling is run to equilibrium, there is a very simple
way to update the weights so as to minimize the
Kullback-Leibler divergence, P 0jjP1

� , between the data
distribution, P 0, and the equilibrium distribution over the
visible units of samples from the generative model, P1

� ,
produced by the RBM with parameters � [4]:

�wij / < sisj >P 0 � < sisj >P1
�
; ð3Þ

where < sisj >P 0 is the expected value of sisj when data is
clamped on the visible units and the hidden states are
sampled from their conditional distribution given the data
and < sisj >P1

�
is the expected value of sisj after prolonged

Gibbs sampling.
This learning rule does not work very well because it can

take a long time to approach thermal equilibrium and the
sampling noise in the estimate of < sisj >P1

�
can swamp

the gradient. It is far more effective to minimize the
difference between P 0jjP1

� and P 1
� jjP1

� , where P 1
� is the

distribution of the one-step reconstructions of the data that
are produced by first picking binary hidden states from
their conditional distribution given the data and then
picking binary visible states from their conditional distribu-
tion given the hidden states. Using p�m to denote a random
variable representing the probability of a data vector under
a model with parameters �m, the exact gradient of this
“contrastive divergence” is

� @

@�m
P 0jjP1

� � P 1
� jjP1

�

� �
¼ @ log p�m

@�m

� �
P 0

� @ log p�m
@�m

� �
P 1
�

þ @P 1
�

@�m

@ðP 1
� jjP1

� Þ
@P 1

�

ð4Þ

The exact gradient is complicated because the distribu-

tion P 1
� depends on the weights, but [1] shows that the last

term in (4) can safely be ignored to yield a learning rule for

following the approximate gradient of the contrastive

divergence. In an RBM, this learning rule is particularly

simple:

�wij / < sisj >P 0 � < sisj >P 1
�

ð5Þ

This learning rule is simpler to implement and con-

siderably faster than the Boltzmann Machine learning rule.

The learning scales up well to large networks. As we shall

see, it can learn of the order of a million weights in about

one day on a 500MHz pentium.
For images of digits, it is possible to apply (5) directly if

we use stochastic binary pixel intensities, but it is more

effective to normalize the intensities to lie in the range ½0; 1

and then to use these real values as the inputs to the hidden

units. During reconstruction, the stochastic binary pixel

intensities, si required by (5) are also replaced by real-

valued probabilities, pi. Finally, the learning rule can be

made less noisy by replacing the stochastic binary activities

of the hidden units by their expected values. So, the

learning rule we actually use is

�wij / < pipj >P 0 � < pipj >P 1
�
: ð6Þ

Stochastically chosen binary states of the hidden units are

still used for computing the probabilities of the recon-

structed pixels, so the hidden probabilities cannot be used

to convey an unbounded amount of information to the

reconstruction.
The rest of this paper shows how RBM’s trained to

minimize contrastive divergence can be used for hand-

written digit recognition. It is possible to achieve very good

discrimination on a standard test set by using a three-layer

hierarchy of models for each digit class and by basing the

final decision on a small supervised network that learns

how to combine unnormalized log probability scores that

are produced by all three layers in the hierarchy for each of

the 10 digit classes.

190 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 2, FEBRUARY 2002

1. The activities of hidden units are also chosen independently in a
Product of Experts, but all the rejected attempts in which the experts fail to
agree on the data vector mean that the hidden states are typically highly
dependent in the small subset of successful attempts.

Fig. 1. A visualization of alternating Gibbs sampling. At time 0, the visible variables represent a data vector and the hidden variables of all the experts
are updated in parallel with samples from their posterior distribution given the visible variables. At time 1, the visible variables are all updated to
produce a reconstruction of the original data vector from the hidden variables and then the hidden variables are again updated in parallel. If this
process is repeated sufficiently often, it is possible to get arbitrarily close to the equilibrium distribution. Samples from this distribution are called
“fantasies.” The correlations < sisj > shown on the connections between visible and hidden variables are the statistics used for learning in
Restricted Boltzmann Machines.

