ARTIFICIAL INTELLIGENCE

'LEARNING

IN PARALLEL

'NETWORKS

'BY GEOFFREY E. HINTON

Simulating learning in a pro&a_bilistic system

THE BRAIN is an incredibly powerful
computer. The cortex alone contains
over 10! neurons, each connected to
thousands of others. All of vour
knowledge is probably stored in the
strengths of these connections. which

somehow give you the effortless abil- -

ity to understand English, to make
sensible plans, to recall relevant facts
from fragmentary cues, and to inter-
pret the patterns of light and dark on
the back of your eyeballs as real
three-dimensional scenes. By com-
parison, modern computers do these
things very slowly, if at all. They ap-
pear very smart when multiplying
long numbers or storing millions of ar-
bitrary facts, but they are remarkably
bad at doing what any five-year-old
can. -

One possible explanation is that we
don't program computers suitably. We
are just so ignorant about what it
takes to understand English or inter-
pret visual images that we don't know
the appropriate data structures and
procedures to put into the machine.
This is what most people who study
artificial intelligence (Al) believe, and
over the last 20 years they have made

" a great deal of progress in reducing

our ignorance in these areas.

Another possible explanation is that

brains and computers work different-
ly. Perhaps brains have evolved to be
very good at a particular style of com-
putation that is necessary in everyday
life but hard to program on a conven-
tional computer. Perhaps the fact that
brains store knowledge as connection
strengths makes them particularly
adept at weighing many -conflicting

and cooperating considerations very

rapidly to arrive at a common-sense
judgment or interpretation. Of course,
any style of computation whatsoever
can be simulated by a digitat computer,
but when one kind of machine simu-
lates a very different kind it can be
very slow. To simulate all the neurons
in a human brain in real time would
take thousands of large computers. To
simulate all the arithmetic operations
occurring in a Cray would take billions
of people. _

It is easy to speculate that the brain
uses quite different computational
principles, but it is hard to discover
what those principles are. Empirical
studies of the behavior of single

neurons and their patterns of connec-
tivity have revealed many interesting
facts, but the underlying computa-
tional principles are still unclear. We
don't know, for example, how the
brain represents complex ideas, how
it searches for good matches between
stored models of objects and the in-
coming sensory data, or how it leamns.
In this issue jerome A, Feldman de-
scribes some current ideas about how
parallel networks could recognize ob-
jects (see "Connections” on page
277). [will describe one old and one
new theory of how learning could oc-
cur in these brainlike networks.

Please remember that these theories

are extreme idealizations; the real
brain is much more complicated.

ASSOCIATING INPUTS

WITH OUTPUTS -

Imagine a black box that has a set of
input terminals and a set of output

_ : (continued)
Geoffrey E. Hinton is an assistant professor
of computer science at Camegie-Mellon

University. He can be reached at the Com-
puter Science Depariment, Carnegie-Meilon
University, Pittsburgh, PA 15213,

APRIL 1985 + BYTE 263

TR BT

IR

terminals. Each terminal can be
clamped into either of two states, ac-
tive or inactive (! or 0). We can show
the black box what we would like it
to do by repeatedly clamping a com-
bination of 1s and Os on the input ter-
‘minals and another combination of Is
and Os on the output terminals {each
combination is called a vector). When
we have done this for many /O {input/
output) pairs, we would like the black

box to automatically set its output ter-

minals into the correct state when we
clamp a vector on the input terminals.
Ideally. if there is some neat regulari-
ty in the mapping from input vectors
to output vectors, we would like the
black box to “capture” this regularity
in its internal connection strengths in
order to give the “correct” output vec-
tor for input vectors it has never seen
before. This kind of black box would
be a very useful module to have with-
in an intelligent system.

