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Abstract

Itis possible to learn multiple layers of non-linear features by backpropa-
gating error derivatives through a feedforward neural netwohks i a very
effective learning procedure when there is a huge amount of labelathga
data, but for many learning tasks, very few labeled examples are available
In an effort to overcome the need for labeled data, several diffgyemer-
ative models were developed that learned interesting features by modeling
the higher-order statistical structure of a set of input vectors. Oneeskth
generative models, the restricted Boltzmann machine (RBM), has no con-
nections between its hidden units and this makes perceptual inference and
learning much simpler. More significantly, after a layer of hidden features
has been learned, the activities of these features can be used as waiaing
for another RBM. By applying this idea recursively it is possible to learn a
deep hierarchy of progressively more complicated features withouitiggju
any labeled data. This deep hierarchy can then be treated as a fesdforw
neural network which can be discriminatively fine-tuned using backprop
gation. Using a stack of RBMs to initialize the weights of a feedforward
neural network allows backpropagation to work effectively in much deep
networks and it leads to much better generalization. A stack of RBMs can
also be used to initialize a deep Boltzmann machine that has many hidden
layers. Combining this initialization method with a new method for fine-
tuning the weights finally leads to the first efficient way of training Boltz-
mann machines with many hidden layers and millions of weights.



1 Introduction

The shape of an object, the layout of a scene, the sense ofch arat the mean-
ing of a sentence must all be represented as spatio-tempaitakns of neural
activity. The simplest way to represent things with neurnsrte activate a single
neuron in a large pool that contains one neuron for eachlgedsiing that might
need to be represented. This is obviously hopeless for tlaaimg of a sentence
or the layout of a scene and it is fairly implausible for thasé of an object or
the sense of a word. The alternative is to use a distribufg@sentation in which
each entity is represented by activity in many neurons aok Bauron is involved
in the representation of many different entities. If we madereuron as a binary
device that emits 1 or O spikes during a short time window,ibnweé assume that
the precise time of a spike within the window is irrelevangistributed repre-
sentation is just a set of binary feature$f we model a neuron as a device that
can output an approximate real numBer distributed representation can be a set
of noisy, real-valued features. Either way, a central qaegor both Psychology
and Neuroscience is “where do these features come from?”.

First we must dispose of the idea that features are innapalgified. There
are several reasons why this idea fails:

1. We have about0'* synapses. Even if we treat these as binary and even if
we only make use af% of their storage capacity to define all of the features
we use, we still need to specify!? bits. There is no hope of packing this
much information into our genes.

2. The world changes much too fast for innately specifiedufestto keep up.
If 1 tell you that she scromed him with the frying pan, you inufieely
have quite a large number of features for the word “scromddhately
specified detectors for long wriggly things or for a red dotwsen two
almost parallel lines may be a good way to avoid venomousesnaikto get
a mother gull to regurgitate food, but for almost all of thegegptual and
cognitive tasks for which features are useful, wired-irtdeas cannot adapt
nearly fast enough.

3. Evolution is much too slow to discover the millions of fe@s we need.

IWe shall return to the issue of spike timing at the end of theepa
2This could be implemented by using a gang of similarly turesd neurons to implement each
model “neuron” or by using a rate code over a much longer tiereod.



In very high-dimensional spaces, searches that have effiatzess to gra-
dient information are millions of times faster than seaschwat do not
Evolution can optimize hundreds or even thousands of pasmebut it

is hopelessly inefficient for optimizing millions of paratees because it
cannot compute the gradient of the fitness of the phenotytlerespect to
heritable parameters. What evolution can do is explore theespf biolog-
ical devices thatanmake effective use of gradient information. It can also
explore the space of objective functions that these dewglesld optimize
and the space of architectures in which this optimizatiorkeavell.

There are several different ways to approach the questiavhat objective
functions are being optimized by the brain and how it comptite gradients of
these objective functions with respect to properties obpges. We can investi-
gate people’s learning abilities without worrying abou trardware [50], we can
investigate how real synapses change [31], or we can exhleispace of synaptic
learning rules that work well in large networks of neurdkelprocessors. Given
enough computational power, we might even use an evolutfanger loop to ex-
plore this space [56]. These approaches are complememaciearly need to be
pursued in parallel. It is impossible to know in advance Wwkethe biologically
unrealistic assumptions of a particular type of model newvdl prevent us from
learning anything biologically relevant by studying howget networks of those
neurons to learn complex tasks. Similarly, it is impossiol&now in advance
whether neuroscience experiments to test computatiomdasible theories of
learning will tell us anything interesting about how leagireally occurs in the
brain.

My approach is to try to find learning procedures that worklyeaell for
learning things that people are obviously very good at. ilexl/these procedures
can run in neuron-like hardware, they should provide biisisgvith a much more
sensible space of hypotheses. Most intuitively plausigdering procedures do
not actually work very well in practice, particularly in g networks, and they
can be filtered out without invading any real brains.

3|t is always possible to use a local random search to estithatgradient but in spaces with
millions of dimensions, this is millions of times slower thenethods like backpropagation that
compute the gradient efficiently.



2 Learningdistributed representationsin 1986

In the mid 1980s, there were two exciting new algorithms éarhing non-linear
distributed representations in multiple layers of hiddeitsu Back-propagation
[45, 55, 27] was a straightforward application of the chaite rfor computing
gradients in a deterministic feed-forward network (seerédl). It looked pretty
implausible as a model of learning in cortex because it regua lot of labeled
training data. Some people thought it was also implausikbleabse the “neu-
rons” needed to send two quite different signals, one duthegorward pass to
communicate activities and one during the backward passrtoranicate error-
derivatives. Evolution, however, can produce teeth andaisefrom the same
stem cells, so it is hard to believe that it could fail to find aywto implement
back-propagation in a few hundred million years if that waes best thing to do.
Getting all of that labeled training data, however, seentetdlpmatic.

[Figure 1 about here.]