2 THE MNIST DATABASE

Handwritten digit recognition is a convenient and impor-
tant subproblem in optical character recognition (OCR). It
has been used as a test case for theories of human or
artificial pattern recognition since the days of the percep-
tron learning procedure. During the long history of
research, several standard databases have emerged in
which the handwritten digits are presegmented and
approximately normalized so that researchers can compare
recognition results without worrying about pre or post-
processing. The freely available MNIST database of hand-
written digits is now a standard for testing digit recognition
algorithms. MNIST was constructed by Y. Le Cun of AT&T
Labs out of the NIST database. There are 60,000 training
images and 10,000 test images which are drawn from the
same distribution as the training set. Images are size-
normalized and translated so that the center of gravity of
their intensity lies at the center of a fixed-size image of 28
by 28 pixels. Fig. 2 shows some examples of MNIST digits.
The MNIST database can be found by searching for “mnist”
using www.google.com.

A number of well-known learning algorithms have been
run on the MNIST database [5], so it is easy to assess the
relative performance of a novel algorithm. The main
contenders include standard backpropagation, Support
Vector Machines (SVMs), and Le Cun’s own Le Net, which
uses backpropagation training in a highly structured,
multilayer network that has local receptive fields and
averages the responses of feature detectors that have
similarly located receptive fields and shared weights. The
results in Table 1 show Le Net as the best algorithm, closely
followed by SVM. Standard backpropagation without the
domain-specific modifications used in Le Net does

considerably worse but is still much better than simple
statistical methods such as K-nearest-neighbors or a linear
classifier. However, the results in Table 1 should be treated
with caution. Some attempts to replicate the SVM results
have produced slightly higher error rates of around
1.4 percent [6] and standard backpropagation can be
carefully tuned to achieve under 2 percent (John Platt,
personal communication).

Table 1 shows that it is possible to achieve a result that is
comparable with the best discriminative techniques by
using hierarchical PoE models of each digit class to extract
scores that represent unnormalized log probabilities. These
scores are then used as the inputs to a simple logistic
classifier. The rest of this paper describes this system in
detail.

Some of the experiments in [5] included deskewing
images by computing the principal axis of the shape that is
closest to the vertical and then transforming the image to
make this principal axis vertical. In other experiments, the
training set was augmented with distorted versions of the
original training images. The distortions were small affine
transformations of the digit or changes in the stroke
thickness. Deskewing and distortions improve the perfor-
mance of all methods. We did not use deskewing or
distortions in our main experiments and, so, we only
compare our results with other methods that did not use
them. We return to this issue at the end of the paper.

3 TRAINING THE INDIVIDUAL POE MODELS

The MNIST database contains an average of 6,000 training
examples per digit, but these examples are unevenly
distributed among the digit classes. In order to simplify

MAYRAZ AND HINTON: RECOGNIZING HANDWRITTEN DIGITS USING HIERARCHICAL PRODUCTS OF EXPERTS 191

Fig. 2. Examples of 2s in the MNIST database (first 100 examples). Note, the very diverse handwriting styles.

the research, we produced a balanced database by using

only 5,400 examples of each digit. The first 4,400 examples

were the unsupervised training set used for training the

individual PoE models. The remaining training examples of

each of the 10 digits constituted the supervised training set

used for training the logistic classification net that converts

the scores of all the PoE models into a classification. The

supervised training set was further subdivided into two

equal halves and the second half was used as a validation

set to determine the best PoE network size and the stopping

point when training the discrimination network. Only then

was the discrimination network retrained on the entire

supervised training set and tested on the official test set.
The original intensity range in the MNIST images was

0 to 255. This was normalized to the range 0 to 1 so that

we could treat intensities as probabilities. The normalized

pixel intensities were used as the initial activities of the

784 visible units corresponding to the 28 by 28 pixels. The

visible units were fully connected to a single layer of

hidden units. The weights between the input and hidden

layer were initialized to small, zero-mean, Gaussian-

distributed, random values. The 4,400 training examples

were divided into 44 minibatches. One epoch of learning

consisted of a pass through all 44 minibatches in fixed

order with the weights being updated after each mini-

batch. We used a momentum method with a small

amount of weight decay, so the change in a weight after

the tth minibatch was

�wt
ij ¼ ��wt�1

ij þ 0:1 pipj
� �

Q0
t
� pipj
� �

Q1
t
�0:0001wt

ij

� 	
; ð7Þ

where Q0
t and Q1

t are averages over the data or the one-

step reconstructions for minibatch t and the momentum,

�, was 0 for the first 50 weight changes and 0:9 thereafter.