if the black box contains only direct
connect:ons from input terminals to

output terminals. there is a beautifully

_simple learning procedure that ad-
 justs the weights on these connec-
tions until every input vector causes
the appropriate output vector. The
learning procedure has two phases
that keep alternating. In phase 1, we
clamp an input vector on the input
terminals and an output vector on the

output terminals. Then we increment

by a small amount, 8, the weights of
all connections that have both their
input and output terminals active. In
phase 2, we clamp the same input
vector, but we let the black box

decide for itself what output vectorto

produce, using the rule that an out-
.put terminal tumns on if the sum of the
weights on its connections from active
input terminals is positive. We then

-decrement by & all the connections that -

have both their input and output ter-
minals active. If the network produces
exactly the right output, these decre-

- ments will exactly undo all the incre-

ments we made in phase 1, because
exactly the same pairs of input and

-output terminals will be active in the

two phases. If. however, the network
produces the wrong output in phase
2, some of the weights that were in-
cremented will not be decremented

-Or vice versa, SO some weights will

change.
The learning procedure | have de-
scribed is a version of the Widrow-

Hoff or “perception convergence”

procedure. It has a remarkable prop-
erty: If we keep cycling through all the
pairs of input and output vectors
using this two-phase procedure for
each pair, we will converge on a set
of weights that causes the right out-
put vector for every input vector if any

- such set of weights exists. The big disap-

pointment (which led people in Al to,,
abandon this kind of model) is that for
most interesting problems there is no
suitable set of weights. The relation-
ship between the input and output
vectors is just too complicated to be
captured by a system that has direct
connections between input and out-
put terminals. At the very least, there
must be intermediate layers within the
black box, and units in these layers
must learn to extract a hierarchy of
“features” of the input vector that can
eventually cause the right output.
Here is an example of a relatively
simple task that requires intermediate
units. The input consists of two 8-bit
vectors, one of which is a shifted ver-
sion of the other. Only shifts cne

" place to the left or one place to the
.right are allowed. There are two out-

put terminals, one for each possible
shift, and the black box must turn on
the correct output terminal for any ap-
propriately related pair of input vec-
tors. The task sounds easy until you

" consider that any one of the input

bits, considered in isolation, provides

" " no information about what the output

should be. Moreover, simply adding

up ev1dence from all the separate in-

(cantmued)

PARALLEL NETWORKS

put bits is useless. The task ¢an be

done only if you consider combina-
tions of bits in one vector with bits in.

the other, which requires intermediate
units that extract informative com-
binations. Figures la and 1b show a
collection of useful intermediate fea-
- ture detectors that work well together
for performing this task. ~ ~
When we try to extend the simple
learning procedure to networks con-
taining intermediate units, more com-
plications arise because we do not
knowin advance how we want the in-
termediate units to behave. So instead
of just fixing some weights that will
make the output terminals behave in
the way that we specify, the learning

algorithm must also decide under’

what circumstances each of the inter-
mediate units should be active. This
amounts to creating intermediate rep-
resentations, Several more recent
learning procedures can do this. |
shall describe one that Terry
Sejnowski and | discovered. It is only
guaranteed to work in networks of a
rather special kind, which I will now
describe.

NETWORKS THAT MINIMIZE
THEIR ENERGY = .

The kind of network we have been
considering so far consists of layers
of units in which units in one layer are
connected to units only in contiguous
layers. More complex networks have

cross-talk within a layer and feedback

S SRR TS

Figure 1a: A network with 16 input terminals, 12 intermediate units, and 2 output

 terminals. The boldface units show which its are on in a typical pair of input and
output vectors. The 8-bit vector at the bottom has been shifted one place to the left
(with wraparound) to produce the 8-bit vector immediately above it. With these two
vectors as the input, the correct output vector (shown at the top of the figure) has the

. _ left unit active to represent a left shift. Each. of the 12 intermediate units is connected... . |

to all the input and output units, but only one set of connections is shown. The
intermediate units also have a fixed threshold, which is subtracted from their net input
before the decision is made to turn them on or off.