The most promising suggestion for getting “labels” was t&kenthe desired
ouput of the neural network be a reconstruction of all or paithe input. For
static data this amounted to learning a deep auto-encodgrhfortunately, in
the last century, nobody could get deep autoencoders to swgnificantly better
than Principal Components Analysis [7, 12]. For dynamic ddia most natural
way to reconstruct the input data was to predict the next drafmdata [9], but
attempts to apply backpropagation-through-time to legysequential data failed
because the gradients grew or shrank multiplicatively ahdésne step [3]. We
now have good ways of dealing with this problem [32, 23], katkin the 1980’s
the best we could do was to castrate backpropagation-thrbomg by throwing
away the most interesting part of the gradient.

Given a large enough supply of class labels, back-propagatid learn to
solve a number of difficult problems, especially when weigjiiiring over time or
space was used to implement prior knowledge about inveegjS, 28]. Without
weight-sharing, however, it was hard to get backpropagdatonake good use of
multiple hidden layers and it failed to live up to the extréyrig@igh expectations
we had for it in 1986. In particular, the hope that backprapi@g-through-time
could learn to solve complex problems by creating a myriadnoéll sequential
“programs” and dynamically routing their outputs to thehtigplaces was never
realised.



In 1995, Radford Neal [35] showed that for modest-sized ingisets, feed-
forward neural nets with one hidden layer generalised mettebif the gradient
produced by backpropagation was used to wander througlptue ©f possible
weights like a heavy particle on a bumpy error surface. Thggbatends to head
in a downhill direction gathering momentum, but this monoemis occasionally
discarded and replaced by a random kick. Every so often ghefsveights cor-
responding to the current position of the particle is savedi@edictions on test
data are made by averaging the outputs produced by all ofiffieeesht networks
that use all of these different saved, weight vectors. N&al showed that as
the number of hidden units goes to infinity and the amount dfatedecay on
their outgoing connections also increases appropriatedystochastic method of
sampling from the space of good models becomes equivalentrtethod known
as “Gaussian Processes”. The predictions of a Gaussiae$3racodel can be
computed in a more direct way [41], so from an engineeringppexstive, there
is not much point using backpropagation with one hiddenrl&ayemodest-sized
problems [30]. In the machine learning community, backpgation went out of
fashion. Retrospectively, it is fairly clear that this happe because the amount
of labeled data and the computational resources availathe aime were insuffi-
cient to make good use of the enormous modeling potentialuitipte layers of
non-linear features.

The other exciting new learning algorithm in the mid 1980%] [@as quite
different in nature. It didn’t work in practice, but theacetlly it was much more
interesting. From the outset, it was designed to learn pidestributed represen-
tations that captured the statistical structure implicé set of binary vectors, so it
did not need labeled data. A more insightful way to say thtkas it treated each
training case as a vector of desiredtputsof a stochastic generative model, so
the training data consisted entirely of high-dimensioabkls and what was miss-
ing was the inputs. The network, called a Boltzmann machioetained a set of
binary stochastic visible units which could be clamped toaming vector and a
set of binary stochastic hidden units which learned to grehigher-order fea-
tures of the data, typically ones that occurred more oftan thiould be expected
by chance. Any unit could be connected to any other unit anoff #he connec-
tions were symmetric. In the vision and statistics literasuthis is now known
as a partially observed, inhomogeneous, Markov Random Bredeh undirected
graphical model. Boltzmann machines can also be used to fleardistribution

4Weight-decay keeps the weights small by adding an extraltyethat is proportional to the
squared value of the weight. The gradient of the penaltysgh# weight towards zero.



of the outputgyivenan input vector. This conditional form of the Boltzmann ma-
chine allows it to perform the same tasks as a feedforwarcahaatwork trained
with backpropagation, but with the added advantage thanitncodel correlations
between the outputs. Given a particular input vector, f@neple, a conditional
Boltzmann machine can assign high probabilities to the dwpctors (1,1) and
(0,0) and low probabilities to (1,0) and (0,1). A feedfordiaeural network can-
not do this. In the machine learning literature this is kn@asgm conditional ran-
dom field, though most CRFs used in machine learning do not hddein units
so they cannot learn their own features.

After the weights on the connections have been learned, aBalin machine
can be made to perform perceptual inference by clamping aveletor on the
visible units and then repeatedly updating the hidden pome at a time, by
turning on each binary hidden unit with a probability thaki¢ogistic function
of the total input it receives from all the other visible andden units (plus its
own bias). After a sufficient length of time, the hidden vestwill be samples
from the “stationary distribution” so any particular hiahdeector will occur with
a fixed probability that depends on how compatible it is with tatavector but
does not depend on the initial pattern of hidden activitieigdden vectors that
occur with high probability in the stationary distributiane good representations
of that datavector, at least according to the current model.

Another computation that a trained Boltzmann machine cafoparis to gen-
erate visible vectors with a probability that equals thebatulity that the model
assigns to those vectors. This is done by using exactly the gaocess as is
used for perceptual inference, but with the visible unisodbeing updated. It
may, however, take a very long time before the network remdisestationary
distribution because this distribution usually needs tchigly multimodal to
represent interesting data distributions well. Many iesting distributions have
the property that there are exponentially many modes, ebelhich has about
the same probability, separated by regions of much lowdrsahitity. The modes
correspond to things that might plausibly occur and theoregibetween nodes
correspond to extremely unlikely things.

The third and most interesting computation that a Boltzmaaalime can per-
form is to update the weights on the connections in such a hatyittis probably
slightly more likely to generate all of the datavectors ie training set. Although
this is a slow process, it is mathematically very simple ami¢f ases information
that is locally available. First, the inference processuis on a representative
mini-batch of the training data and, for each pair of coneécinits, the expected



product of their binary activities is sampled. Then, the sammputation is per-
formed when the Boltzmann machine is generating visibleoredrom its sta-
tionary distribution. The weight update is then proporéibto the difference of
the expected products during inference and generatios.difiérence is an unbi-
ased estimate of the gradient of the sum of the log probisildf generating the
training data. It is surprising that the learning rule isthimple because the local
gradient depends on all the other weights in the network. nmibst attractive as-
pect of Boltzmann machines is that everything a connecti@ds& know about
the weights on other connections is contained in the difiegeof its expected ac-
tivity products during inference and generation. Instefagkquiring a backward
pass which explicitly propagates information about gratdiethe Boltzmann ma-
chine only requires the same computation to be performecetwance with the
visible units clamped to data and once without clamping.oinot require the
neurons to communicate two quite different types of infarora

Generating data from its model in order to collect the diaisequired for
learning would interrupt the processing of incoming infatran, so it is tempting
to consider the possibility that this occurs at night dufREgM sleep([5]. At first
sight this seems computationally awkward since it wouldy@ilow one weight
update per day, but there is a more plausible version of tlda.i During the
night, generation from the model is used to estimate a besér the expected
product of two activities. Then during the day, weights aised when the product
exceeds this baseline and lowered when it falls below thelines This allows
many weight updates per day. though as the day progressésatineng would
get less and less accurate.