The hidden and visible biases were initialized to zero.

Their values were similarly altered (by treating them like

connections to a unit that was always on) but with no

weight decay.
After testing different sized networks on the validation

set we determined that the largest network was the best,

even though each digit model contains 392,500 parameters

trained on only 4,400 images. The receptive fields learned

by the hidden units are quite local (see Fig. 3). Since the

hidden units are fully connected and have random initial

weights, the learning procedure must infer the spatial

proximity of pixels from the statistics of their joint activities.

Fig. 4 shows the mean goodness scores of all 10 models on

all 10 digit classes.
Fig. 5 shows reconstructions produced by models on

previously unseen data from the digit class they were

trained on and also on data from a different digit class. With

500 hidden units, the 7s model is almost perfect at

reconstructing 9s. This is because a model gets better at

reconstructing more or less any image as its set of available

features becomes more varied and more local. Despite this,

the larger networks give better discriminative information.

3.1 Multilayer Models

Networks that use a single layer of hidden units and do not

allow connections within a layer have some major advan-

tages over more general networks. With an image clamped

on the visible units, the hidden units are conditionally

independent. So, it is possible to compute an unbiased

sample of the binary states of the hidden units without any

iteration. This property makes PoEs easy to train and it is

lost in more general architectures. If, for example, we

introduce a second hidden layer that is symmetrically

connected to the first hidden layer, it is no longer

straightforward to compute the posterior expected activity

of a unit in the first hidden layer when given an image that

is assumed to have been generated by the multilayer model

at thermal equilibrium. The posterior distribution can be

192 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 2, FEBRUARY 2002

TABLE 1
Performance of Various Learning Methods on the MNIST Test Set

computed by alternating Gibbs sampling between the two
hidden layers, but this is slow and noisy.

Fortunately, if our ultimate goal is discrimination, there
is a computationally convenient alternative to using a
multilayer Boltzmann machine. Having trained a one-
hidden-layer PoE on a set of images, it is easy to compute
the expected activities of the hidden units on each image in
the training set. These hidden activity vectors will them-
selves have interesting statistical structure because a PoE is
not attempting to find independent causes and has no
implicit penalty for using hidden units that are marginally
highly correlated. So, we can learn a completely separate

PoE model in which the activity vectors of the hidden units
are treated as the observed data and a new layer of hidden
units learns to model the structure of this “data.” It is not
entirely clear how this second level PoE model helps as a
way of modeling the original image distribution, but it is
clear that, if a PoE is trained on images of 2s, we would
expect the vectors of hidden activities to be very different
when it is presented with a 3, even if the features it has
learned are quite good at reconstructing the 3. So, a second
level model should be able to assign high scores to the
vectors of hidden activities that are typical of the 2 model
when it is given images of 2s and low scores to the hidden

MAYRAZ AND HINTON: RECOGNIZING HANDWRITTEN DIGITS USING HIERARCHICAL PRODUCTS OF EXPERTS 193

Fig. 3. First layer receptive fields of the PoE model trained on samples of 3s from the MNIST database with (a) 100 units trained for 100 epochs and

(b) 500 units trained for 500 epochs. The receptive fields are for 18 hidden units chosen at random. The gray levels represent the values of the

weights with white being positive and black negative. The most extreme weights in (a) and (b) have values of �4:6 and �4:5, respectively.

activities of the 2 model when it is given images that contain

combinations of features that are not normally present at

the same time in a 2.
We used a three-layer hierarchy of hidden features in

each digit model.2 The layers were trained sequentially and,

to simplify the research, we always used the same number

of hidden units in each layer. We trained models of five

different sizes with 25, 100, 200, 400, and 500 units per layer.