268 BYTE * APRIL 1985

from later layers to earlier ones. it is -
generally very hard to analyze the
behavior of such networks, but John
Hopfield at Cal Tech (reference 1) has
shown that there is an interesting
special case that behaves in a very
useful way. In a Hopfield net, the units
make their decisions asynchronously,
the communication between units is

instantanecus, and all the connections

are symmetrical; the effect of unition
unit j is the same as the effect of unit
jon unit i. Given these restrictions, the
various possible states of the whole

" network form a space like a bumpy

surface and the current state of the
network behaves like a ball bearing
placed on this surface—it moves
downhill into the nearest local minimum.
Each point in the surface corresponds
to a pattern of active and inactive
units in the network, and the height
of the surface at that point represents
the “energy” of that pattern of activi-
ty, where the energy of a pattern is
defined as minus the sum of all the
weights on connections between pairs
of active units, Therefore. if two units
have a big positive weight between

~ them, patterns in which they are both

active will have low energy: it is pat-
terns like this into which the network
will settle. Conversely, a negative
weight between two units will make a
hig positive contribution to the
energy when they are both on, so the
network will tend to avoid such states.

Figure 2 shows a small network
whose lowest energy state is -8. Can
you figure out which units are on and
which are off in this state? You will
always end up at an energy minimum
if you start with a random state and
then apply the following rule to each
unit in turn (in any order): If the sum
of the weights on the connections to
other currently active units is positive,
turn it on; otherwise, turn it off. if you
apply this procedure a few times, you
will discover that there is another
minimum with an energy of -3 and

. that once the network has settled into

this state it will just stay there.

Networks of this type can be used
to associate input vectors with output
vectors. To provide the input, we
clamp a subset of the units into their

PARALLEL NETWORKS

on or off states, and, once the rest of

the network has settled into an energy
minimum with this input vector
" clamped, we treat the states of an-
other subset of the units as the out-
put. In figure 2, for example, we could
clamp the three bottom units into the
active state to represent the input vec-
tor {1, 1. 1); we would get the output
vector (1, 0) by letting the network set-
tle and then reading the states of th
top two units. s
To teach the network a particular set
of /O pairs. we would need to create
an appropriate energy landscape—we
would need to choose weights so that
for each clamped input vector the sys-

tem had an energy minimum that

yielded the correct output vector.
Choosing such weights is not an easy
task, and to make matters worse, we
might end up with an energy land-
scape in which there were many dif-

* ferent local minima for each clamped
input; each input vector might give
many different outputs depending on
the energy minimum into which the
system happened to settle. In figure
2. for example, the input vecior {0, O,
0) can generate two different output
vectors depending on the initial states
of the middle units and the order in
which decisions get made.

A PROBABILISTIC NETWORK

If the same input is going to produce

. different outputs on different occa-
sions, we would at least like to have
some contrel over the probabilities.
It would be nice; for example, if we
could guarantee that deeper minima
would be found more often than shal-
lower ones. It would be even better
if we could guarantee that the relative
probability of ending up in two dif-
ferent minima depended oniy on their
relative depths, We could then control
the probabilities of getting particular
outputs by manipulating the energy
landscape {ie. by changing the
weights). .

~ Once again, a physical analogy is
helpful: If we have a ball bearing on
a bumpy surface and we shake the

“whole system up and down, the ball

bearing will be able to jump over the’
(continued)

Figure 1b: The weights that are learned by the 12 intermediate units. The black and
white rectangles in the bottom two rows of a unit represent the weights on its
connections to the input terminals. The sizes of the rectangles indicate the magnitudes of

the weights. Black indicates a negative
show how it affects the two output terminals. The weights all start at O and

weight. The two weights at the top of each unit

change by

very small steps. Notice that afl 12 units detect different combinations of active input
terminals and that these combinations are generally sensible predictors of the global shift

for which the unit “votes.”

Figure 2: A simple network with three input units at the bottom, two- intermediate
. units in the middle, and two output units at the top. All the connections are

" symmetrical.