From a Cognitive Science perspective, Boltzmann machinéseyf could be
made to work, would be interesting because they would exhilbilti-stability
(as in the Necker cube illusion) and top-down effects dupaceptual inference
[33]. They would also have a tendency towards hallucinatibrthe input was
disrupted, as in Claude Bonnet syndrome[42]. Unfortunateith a lot of hid-
den units and unconstrained connectivity, Boltzmann mashirained with the
algorithm decribed above learn extremely slowly. They nee@ry small learn-
ing rate to average away all of the noise caused by the sticlsaspling of the
pairwise statistics, and they need to be run for an extrefoely time in the gen-
erative phase to get unbiased samples. In the 1980’s, there¢hey could only
be used for toy tasks. Terry Sejnowski (personal communitcal985) believed
that the best hope for learning large Boltzmann machinesov@&sd some way of
learning smaller modules independently, but we had no id@atb do this. The



solution to this problem eventually presented itself after decades of meander-
ing through the space of unsupervised learning algorithmaslearn distributed
representations in networks of neuron-like processintsuni

3 Directed versusundirected graphical models

“Graphical Models” is the name of a branch of Statistics antfigial Intelli-
gence that deals with probabilistic models whose paramgtpically have a local
structure that can be depicted by using a graph that is gtdohnected. Missing
interactions are depicted by missing edges in the graphhnikia very efficient
representation when nearly all of the possible interastame missing. Graphical
models come in two main flavors, directed and undirected.

In an undirected graphical model, like a Boltzmann machine,parameters
(i. e. the weights and biases) determine the “energy” of a joinfigaration (a
set of binary values for all of the observed and unobservedhias). Boltzmann
machines use the Hopfield energy which is defined as the megattithe “har-
mony”. The harmony is the sum over all active units of theasigis, plus the sum
over all pairs of active units of the weight between them. pitabability of a joint
configuration is then determined by its energy relative kepjoint configurations
using the Boltzmann distribution:

e—E(v,h)
_ EW
S e PO

The inference phase of the Boltzmann machine learning rulepotes the
data-dependent statistics needed to lower the energiembtpnfigurations that
contain datavectors on the visible units. The generaties@ltomputes the data-
independent statistics needed to raise the energies ajiail gonfigurations in
proportion to how often they occur according to the currentel. This makes
the data more probable by decreasing the divisor in equéation

Directed graphical models work in a quite different way. Idigected graph-
ical model, the variables have an ancestral partial orderivhen the model is
generating data, the probabilty distribution for eachalale only depends on its
“parents” — directly connected variables that come eantighe ordering. So to
generate an unbiased sample from the model, we start by santipé values of
the highest ancestors from their prior distributions arnehtsample each lower

p(v,h) = (1)




variable in turn using a probability distribution that dage on the sampled val-
ues of its parents. This dependency can be in the form of attmmal probability
table whose size is exponential in the number of parentscanibe a parameter-
ized function that outputs a probability distribution fodascendant when given
the vector of states of its parents. In a Gaussian mixturestnéar example, the
discrete choice of Gaussian is the highest level variabdetlais choice specifies
the mean and covariance of the Gaussian distribution frorahwthe lower-level,
multi-dimensional variable is to be sampled when geneggdtiom the model.

The simplest examples of directed graphical models witdéndvariables are
Gaussian mixture models which have a single discrete hidaeable (the choice
of which Gaussian to use) and factor analysis which has awvettreal-valued
hidden variables (the factor values) that are linearlytegldo the observed data.
When generalized to dynamic data these become Hidden Marlaneld and
Linear Dynamical Systems. All four of these models have g loistory in statis-
tics because they allow tractable inference: Given an @bdedatavector, there
is an efficient way to compute the exact posterior distrdoutover all possible
hidden vectors. Efficient inference makes it easy to use mafter they have
been learned, and it also makes it easy to learn them usimgivas of the EM
algorithm [8].

In the 1980's, researchers in Artificial Intelligence whonted to handle un-
certainty in a principled way developed inference procedudor more compli-
cated directed graphical models which they called “Bayes’N®t“Belief Nets”.
Initially, they were not particularly interested in leangibecause they intended to
use domain experts to specify the way in which the probaalgtribution of each
discrete variable depended on the values of its parenteaJadarl [39] showed
how correct inference could be performed by sending sim@ssages along the
edges of a directed graph, provided there was only one patteba any two
nodes. His “belief propagation” algorithm can be viewed gemeralisation of the
well-known “forward-backward” inference algorithm for ¢tien Markov Models
[2]. Heckerman [13] showed that expert systems worked bétthey used a
proper inference procedure instead of ad hoc heuristicgraasdhad a big effect
on the more open-minded members of the Artificial Intelliceecommunity. At
around the same time, the statistics community developetjunction tree” al-
gorithm for performing correct inference in sparsely castaed, directed graphical
models that contained multiple paths between nodes butreotdd cycles [26].