4 THE LOGISTIC CLASSIFICATION NETWORK

An attractive aspect of PoEs is that it is easy to compute the

numerator in (1) so it is easy to compute a goodness score

which is equal to the log probability of a data vector up to an

additive constant. Fig. 6 shows the goodness of the 7s and 9s

models (the most difficult pair of digits to discriminate) when

presented with test images of both 7s and 9s. It can be seen that

a line can be passed that separates the two digit sets almost

perfectly. It is also encouraging that all of the errors are close

to the decision boundary, so there are no confident

misclassifications.
The classification network had 10 output units, each of

which computed a total input, x, that was a linear function

of the goodness scores, g, of the various PoE models, m, on

an image, c. The probability assigned to class j was then

computed by taking a “softmax” of the total inputs:

pcj ¼
ex

c
jP

k e
xc
k

xcj ¼ bj þ
X
m

gcmwmj : ð8Þ

There were 10 PoE models with three layers each, so

the classification network had 30 inputs and, therefore,

300 weights and 10 output biases. Both weights and biases

were initialized to zero. The weights were learned by a

momentum version of gradient ascent in the log probability

assigned to the correct class. Since there were only 310 weights

to train, little effort was devoted to making the learning

efficient.

�wmjðtÞ ¼ ��wmjðt� 1Þ þ 0:0002
X
c

gcmðtcj � pcjÞ ; ð9Þ

where tcj is 1 if class j is the correct answer for training case c

and 0 otherwise. The momentum � was 0:9. The biases were

treated as if they were weights from an input that always

had a value of 1 and were learned in exactly the same way.

In each training epoch, the weight changes were averaged

over the whole supervised training set.3 We used separate

data for training the classification network because we expect

the goodness score produced by a PoE of a given class to be

worse and more variable on exemplars of that class that were

not used to train the PoE and it is these poor and noisy scores

that are relevant for the real, unseen test data.

The training algorithm was run using goodness scores

from PoE networks with different numbers of hidden units.

The results in Table 2 show a consistent improvement in

classification error as the number of units in the hidden layers

of each PoE increase. There is no evidence for over-fitting,

even though large PoEs are very good at reconstructing

images of other digit classes. It is possible to reduce the error

rate by a further 0.1 percent by averaging together the

goodness scores of corresponding layers of all the networks

with 100 or more units per layer, but this model averaging is

not nearly as effective as using extra layers.

Fig. 7 shows the images from the MNIST test set that

were misclassified by the PoE network. Some images are

impossible to categorize with confidence, but the network

also makes errors on many images that are easy for people.

5 TRAINING TIME

Taking into account the 10 digit classes and three hidden

layers, the complete system that uses PoEs with 500 hidden

units in each layer contains 8,942,840 parameters in the

30 PoEs that are trained nondiscriminatively4 and only 310 in

the logistic classification net that is trained discriminatively.

The 8,942,840 parameters of the PoE models are trained on

only 44,000 images and the total training time is less than two

weeks in Matlab on a 500MHz pentium II. If we regard each

hidden layer as a separate model, no one model has more than

393,284 parameters and each model is only trained on

4,400 images or hidden activity vectors. Moreover, many

different models can be trained in parallel on different

194 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 2, FEBRUARY 2002

Fig. 4. The mean goodness of validation set digits using the first hidden
layer of the 500 unit models. A different constant is added to all the
goodness scores of each model so that rows sum to zero. White
squares represent positive values, black squares represent negative
values, and the area of a square represents the absolute value.
Successful discrimination depends on models being better on their own
class than other models are. The converse is not true: Models can be
better reconstructing other easier classes of digits than their own class.

2. Strictly speaking, each layer of hidden features is a separate generative
model of the activities in the layer below but it is more convenient to
describe all three hidden layers as a single multilayer model that produces
three goodness scores, one per hidden layer.

3. We held back part of the supervised training set to use as a validation
set in determining the optimal number of epochs to train the classifiaction
net, but once this was decided we retrained on all the supervised training
data for that number of epochs.

4. This is about the number of synapses in 0.02 mm3 of mouse cortex.

machines, though successive hidden layers for one digit class

must be trained sequentially.

6 SHARED PREPROCESSING

One gross simplification in our current system is that the

density models for each digit class are totally separate and do

not make any use of shared preprocessing. An optimistic

approach is to have one big density model for all digit classes

and to hope that hidden units in the higher layers become

very selective for specific classes or subsets of the classes.

Preliminary experiments suggest that higher-level hidden

units do become moderately class-specific, but not enough to

provide a really good classification. Separate experiments

performed on the smaller USPS digit database show that, if

the hidden activities of a one-hidden-layer PoE model

trained on all the digit classes are used as inputs to a logistic

discrimination net, the error rate is almost twice the rate

achieved by using the scores provided by separate

PoE models of each class.
A more promising approach to feature sharing is to train

a single density model, but using 10 additional visible units.