APRIL 1985 » BYTE 269

" PARALLEL NETWORKS

barriers that separate shallow minima
from deep ones: the ball bearing will
spend most of its time in the deeper

minima, even though it will occasion-

ally sample higher energy states. If we
shake for a while in just the right way,
a useful simplification occurs: We ap-
proach a condition cailed “thermal
equilibrium” in which the ball bearing
is still moving from place to place, but
the probability of finding it at any one
place on the surface is stable and
depends only on the height of the sur-
face at that point—it doesn't depend
on where the ball bearing started or

on the shape of the energy landscape.

More precisely. the log of the prob-
ability ratio of finding the ball bear-
ing in two different states is propor-
‘tional to the energy difference of
those two states. Scott Kirkpatrick at
IBM introduced the idea of .using
“thermal noise" t¢ escape from local
minima and to increase the chances
of finding the deeper minima (see ref-
" erence 2). He has shown that for large
problems in which the cost of a solu-
tion is the ana:og of energy. an effec-
tive methad for finding low-cost solu-
tions is to start with a lot of thermal

. noise and gradually reduce it—a pro-

cess that he calls “simulated
annealing”’
In our parallel networks it is easy to

introduce the analog of thermal noise.

We just modify the decision rule that

is used by the individual units. They
still compute the sum of the weights
on the connections coming from
other active units, but instead of
always turning on when this sum is
positive and off when it is negative
{which always reduces the energy of
the network).
abilistically, as shown in figure 3.
"Using this probabilistic decision
rule, we can run networks in the
following way: Clamp an input vector,
let the remaining units turn on and off
probabilistically until the network has
reached thermal equilibrium, and

then read the output vector. At

equilibrium the output units will con-
tinue to change states, but each out-
put vector will have a fixed probability
that does not vary with time.
Research teams in fields as diverse
as statistics (Stuart and Donald
Geman). neuroscience (Terry
Sejnowski), psychology (Paul

Figure 3: This shows the probability p. with wfucﬁ t&e ktﬁ unit is active. Tﬁe

quantity AE, is the sum of the weights on connections between the Rth unit and other

currently active units. The equation is

1

Pr = TieaEm

~T'is the level of thermal noise in the network. The solid curve is for T = 1 and the

dotted curve is for T = 0.25. If the value of T is decreased, the unit becomes less
probabilistic. When T = O, the curve becomes a deterministic step function.

270 BYTE + APRIL 1985

they behave prob-

Smolensky), and artificial intelligence

are now investigating networks of this -
-kind. Statisticians call them Markov

Random Fields. At Carnegie-Meilon
University we call our particular
version the Boltzmann Machine, in
honor of Ludwig Boltzmann, one
of the founders of statistical
mechanics.

LEARNING AGAIN

We can now return to the issue of
learning. First, we redefine the learn-
ing task in probabilistic terms. For
each possible input vector, we want
to produce each possible output vec-
tor with a certain probability. (Gen-

- erally. most of these probabilities will
be close to 0 and a few will be close
to 1.) We can then train the network -

to behave in this way by alternating
between two phases that are very
similar to those used in the earlier
learning rule.

In phase | we tell the network about
the desired probabilities by clamping
pairs of input vectors and output vec:
tors with the corresponding frequen-
cies. Each time a pair of input and
output vectors is clamped, we run the
network until it is close to thermal
equilibrium; we then run the network
for a little extra time, modifying the
weights in the following way: For each
unit of time during which two units are
both active. we increment the weight
between them by 8. .