The work on directed graphical models initially had littlmpact on those
in the connectionist community who wanted to understand ti@brain could



learn non-linear distributed representations. The gegbhmodels community
was mainly interested in relatively small models in whicle 8tructure of the
graph and the way in which each variable depended on its {zanere specified
by a domain expert. As a result, the individual nodes in tteghrcould all be

interpreted and the directed edges represented meaniceyfishl effects in the
generative model. By contrast, the connectionist commuwéty more interested
in getting a large number of units with fairly high connettio learn to model

the structure implicit in a large set of training exampled #rey were willing to

entertain the possibility that there were many differertt aqually good solutions
and that many of the units would have no simple interpretatio

The two communities became closer when Radford Neal [37]sexhlthat
the stochastic binary units used in a Boltzmann machine doeldsed instead
to make a directed graphical model, called a “sigmoid belgtf, in which the
logistic sigmoid functiorr(z) = 1/(1 + exp(—x)) is used to parameterize the
way in which the probability distribution of a unit depends the values of its
parents. This differs from a Boltzmann machine because, wWieemodel is gen-
erating data, the children have no effect on the parentsispdassible to generate
unbiased samples in a single top-down pass.

Neal implemented a sigmoid belief net with multiple hiddegdrs and he
compared its learning abilities with those of a Boltzmann hnivae. The inference
procedure for a sigmoid belief net uses a similar iterativend Carlo process
to the Boltzmann machine, but it is significantly more comgaied because each
hidden unit needs to see two different types of informatidhe first is the cur-
rent binary states of all its parents and children and thergkés the predicted
probability of being on for each child given the current esabf all that child’s
parents. The hidden unit then tends to pick whichever ofntsdtates is the best
compromise between fitting in with what its parents preductif and ensuring
that the predicted state of each of its children fits the cursampled state of that
child.

Once a binary representation of a datavector has been sdifnphe the pos-
terior distribution, the learning procedure for a sigmoddid&f net is simpler than
for a Boltzmann machine because a sigmoid belief net doesavettio deal with
the normalizing term in equation 1. The learning procedarsimply the delta
rule: The sampled binary value of the “post-synaptic” cisldompared with that
child’s probability of being on given the sampled states®fpre-synaptic” par-
ents. The top-down weights are then updated in proportichdovalue of the
parent times the difference between the sampled value ahtiictand the proba-
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bility predicted by the parents. This is a generative versitthe “delta” rule.

Neal showed that a sigmoid belief net learns faster than aBalhn machine,
though not by a big factor. Given the extra complexity of thierence procedure,
this did not seem like a good reason to abandon Boltzmann meslais a neu-
ral model, but it did raise the question of whether the infeeeprocedure for a
sigmoid belief net could be simplified.

4 Learning with incorrect inference

Here is an idea that sounds crazy: When given an input vecstead of sam-
pling the binary states of the hidden units from the true gximt distribution,
which contains complicated correlations, sample them feomuch simpler dis-
tribution that does not contain these complicated coimlatand is therefore easy
to compute. Then use these sampled states for learning laasyifitere samples
from the correct distribution. On the face of it, this is a blgssly heuristic ap-
proach that has no guarantee that the learning will imprbgertodel. When the
hidden states are sampled from the true posterior disimitpwive are guaranteed
that the learning will increase the probability that the mlogould generate the
training data, provided we make a sufficiently large numbesudficiently small
updates to the weights. But if we use incorrect samples ofemddate vectors, it
is obvious that this guarantee no longer holds. Indeed, wklgcoake the weight
changes go in precisely the wrong direction by choosing ticerrect samples
maliciously.

Using arguments from coding theory and from statisticalgits; Radford
Neal, Richard Zemel and | [36, 22] were able to show that le@rmising incor-
rect hidden samples is much more sensible than it appeasestnot necessarily
increase the model’s log probability of generating theniraj datd, but it is guar-
anteed to improve a different quantity that is a lower boumthis log probability.
For each individual training case, this bound is the log probability of generat-
ing that training case minus the divergeng&l,(Q.||P.), between the simplified
distribution@.. from which the hidden state vectors are actually sampledittae
true posterior distributio®. from which they ought to have been sampled. When
the weights are adjusted to maximize this bound, one of twmthmust happen:
Either the log probability of the training data improves loe true posterior dis-

SMaximizing the product of the probabilities of generatitighthe training cases is equivalent
to maximizing the sum of the log probabilities.
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tribution, P., becomes more similar to the simplified distributiQpthat is being
used to approximate it. So even though the log probabilityfal, it can only do
this by making the posterior distribution much easier torappnate and this it-
self is a good thing because it means we have a model in whiomautationally
simple way of doing approximate inference works pretty well

Neal and | wrote a paper about this type of “variational” feag in 1993 and
circulated it in the machine learning community but, inigiait had little impact
and the Statistics journal we sent it to rejected it. Our 1p8Per eventually
appeared as a chapter in an edited book on Graphical Modg|saj&d by the late
1990’s the idea of variational learning had become very [@put is now very
widely used for learning complicated graphical models inclhthe true posterior
is too difficult to compute exactly [25].

[Figure 2 about here.]

The natural way to apply variational learning to a sigmoitidienet leads to
fairly complicated inference and learning procedures pedause an inner loop
of iterative optimization is required to find the best appnoating distribution
within the class of simplified distributions that are easyctonpute. However,
Peter Dayan noticed that if we are willing to make an addélapproximation,
both inference and learning become surprisingly simplé. [Efven a datavector,
the best factorial distribution over the hidden und,is the one that minimizes
KL(Q||P), whereP is the true posterior distribution. If, instead, we trairepa-
rate feedforward neural net to minimize the highly corediequantityx’ L(P||Q),
we get a very simple learning procedure called the “wakegslalgorithm. Like
the Boltzmann machine, this algorithm has two phases, onéiahwit is driven
by data and one in which it generates from its model, but Heze¢semblance
ends. During the wake phase, feedforward “recognition’nemtions are used to
infer an incorrect probability distribution for each hiddanit given the binary
states of the units in the layer below (see figure 2). All ofuhés within a layer
are then given binary states that are sampled independeotiy their inferred
distributions. This is done one layer at a time, so only hirsiates need to be
communicated. Given the sampled states of all the unitstofrelown “genera-
tive” connections that form the sigmoid belief net can thernldarned using the
delta rule as described earlier. During the “sleep” phdsenetwork simply gen-
erates samples from its model. Since it generated theselesnipknows the
correct states of the hidden units and it can use these statesgets for train-

12



ing the bottom-up recognition connections, again usingl#ita rule but with the
roles of the pre-synaptic and post-synaptic units reversed

The idea that the cortex learns by minimizing variationakfenergy has re-
cently been espoused by Karl Friston and his collaborafidcbdnd is currently
one of the many possibilities. As a contribution to macheerhing, the wake-
sleep algorithm is an interesting form of unsupervisedniegr but it is rather
slow for deep networks that have many hidden layers and dtisised for practi-
cal applications. Aesthetically, the use of the wrdki@ divergence for learning
to approximate variational inference is unsatisfying. duhd be much nicer if
the recognition connections could perform correct infeesfor all of the hidden
layers in a single bottom-up pass but this seemed hopelegsiyistic.

