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Learning from your neighbour

. Graeme Mitchison and Richard Durbin

WUAT can artificial neural networks tell
us about the brain? One view is that they
can be used to explore the consequences
of different synaptic learning rules in a
simplified formal setting, -However, the
most powerful learning algorithms, such
as back propagation'; need an external
‘supervisor’ to correct the mistakes made
by the network, which is an unrealistic

requirement especially for early stages’

of sensory processing. How, therefore,
does one learn effectively without a
supervisor? On page 161 of this issue?,
Becker and Hinton propose an answer to
this question. Theirs is not the first
unsupervised learning algorithm, but
they take a new approach which hds a
paradoxical charm: in effect, different
pieces of the inputs train each other.
The goal of an unsupervised learning
algorithm is to. extract -meaningful
features' or variables from a set of input
patterns. For example, we can try to find
those features thai allow the data to be
reconstructed “as - faithfully as possible.
This is the goal of principal component

analysis, a standard tool of engineering .

and statistics. By identifying the com-
binations -of inputs - with maximum
variance, it finds the variables that can
be most effectively used to characterize
the inputs. Remarkably enough it turns
out that the first neurobiological learning

rule to be formulated, Hebb’s rule®, is

closely relatéd to principal component
analysis. Given a simple neural-network
model consisting of a single unit, Hebb’s
rule results in that unit extracting the
largest principal component, assuming
some form of normalization of synaptic
connection strengths*>. With a smail
amount of modification, 2 set of units
can be made to learn not just the largest
component, but' a set of components
‘which together ' capture the greatest

#

part of the variance®’.

Principal components appear in at
least some cases to be involved in bio-
logical processes. In the local processing
of visual images, for example, the prin-
cipal components include edge segments,
which are among the first featyres
extracted in primary visual cortex®.
However, other ‘important variables,
such as stereoscopic disparity, wiil not be
explicitly extracted. Becker and Hinton
show how one could set about extracting
these more elusive variables. One way to
describe their approach is that they
assume that ‘the interesting properties
are more stable than the noise. For
example, the depth  of a surface, as
measured by stereoscopic disparity, will
tend to vary smoothly in scanning across

an image, whereas the local pixel intepsi- ~

ties may vary rapidly because of texture.
Consider a system looking at two

-neighbouring, non-overlapping patches,

and suppose that, corresponding to each
patch, there is a unit whose inputs come
from that patch only. One could try to
make the units extract a stable property
by requiring that they both perform the
same computation on their input and

"by minimizing the difference in their

responses. But then they might end up
both doing nothing (that is, give a zero

_tesponse). To avoid this, one could try

to. mimic hebbian principal component
learning, and ask the units to maximize
the variance in their responses. Becker
and Hinton combine these requirements
by making the units maximize the vari-
ance of the sum of their dutputs divided
by the variance of their difference.

On the assumption that both the
underlying variable and the noise have a
gaussian distribution, this is equivalent
to maximizing the mutual information of
the two outputs. Here one can see parti-
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cularly clearly how the igorithm works:-

- the mutual information can be large ‘only
" if, first, the units convey information

(that is, they behave nontrivially) and if,
second, they respond similarly, so they
share this information, The ‘Hebb rule -
essentially imposes the first-constraint
alone. By adding thé second -constraint
the new rule allows information to be
thrown away when it is not shared by-
other patches. T

Maximizing mutval information can
aiso be interpreted as prediction,--be-
cause each umit can-be used to predict
the behaviour of neighbouring patches.
The notion of prediction is more genera)
than that of stability; we can:look for
properties that predict future inputs, or
predict one set of sensory data through
another sensory modality.- Prediction can
help to complete or interpret missing
data, and where prediction fails some-
thing interesting is likely to be happen-
ing. For example, places where disparity
changes sharply will usually correspond
to the edges of objects. _ _

Neural networks are inspired by real
neurons, but is there is any reverse flow
of inspiration? Might a rule such as this
operate in the brain? It seems unlikely
that neurons compute something as
mathematically complex as the ratio of
variances, let alone the determinants
which occur in the more general express-
ion for more than two units. Further-
more, some of the difficolties of back
propagation apply to the multilayer ver-
sion of this algorithm, which must some-
how feed back a complex error signal to
carlier stages in the neural pathway. But
it is important not to be too intimidated
by the mathematical formulation. After
all, principal component analysis, which
in its standard form requires matrix in-
version, might seem an unlikely opera-
tion for neurons to accomplish. Yet it
can be carried out by suitably organized
hebbian machinery. It seems likely, in
fact, that there are natural ways for
neurons to carry out Becker and Hin-
ton’s kind of analysis, or something very
close to it, and this may provide another
clue to help us explore synaptic learning
rules in the brain.
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