In phase 2 we clamp input vectors
and let the network decide for itself
what output vector to give. Once it
has approached equilibrium, we run
a little longer, as before, and now decre-

ment by 6 the weights between pairs

of active units. If we keep alternating

between phase 1 and phase 2, show- -
ing the network all the various pairs

of input and output vectors, the net
change in the weight between any two
units will be proportional to the dif-
ference between the probability that
the two units are both active in phase

11 and the probability that they are

both active in phase 2 (averaged over

Call 10 pairs). Tt is remarkable that

when these probabilities are mea-
sured at thermal equilibrium, their dif-
(continued)

PARALLEL NETWORKS

ference is exactly the right quantity to
use for changing the weights to make
the behavior of the network in phase

—-2 (when it is deciding for itself) mimic -

the behavior in phase 1 (when it is be-
ing forced to behave in the desired
. way). To prove this it is necessary to
define a measure of the difference
between the probability distribution
that is forced on the network in phase
I and the probability distribution that
it exhibits in phase 2. Once the cor-
rect measure has been defined, it can
be shown that the measure is de-
creased by changing each weight ac-
cording to the above procedure. The
proof can be found in reference 3.
Figure | shows what the learning
procedure can do when the task is to
. “recognize” the shift that was applied
to one 8-bit vector to produce a sec-
ond 8-bit vector. If you think this is an
easy problem, remember that the net-
work starts off with no preconcep-
tions. It has no idea that neighboring
input bits will have anything to do
with each other, and it is not expect-
ing this task any more than it is ex-
pecting any other. If the very same
network is presented with 2 complete-
ly different combination of input and
output vectors, it will create a different
set of featuré detectors that are ap-
propriate for the different task.

MAKING IT FASTER

The first learning algorithm 1 de-
- scribed just changes weights to make
units behave in prespecified ways. it
cannot figure out what to do with in-
ternal units whose required behavior
is not specified from outside. The sec-
ond learning algorithm is potentially
much more powerful because it is
* able to decide how to use the inter-
nal units to help achieve the required

1/0' mapping. It actually constructs -

simple internal representations. Un-
fortunately, there is a heavy price to
pay for this added power. The algo-
rithm is currently extremely slow; the
- example in figure 1 requires hours of
-computer time, B

" To speed things up, Blake Ward, a
graduate student at Carnegie-Mellon,
has built a parallel machine contain-
ing six Omnibyte 68000 boards, each

of which has a copy of the entire net-
work. Each board runs with a different
input vector. and then all the boards

agree on how to change the weights, -

This helps, but ultimately we would
like to implement networks of these
probabilistic units directly in silicon.
Unlike current computers, these net-
works are rather tolerant of localized
hardware failures or -fabrication
errors; Carver Mead has pointed out
that an analog implementation of the
processing elements would positive-
ly thrive on the kind of thermal noise
that comes from running transistors
at very low power. This might make
it possible to build much larger chips
than is currently feasible. However,
developments like this are still a long
way off. and they do not remove the
need for more theoretical progress.
Qur current simulations are slow for
three reasons: It is inefficient to
simulate parailel networks with serial
machines, it takes many decisions by
each unit before a big network ap-
proaches equilibrium, and it takes an
inordinate number of examples of 11O
pairs before a network can figure out
what to represent with its internal
units. Better hardware might solve the
first problem, but more theoretical
progress is needed on the other two.
Only then will we be able to apply this
kind of learning network to more

. realistic problems. @

REFERENCES
1. Hopfield, John |. "Neural Networks and

Physical Systems with Emergent Collection

Computational Abilities,” Proceedings of the
National Academy of Sciences, 1982, vol. 79,
pages 2554-2558,

2. Kirkpatrick, S. C. D. Gellatt, and M. D,

Vecchi, "Optimization by Simulated An-
niealing.” Sclence, 1983, vol. 220, pages

671-680. . o o
3. Ackley. D.H. G.E. Hinton, and T.J.

Sejnowski. "A - Learning Algorithm for
Boltzmann Machines” Cognitive Science,
1985, vol. 9, pages 147-169.

ACKNOWLEDGMENTS
Terry. Sejnowski and | performed the

research described here while we were

supported by .grants ffom the System
Development Foundation. | thank the
members of the Boltzmann Group at
Carnegie-Mellon for helpful comments.

APRIL 1985 * BYTE 21!'