5 Restricted Boltzmann M achines

One model that does allow simple, correct inference of ibistied non-linear
representations is a “Restricted Boltzmann Machine” (RBM) inclwtihere are
no connections between hidden units and no connectionsebatwisible units.

When this special case was suggested by Paul Smolensky g8y, $ejnowski

and | thought it was of no particular interest because we badd the learning al-
gorithm for the general case, and removing the connectietvgden hidden units
clearly made the model much less powerful. However, an RBMetlirout to

be exactly what was needed to divide the task of learning p detwork into a

sequence of much simpler tasks.

In an RBM, the hidden units are conditionally independentgaeisible vec-
tor, so unbiased samples of the expected activity proddietsisible and a hidden
unit during inference(v;h;)ata, €an be obtained in one parallel step. To sample
the expected products during generatiQnh ;) mode, Still requires multiple itera-
tions that alternate between updating all the hidden unigarallel and updating
all of the visible units in parallel. However, learning lstorks well if (v; /) model
is replaced byv;h;) econstruction Which is obtained as follows: Starting with a data
vector,v, on the visible units, update all of the hidden units in pdatal

plhy =11v) = a(bj+ > viwy;) (2)

1EVis

whereb; is a bias,w;; is the weight between unitsand j ando is the logistic
sigmoid funtion. Then update all of the visible units in pkelato get a “recon-
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struction™
plvi =1v) = a(bi + > hjw;;) (3)
jehid
Then update all of the hidden units again. After averagimgahirwise statistics
over one or more training cases, update the weights in pérall

Awij X <vz’ hj > data <Ui hj > reconstruction (4)

This efficient learning procedure approximates gradiestéet in a quantity called
"contrastive divergence” and usually works well in praetjd5].

6 Stacking RBMsto make adeep belief net

Once an RBM has been trained, its weights and biases definetaisinbution
p(v, h) over visible and hidden binary state vectors. They also defin), p(h),
p(v|h) andp(h|v). One slightly odd way to expreggv) is in terms of the prior
p(h) that the RBM defines over its hidden states:

p(v) => p(h)p(v|h) (5)

Now suppose we keep thév|h) defined by the first RBM, but we replagéh)
in equation 5 by the probability distribution that a second RB&ines over its
visible units as shown in figure 3. It can be shown that thisimiprove our model
of the original training data if and only if the second RBM maditle first RBMs
aggregated posterior distribution overbetter than the first RBMs priop(h),
models this aggregated postefior

[Figure 3 about here.]

It is easy to ensure that the second RBM starts off with a modedenfggre-
gated posterior that is just as good as fifle) defined by the first RBM: Simply
initialise the second RBM to be the same as the first one, but¢dunpside down
so that its visible units are the same as the first RBMs hiddds and vice versa.

5The aggregated posterior is the equally weighted mixturalaff the posterior distributions
for the individual training cases. Even though each indigicposterior is factorial, the aggregated
posterior is not.
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After training the second RBM, we can apply the same trick agaimprove
its model of the aggregated posterior of the first RBM. Aftemirey a stack of
RBMs in this way, we end up with a peculiar kind of composite ni@ddled a
deep belief net (DBN). The top two layers are the final RBM whicts a&s an
undirected, high-level, associative memory. The remgitagers form a directed
belief net because the only thing we kept from the earlier RBMs the top-
down weights that determingv|h). If we perform bottom-up inference in this
DBN by using the weights of the RBMs in the bottom-up directior,d® not get
samples from the true posterior distribution. Neverthgléscan be shown [19]
that each time we add another RBM to the stack we get a new DBN #saah
better variational lower bound on the log probability of theining data than the
previous DBN, provided we add the new RBM in the right way.

7 Fine-tuning a deep belief net

When a DBN has been created by stacking some RBMs, the whole sgatem
be fine-tuned so that the weights in earlier layers have acehtmadapt to the
weights that were subsequently learned in later layersheEi generative or a
discriminative objective function can be used for fine-tgna DBN. Generative
fine-tuning maximizes the probability that the DBN assignshi training data
and can be done using a contrastive version of the wake-glgepthm. Each
connection that is not part of the top-level RBM is split into@tbm-up recog-
nition connection and a top-down generative connectiontl@aveights on these
two connections are untied so that their values can becoffieeatit.

In the “wake” phase of the learning, the units in all the hidtiyers are driven
bottom-up by the recognition connections. After a bottgmpass that selects
binary states for all the hidden units, the generative coinores are trained to be
better at reconstructing the binary activities in one Idy@m the binary activities
in the layer above. This is done using the delta rule, as testin section 3.
The bottom-up pass is then followed by a top-down pass tlest U generative
connections, but instead of sampling from the top-levetaid states from the
model, it just uses the top-level hidden states producedéybbttom-up pass.
This is the contrastive version of the “sleep” phase. Afiertop-down pass, the
recognition connections are trained to be better at reaoyé#ne true causes in the
layer above, again using the delta rule but with the preqsyonand post-synaptic
roles reversed.
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During contrastive wake-sleep learning, the connectiorise top-level RBM
are kept symmetric and are trained using the usual conteaditiergence learning
rule. After fine-tuning, samples generated from the modek Imore like the
real data. A demonstration of a model with three hidden kyleat has learned
to generate images of handwritten digits can be founttigt//www.cs.
toronto.edu/  ~ hinton/digits.html