During training, exactly one of these units is initially turned

on to represent the correct class label.5 During one-step

reconstruction, the softmax function is used to ensure that

the activities of the 10 extra visible units sum to 1.

Curiously, the learning algorithm is completely unaffected

by this use of the softmax function to constrain the activities

of a subset of the binary units and it does not even need to

know about it. During testing, the goodness score is

MAYRAZ AND HINTON: RECOGNIZING HANDWRITTEN DIGITS USING HIERARCHICAL PRODUCTS OF EXPERTS 195

Fig. 5. Cross reconstructions of 7s and 9s with networks of 25, 100, and 500 units (top to bottom). The central horizontal line in each block contains
originals and the lines above and below are reconstructions by the 7s and 9s models, respectively. Both models produce stereotyped digits in the
small net and much better reconstructions in the larger ones for both the digit classes. There are also some examples of the 9s model trying to close
the loop in 7s and the 7s model to open the loop in examples of 9s.

Fig. 6. Validation set cross goodness results of the first (a) and third (b) layers in 7s and 9s models with 500 units per layer. Higher layers clearly

contribute significant discriminative information.

5. This sounds remarkably like supervised training, but notice that the
label is treated in just the same way as the pixels and almost all the capacity
of the network is used for reconstructing the pixels because the network is
learning a joint density model and there are a lot more pixels than classes.

computed with each of the “label” units clamped on in turn.

This requires only slightly more computation than comput-

ing the goodness for the image alone because the total effect

of the other visible units on the hidden features does not

change. We have tried this approach and preliminary

results are disappointing. The error rates are much greater

than 1.7 percent. Also, keeping all the training examples

from all 10 classes takes up a lot of memory and the

computation is much less easy to parallelize the computa-

tion than in our current system.

7 MODEL-BASED NORMALIZATION

The results of our current system are still not nearly as
good as human performance. In particular, it appears the
network has only a very limited understanding of image
invariances. This is not surprising since it is trained on
prenormalized data. Dealing with image invariances better
will be essential for approaching human performance. The
fact that we are using generative models suggests an
interesting way of refining the image normalization. If the
normalization of an image is slightly wrong, we would
expect it to have lower probability under the correct class-
specific model. So, we should be able to use the goodness
score as an objective function for comparing many slightly
different normalizations. As an initial experiment, we
restricted ourselves to comparing five possible normal-
izations of the image: the given normalization and the four
possible translations by a single pixel horizontally or
vertically. For each generative model, we allow it to select
whichever of these five normalizations gives the best
goodness score. Obviously, this means that the goodness
scores can only improve and the question is whether they
improve more for the right model than for the wrong
ones, particularly in marginal cases. A preliminary
experiment using only the two most confusable classes
(7s and 9s) showed that this reduces the error rate by
30 percent. Model-based deskewing should make a similar

196 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 2, FEBRUARY 2002

TABLE 2
MNIST Test Set Error Rate as a Function of the

Number of Hidden Units per Layer

Fig. 7. The images in the MNIST test set that were misclassified by the combined network that was trained on all the validation data. All the images in

the top row were misclassified as 0, all the images in the second row were misclassified as 1, etc.

improvement. It should be even more effective to search
for the best normalization by taking the easily-computed
gradient of the goodness with regard to the image
intensities and projecting this gradient vector into the
tangent space of affine image transformations [7].

8 DISCUSSION

The main result is that it is possible to achieve discrimina-
tive performance comparable with state-of-the-art methods
using a system in which nearly all of the work is done by
separate density models of each digit class. This does not
prove that the density models are actually good models of
the digit classes but it strongly suggests it.

The way in which the individual experts are combined in
a Product of Experts generative model has strong simila-
rities to the way in which conditional density models are
combined in approaches like stacking [8], bagging [9], or
boosting [10]. For regression tasks in which a single real-
valued output must be predicted from an input vector, it is
possible to learn a number of different models, each of
which is trained on different, or differently weighted,
subsets of the training data. The predictions of all the
experts are then combined by using a weighted average.
This is equivalent to assuming that each model outputs the
mean of a Gaussian distribution and the weights used for
the averaging are the inverse variances of the Gaussians.
The weighted average is then the mean of the product of the
Gaussians [11]. This is quite different to a mixture of experts
[12] which combines the Gaussian distributions of each
expert using addition rather than multiplication.