A very different way to fine-tune a DBN is to add a final layer dfdts and to
use a discriminative objective function that maximizesltgeprobability that the
model assigns to the correct class label. The unsuperviagdng of the stack
of RBMs is regarded as a “pre-training” phase whose role is $oadier good
features that model the structure in the input domain. Mdnkese features will
be irrelevant to any particular discriminative task, ba ¢imes that are relevant are
likely to be much more useful than the raw inputs because rdjgresent strong
higher-order correlations in the data that are probabbteel to the real causes of
the data. These relevant features can be given strong weatite label units and
they can also be slightly adjusted to make them more usefuigzrimination.
This is done by simply treating the DBN, with its extra final éayof labels, as
a feedforward neural network and using standard backpedjmeng This makes
backpropagation work a whole lot better in deep feedforwestavorks that have
many hidden layers [20]. For example, DBNs fine-tuned withkpeapagation
are now the best speaker-independent method for recognitionemes on the
benchmark TIMIT test set [6].

In an extensive set of simulations, [10] show that there arereasons why
pretraining a stack of RBMs makes backpropagation work so rbetier. The
first is that when the hidden units are initialised to semsfbhtures by the pre-
training, backpropagation can find better local minima antthining data. The
optimization is much easier because the weights are startadjood region of
the space so backpropagation does not need to design gaoeeiom scratch.
It merely needs to slightly adjust the features so that thoesan boundaries are
in exactly the right place.

The second reason for the improvement is that the minimadf@dter unsu-
pervised pre-training give significantly better genektian to the test data. They
suffer much less from overfitting, presumably because midsieanformation in
the learned weights comes from modeling the input pattexther than modeling
the function that maps from input to label. The input patterantain much more
information than the labels, so modeling the input can stppany more well-
determined parameters than modeling the labels given the.iithis is especially
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important for learning tasks in which there is a large amatfininlabeled data for
pre-training and a relatively small amount of labelled datdine-tuning.

It is a curious twist of fate that the search for an efficiengduar way of
training large Boltzmann machines ended up with a method fakimg back-
propagation work much better in deep feed-forward neursvorks. Some time
later [46], Ruslan Salakhutdinov and | discovered a much ddssous way of
stacking RBMs to produce a composite model which really is @ didtzmann
machine (DBM).

8 Stacking RBM’sto make a deep Boltzmann ma-
chine

Instead of entirely replacing the prior distribution that RBM defines over its
hidden units by a distribution defined by the next RBM in the lstaee could
take the geometric mean of these two distributions by usaifydi the bottom-
up weights and half of the top-down weights. For layers inrthedle of a deep
stack of RBMs this is easy to do: We simply learn an RBM and therddiuill
its weights and biases by 2 when we compose the individual RBMise stack
to make a deep Boltzmann machine. For the first RBM in the stackegd to
halve its bottom-up weights, but not its top-down weightd am need to end up
with symmetric weights. So we train this RBM with a constralttbottom-up
the weights are twice the top-down weights. This is no lormy@roper RBM,
but contrastive divergence training still works well. Corsady, for the last RBM
in the stack, we can constrain the top-down weights to beetwhe bottom-up
weights during the pre-training or we can use two sets ofdndahits with tied
weight matrices and discard one of these sets when we addhetbnal deep
Boltzmann machine.

9 Fine-tuning a degp Boltzmann machine

After a deep Boltzmann machine has been composed out of RBMsydtsisible
to train all of the weights together to improve the genemativodel. The correct
maximum likelihood way to update the weight on the symmaetdonection be-

"This is clearly the situation for a child learning to name il&an objects.
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tween two units is to use the difference between the expesttdty products
during inference and generation. However, with many hiddgers, it is very
difficult to sample the activity products from the true pomtedistribution, so
instead of performing correct inference, we resort to aatemal approximation
which uses a much simpler distribution in which the hiddevaies are assumed
to be independent given the datavector. The fine-tunindhesetore, only opti-
mizing a variational lower bound on the log probability ohgeating the training
data.

For estimating the expectations of the activity productemvenerating from
the model, it is not permissable to use a variational appnakpon because these
products contribute a negative term to the gradient. As aequence, if a varia-
tional approximation is used for the generative expeataticnstead of adjusting
the weights to make the variational bound tighter, the liegriries to make the
bound as loose as possible, which is very bad news. RuslakhbédiEnov re-
alised that this problem can be solved by estimating the rgéime expectations
using a set of persistent Markov chains whose states areagdtier each weight
update[37]. This means that we need to remember the binatigssdf all of the
units for each persistent chéin

If the generative model has many different modes that arelwiseparated,
which is what is required for many applications, one woulgest that a very
large number of persistent chains would be needed to ctyr@atrage the ac-
tivity products over all the different modes. In practicevawer, a small number
of persistent chains works very well. This is because theigcproducts con-
tributed by these chains are used for unlearning the modetsbeliefs. So the
energy landscape is modified to raise the energy of whatéstr a persisitent
chain is currently in [51, 52]. This causes the chain to rigpmdove to another
part of the energy landscape. If any chain is stuck in a deemgminimum that
does not contain any training data, the learning will quicklsie the energy of this
minimum until the chain escapes. The learning, theref@eses the states of the
chains to move around much faster than they would with thaieg turned off —
a very fortuitous phenomenon that makes it possible to fine-tleep Boltzmann
machines with many hidden layers and millions of weightq.[46

It is tempting to also use persistent chains for estimategdata-dependent
statistics, and this works well for small datasets [37]. loge datasets, however,
it is much more efficient to update the weights after a smatiilbatch of training

8Actually, it is sufficient to remember the states of alteerlayers.
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cases and this means that the weights have typically chamgadot before we
revisit the same training case. Consequently, the persiskein for that train-
ing case is no longer anywhere near its stationary distabuwiven the current
weights.

10 Summary of themain story

In about 1986, backpropagation replaced the Boltzmann madbarning algo-
rithm as the method of choice for learning distributed reprgations. This pa-
per has described three developments, enumerated belmegtiods for learning
stochastic generative models. These three methods msultevery good way
to initialize the weights of deterministic feedforward n@unetworks. With this
initialization, backpropagation works much better.

The weights of a deep Boltzmann machine can also be initéhlisa similar
way, and a fourth development then allows deep Boltzmann mesto be fine-
tuned as a generative model. After 25 years, this finally mékgossible to learn
large, deep Boltzmann machines.

1. Variational learning: With the advent of graphical models, it became ob-
vious that the stochastic binary variables used in the Batmmmachine
could be used in directed generative models — sigmoid baditsf — and this
revived interest in stochastic neural nets. For these t@idatets, learning is
easy if the hidden states can be sampled from their postistibution but
sampling from this distribution is infeasible in large arehdely connected
networks. Surprisingly, learning still works pretty wélwe sample the hid-
den states from a much simpler distribution, because theitepoptimizes
a variational bound on the log probability of generating dlaga. Optimiz-
ing this bound changes the weights to achieve a compromiseeba two
goals: maximize the probability of generating the traindega and make
the true posterior be as similar as possible to the type glsimistribution
that is being used to approximate it.

2. Contrastive divergence: There is a very simple form of the Boltzmann
machine, first described by Paul Smolensky, in which infeeas very easy
because the hidden units really are independent given the dearning is
still a problem because it appears to require samples fremmibdel and
these are hard to get for undirected models. Again, theiealig to use
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the wrong statistics. In this case the activity productsrdugeneration
are replaced by the activity products after reconstrudtimegdata from the
hidden activities. This finally made it possible to learrgaBoltzmann
machines, albeit ones with very restricted connectivity.

. Forming deep models by stacking RBMs: After learning one RBM, the
states of its hidden units can be used as data to train arlRBMr A stack
of RBMs learned in this way is a good way to initialize the wegybf a
feedforward neural net that is then fine-tuned with backagapion. How-
ever, the composite generative model formed by a stack of RBMst a
multilayer Boltzmann machine. It is a hybrid that has an wxi#d RBM
in its top two layers and a directed belief net in its loweresy To compose
a multilayer Boltzmann machine out of RBMs, we need to averagéa-
down and bottom-up input that a hidden layer receives framwlo RBM’s
in the stack that contain that layer. This is different fram@y replacing
the bottom-up input with the top-down input which is what paps in the
generative model when RBMs are composed to form a deep betief ne

. Combining variational learning with persistent Markov chains. Early
attempts to find an effective learning procedure for Boltzmarachines
just assumed that the same method would be used for estgraith the
data-dependent and the data-independent statisticatidaial methods are
no good for the data-independent statistics and persistairts are no good
for the data-dependent statistics when using small miciieest and large
datasets because the saved state of a persistent chainivenaxgni-batch
is completely out of date by the time that mini-batch is riegts How-
ever, combining variational learning for the data-dependgatistics with
persisitent chains for the data-independent statistiakswavell due to an
unexpected interaction: In addition to trying to make theateonal ap-
proximation tight, the learning makes the persistent chaiove around the
space rapidly. For deep Boltzmann machines that have alfeaely pre-
trained, this combination is very effective.

In this paper | have described how two learning procedur@as the 1980’s

evolved over the next 25 years. | focussed on the main id@asvére required to
get these learning procedures to work really well. Otherartgmnt developments
could not be covered. These include related developmeritgeitypes of units
that can be used [54, 34], the ways they can interact [16]wigs they can
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share weights [29], and the modifications that allow thesasdto be applied
to sequential data [49]. Another important thread has bkerdéevelopment of
alternative unsupervised modules that can be used to eepB&/s in the pre-
training phase. These include denoising and contractiteeacoder modules
developed by Yoshua Bengio’s group [1, 43] and sparse ermggd modules
developed by Yann LeCun’s group [40].

11 A speculation on the future of neural network
models

| currently believe that the highly idealized “neurons” dse this paper may
suffer from a serious flaw as models of real neurons. Theynasdhat a real
cortical neuron cannot communicate an approximate reaewelficiently. Exper-
iments by Markram and others[31] have shown that synapéimiag rules can
be exquisitely sensitive to the precise time of a spike argldhsts doubt on the
idea that the precise time of a spike is unreliable and tbezefonveys little in-
formation. When performing signal processing, commurmmcpé0 or al is not
nearly as useful as communicating eithér@ the combination of & with a real
number that is accurate to within abdw. It would be very surprising if hun-
dreds of millions of years of evolution had failed to notibattthe precise time
of a spike can be used to convey this additional analog vatoe tasks such as
sound localization, spike times can be made accurate tarmliglss than 1 ms,
so the only thing that could prevent evolution from explhaitthis free additional
bandwidth would be if there was some other very importanseagor making
cortical neurons extremely noisy[4].

Of course, for precise spike times to be useful, neurons brigsble to com-
pute with them. | shall therefore sketch out very briefly héws tcould be done.
The method | propose here is almost certainly wrong in itaitietbut once you
have seen how convenient it is to use spike times for sigragssing you are
forced to choose between two possibilities both of whichproblematic: Either
the brain uses spike times to communicate analog valuesoe th some good
reason why it does not need to communicate analog values.

The first operation | shall consider is comparing some rehlesato see if
many of them are approximately equal. This is very hard tosiogistandard bi-
nary, sigmoid or linear threshold neurons. Even for only wates it is equivalent
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to solving the famous XOR problem and requires an extra lafjerocessing. Us-
ing spike times it is trivial. We simply use feedforward &ation followed, a few
milleseconds later, by feedforward inhibition via one orrsnmhibitory interneu-
rons. To exceed its threshold, the receiving neuron musiveseveral excitatory
spikes in the same narrow temporal window before the inbibiarrives. If it
does, it has detected that some numbers agree and it repetiénary existence
of this agreement by spiking and the agreed value by the tirtteespike.