ACKNOWLEDGMENTS

The authors would like to thank Y. Le Cun, M. Revow,
and members of the Gatsby Computational Neuroscience
Unit for their helpful discussions. This research was
funded by the Gatsby Charitable Foundation.

REFERENCES

[1] G.E. Hinton, “Training Products of Experts by Minimizing
Contrastive Divergence,” Technical Report GCNU TR 2000-004,
Gatsby Computational Neuroscience Unit, Univ. College London,
2000.

[2] P. Smolensky, “Information Processing in Dynamical Systems:
Foundations of Harmony Theory,” Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, D.E. Rumelhart and
J.L. McClelland, eds., vol. 1, 1986.

[3] Y. Freund and D. Haussler, “Unsupervised Learning of Distribu-
tions of Binary Vectors Using 2-Layer Networks,” Advances in
Neural Information Processing Systems, J.E. Moody, S.J. Hanson, and
R.P. Lippmann, eds., vol. 4, pp. 912-919, 1992.

[4] G.E. Hinton and T.J. Sejnowski, “Learning and Relearning in
Boltzmann Machines,” Parallel Distributed Processing: Explora-
tions in the Microstructure of Cognition, D.E. Rumelhart and
J.L. McClelland, eds., vol. 1, 1986.

[5] Y. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C. Cortes, J.S. Denker,
H. Drucker, I. Guyon, U.A. Muller, E. Sackinger, P. Simard, and
V. Vapnik, “Comparison of Learning Algorithms for Handwritten
Digit Recognition,” Proc. Int’l Conf. Artificial Neural Networks,
pp. 53-60, 1995.

[6] C.J.C. Burges and B. Schölkopf, “Improving the Accuracy and
Speed of Support Vector Machines,” Advances in Neural Informa-
tion Processing Systems, M.C. Mozer, M.I. Jordan, and T. Petsche,
eds., vol. 9, p. 375, 1997.

[7] P. Simard, Y. LeCun, J. Denker, and B. Victorri, “An Efficient
Algorithm for Learning Invariances in Adaptive Classifiers,” Proc.
Int’l Conf. Pattern Recognition (IAPR ’92), 1992.

[8] D. Wolpert, “Stacked Generalization,” Neural Networks, vol. 5,
pp. 241-259, 1992.

[9] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 26,
pp. 123-140, 1996.

[10] R.S. Zemel and T. Pitassi, “A Gradient-Based Boosting Algorithm
for Regression Problems,” Advances in Neural Information Proces-
sing Systems, V. Tresp, T. Leen, and T. Dietterich, eds., vol. 13,
2001.

[11] T. Heskes, “Bias/Variance Decompositions for Likelihood-Based
Estimators,” Neural Computation, vol. 10, pp. 1425-1433, 1998.

[12] R. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton, “Adaptive
Mixtures of Local Experts,” Neural Computation, vol. 3, pp. 79-87,
1991.

Guy Mayraz received the BSc (Hons.) degree in mathematics and
physics (Talpiot Programme) from the Hebrew University, the MSc
(Hons.) degree in computer science from Tel-Aviv University, and he
studied for the PhD degree at the Gatsby Computational Neuroscience
Unit, University College London, working on unsupervised learning in
vision under the guidance of Dr. Geoffrey Hinton. He is a founder of
Linkadoo Communications, a software company where he now works.

Geoffrey E. Hinton received the BA degree in experimental psychology
from Cambridge in 1970 and the PhD degree in artificial intelligence
from Edinburgh in 1978. He was a member of the PDP group at the
University of California, San Diego, an assistant professor at Carnegie-
Mellon University, and a professor at the University of Toronto. He was
the director of the Gatsby Computational Neuroscience Unit at the
University College, London, and has now returned to the University of
Toronto. He is a fellow of the Royal Society of London and the Royal
Society of Canada, and a former president of the Cognitive Science
Society. He has received the IEEE Neural Networks Pioneer award and
the David E. Rumelhart prize. He does research on ways of using neural
networks for learning, memory, perception, and symbol processing, and
has more than 150 publications in these areas.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dilb.

MAYRAZ AND HINTON: RECOGNIZING HANDWRITTEN DIGITS USING HIERARCHICAL PRODUCTS OF EXPERTS 197