The second operation I shall consider is computing a scataiugt between a
vector of spike times and a vector of synaptic weights. Hopécity, let us make
the gross assumption that an excitatory post-synaptiapatdas a very fast rise
time followed by a rate of injection of charge that is constarer the next 20ms or
so. Let us also assume that there is a global oscillationtaatdatparticular phase
of this oscillation is called the “deadline”. A spike armg at a time; before the
deadline will initiate the injection of charge at a rateugf The temporal integral
of the injected charge at the deadline will therefore be tades producd _, ¢,w;.
The multiplies have been computed by temporal integratrahthe adds by the
addition of charge. We then need to convert the amount ottegecharge into
the time advance of an outgoing spike. This can be done bgtingeadditional
charge at a rate df— ) . w; starting at the deadline. The total rate of injection of
charge will then bd and the time after the deadline at which the neuron crosses
its threshold will be advanced by exactly the amount of chdhat was already
injected by the deadline. So the scalar product has beenuwtechand converted
back into the advance of a spike time in one cycle of the globaillation.

There are numerous problems with this over-simplified moB&ISPs decay
with time, the rate of injection of charge depends on the nramdd potential,
incoming spikes after the deadline need to be blocked, mameaisrieak, not all
numbers are positive, and so on. Nevertheless, the condnait temporal in-
tegration for computing multiplies, charge accumulationdomputing adds, and
an additional clocked input for converting accumulatedrgbanto the time ad-
vance of an outgoing spike seems like a very efficient way éoausiembrane to
compute a scalar product.

If precise spike times are being used by cortex, it is rathgrssing that there
is not more experimental evidence in their favor. One péss#ason is that ex-
perimentalists have been trying to correlate precise sqiikes with the wrong
kind of information. In inferotemporal cortex, for examplae existenceof a
spike could be used to represent the presence of an entitgastiaular kind, and
the precise times of spikes could represent the pose paesriet. the position,

22



orientation and scale of the entity relative to the vieweX)scalar product can
then be used to predict one of the pose parameters of a wiootedll the pose
parameters of a pdrand if many parts agree a neuron could use this coincidence
to decide that the whole is present and also to report theddlthe pose parame-
ter. The precise time of a spike would not convey any addafiorformation about

the presence or absence of a visual entity but it would comfeymation about

the pose of the entity. This seems worth looking for in infereporal corte¥.

The idea that neurons can communicate approximate realensralso under-
mines one of the main motivations behind coarse coding [Mi¢oarse coding,
the six pose parameters of a 3-D object (three orientatidrtlanree position) are
coded by using a large number of binary neurons that eachalarge, receptive
field in the six-dimensional pose space. The intersectidghefeceptive fields of
the active neurons can then code the six pose parametdysafzsurately. Indeed,
as the receptive fields get larger, the accuracy of the engagts better, so large
receptive fields cannot be interpreted as evidence agaiogtate representations
of pose. This is an ingenious way of using binary neuronssbubhumbers is a
lot more economical and is also a lot more useful for the cdatmns required
to recognize an object by recognizing that its parts all jptetie same pose for
the whole and therefore have the appropriate spatial oelstiips to each other,
as described in the previous paragraph. Scalar producesctdng of pose param-
eters with vectors of weights that describe spatial ratatiips are the way that
computer graphics deals with viewpoint so effortlessly tumdakes a lot of sense
for the cortex to use the same method. The idea that visiowésse graphics[24]
may be more than just a guiding principle: It may be true ragdwn to the level
of the matrix multiplies used to relate the poses of wholethéoposes of their
parts.
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A feedforward neural network containing two hidden layérise
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a) Two separate restricted Boltzmann machines (RBM’'s). The
stochastic, binary variables in the hidden layer of each RB#M ar
symmetrically connected to the stochastic, binary vaeglo the
visible layer. There are no connections within a layer. Tigbér-
level RBM is trained by using “data” that consists of the inéekr
hidden activities of the lower RBM, when it is presented withlre
data. b) The composite generative model produced by comgosi
the two RBM’s. Note that the connections in the lower layer of
the composite generative model are directed. The hiddéessta
are still inferred by using bottom-up recognition connes, but
these are no longer part of the generative model. . . . . . . .. 33.
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Figure 1: A feedforward neural network containing two hiddayers. The net-
work maps input vectors to predicted output vectors in a &wdaypass. The in-
coming weights to each hidden or output unit are learnedugifdby changing
them in the direction that reduces the discrepancy betwesepredicted output
and the correct output, averaged over a set of training casaseach training
case, the effect of changing a weight on the discrepancyngpated by using the
chain rule to backpropagate error derivatives from onerltyéhe previous layer.
The incoming weights of each hidden unit determine how ipoesls to patterns
of activity in the layer below and different hidden unitsdeio discover different

Compare outputs with
correct answer to get
error signal

outputs
incoming weights

hidden layer

hidden layer

inputs

features that are useful for predicting the correct output.
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Figure 2: A multi-layer belief net composed of logistic bipainits. To generate
fantasies from the model during the sleep phase, we startdiyng a random
binary state of 1 or O for each top-level unit. Then we perfarstochastic down-
wards pass in which the probability;, of turning on each unit, is determined
by applying the logistic functiong(z) = 1/(1 + exp(—x)), to the total input
>_; hjw;; thati receives from the unitg;, in the layer above, wher; is the bi-
nary state that has already been chosen for junit is easy to give each unit an
additional bias, but this has been omitted for simplicityis a recognition weight
that is used for inferring the activity in one layer from thetiaties in the layer
below during the wake phase using exactly the same inferprozdure as the
sleep phase but in the reverse direction.
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Figure 3: a) Two separate restricted Boltzmann machines (RBNlse stochas-
tic, binary variables in the hidden layer of each RBM are symicedty connected
to the stochastic, binary variables in the visible layererEhare no connections
within a layer. The higher-level RBM is trained by using “dathdat consists
of the inferred hidden activities of the lower RBM, when it iepented with real
data. b) The composite generative model produced by comgptse two RBM'’s.
Note that the connections in the lower layer of the compasteerative model are
directed. The hidden states are still inferred by usingdmettip recognition con-
nections, but these are no longer part of the generative inode
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