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Abstract

A major goal of research on unsupervised learn-
ing procedures is to discover an objective function
that defines the quality of an internal representation
without any externally supplied information about
the desired oulputs of the systen. Hsuch a function
could be found, it should allow a hierarchy of rep-
resendations to be organized boltom-up in a time
roughly linear in the depth of the network: This
would allow much faster learning than supervised
procedures which are generally very slow in net-
works with many layers of hidden units. Following
{Gibson, 1950), we propose that a good objective for
perceptual learning is to extract higher-order fea-
tures that are coherent across time or space. This
can be done by maximizing the explicit mutual in-
formation between parameters extracted from spa-
tially or temporally adjacent parts of the input.

Introduction

The intensity values in one patch of an image
contain information about the intensity values in
nearby patches, but this information is in a compli-
cated form because the imaging process combines
several different physical parameters to produce the
intensity of each pixel. If we could first exfract
important, underlying, intrinsic parameters such as
depth, reflectance, or surface orientation, we could
then express the mutual information between neigh-
boring patches in a simpler form. This suggests that
we could insist onf the mutual information being in
a simple form and search for the parameters that
must be extracted to allow this. One obvious sim-
- ple form of spatial coherence is for the underlying
parameiers for one palch to be equal to underly-
ing parameters for the neighboring patch plus some
gaussian noise. Another more interesting form of co-

herence, which would be appropriate for the depth -

of slanted planes, is for a parameter value extracted
from one patch to be the average of the values ex-
tracted from neighboring patches. We describe a
family of learning procedures that start by making
an assumption about the form the coherence will
take and then try to discover parameters that are
coherent in this way.

Maximize

1
A A
HIDDEN HIDDEN

™ ™

Pyt 101111 1 OF 1110 {0505 npyT
' o [ol1[1] [o[a o]0

Figure 1: Two modules thal receive inpui from ad-

jaceni, non-overlapping peris of the image. FEach
module has one layer of hidden units. The learn-
ing algorithm adjusts the weights in each module 1o
mazimize the mufual information, over the ensem-
ble of training cases, belween the stetes of the two
outpul units.

_ Some unpublished results of Peter Brown suggest
that a good way to implement this general idea is to
try to maximize ithe explicit mutual information be-
tween pairs of parameters extracted {rom adjacent
but non-overlapping parts of the input. The mutual
information between two binary variables, a and b,
is given by '

I{a;b) = H(a) + H(b) — H(a,b)

where H{a) is the entropy of a, and 5 (a, b} is the en-
tropy of the joint distribution of @ and'b. The equa-
tion shows that the mutual information between two
variables can only be high if each variable has high
individual entropy. This is one advantage of mutual
information over measures like the correlation be-
tween {wo variables. Mutual information forces each

variable to convey a lot of information about the im- -

age. Figure 1 shows how this objective funclion can
be used in a multilayer network. The derivative of
the mutual information between the outputs of two
local modules provides error signals that are back-
propagated in order to train the modules.
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| A very simple example

Our method works well for the task of discovering
depth in an ensemble of very simple, binary random-
dot stereograms. Each input vector consists of a2 one
dimenstonal strip from the right image and the cor-
responding strip from the left image. The right im-
age is purely random and the left image is generated
from it by choosing, at random, a single global shift.
So the input can be interpreted as an approximation
to a one-dimensional stereogram of a fronto-parallel
sutface at an integer depth. The only local prop-

erty that is invariant across space is the depth (i.e.

the shift). Hence, if one module looks at one area
of the two images, and another module looks at an-
other area, the only way they can provide mutual
information about each other’s outputs is by repre-
senting the depth. :

We used two global shifis {one pixel rightwards
or one pixel leftwards) operating on binary image
strips. Each pair of sirips was divided into 4 by 2
patches with a gap of one pixel between patches.
Each 4 by 2 paich was used 2s input to a sepa-
rate module that contained a layer of hidden units
and one stochastic binary “output” unit, that used
the logistic non-linearity to determine the proba-
bility of outputting a 1. Each of the output units
‘tried to maximize the sum of its mutual informa-
tion (over the ensemble of training cases) with each
of the other output units. The derivatives of this
objective function are simple to compute using two
passes through the training set {Becker and Hinton,
1989). 'In the first pass we accumulate the proba-
bility that each output unit is active, and also all
the pairwise joini probabilities. In the second pass
we use these accumulated probabilities to compute,
for each training case, the derivatives of the objec-
tive function w.r.t. the output of 2 module, and
these derivatives are then backpropagated and accu-
mulated to determine the direction of the vector of
weight changes within the module at the end of the

second pass. The magnitude of the weight change-

vector is determined by a crude line search along
the direction of steepest descent.

With random patterns and a small traiming set
size there is a high probability that units will learn
some of the random structure in the data in ad-
dition to the shift; as the number of training cases
increases, and as we increase the number of modules
(2nd hence the size of the input), sampling error de-
creases and units become more tuned to shift, The
most shift-tuned network we tested had 5 modules
and took about 500 passes for the learning to con-
verge on a training set of 1000 random patterns.
When we preseni the complete set of unambigu-
ous binary patterns to a smaller network consist-
ing of just two modules, we usually get output units
that are pure shift detectors within about 300 passes
through the training set.

Figure 2: Part of a cubic spline fitted through seven
randomly chosen control poinis, with randomly lo-
caled features scatiered on ii, and the “intensily”
values in the two images of the surface strip. The
images are made by taking two slightly different par-
allel projections of the feature points, fillering the

. projeciions through a gaussian, and sampling lhe

filtered projections at evenly spaced semple poinis.
The sample values in corresponding paiches of the
iwo images are used as the inpuls lo ¢ module. The
boundaries of two neighboring petches are shown on
the spline.

The learning is rather slow for two reasons.
First, we are not specifying desired values for the
“output” units—we are only specifying that their
pairwise mutual information should be high. The
derivative of this objective function w.r.t a weight
depends on three other layers of adaptive weights—
one other layer in the same module and two layers in
the adjacent module. So in this respect the difficulty
of learning resembles back-propagation through four
layers of weights. Second, with random starting
weights, the initial gradient of the objective func-
tion is very small. The convergence speed is greatly
increased by using a “bootstrapping” method that
starts by applying the objective {unction between
pairs of units in the first hidden layers of pairs of
modules until these units are somewhat tuned to
the shift. Then the gradients of the mutual infor-
mation between the output units are much bigger
and the objective function can be applied at that
layer and the derivatives back-propagated. More
globally coherent information can now be provided
to the hidden units that failed to find any useful
features in the bootstrapping phase. "

We compared the performance of the algorithm
on a network with 2 modules, and 8 hidden units
per module, on the “complete patiern set™ with and
without 50 bootstrapping iterations. Aflter bool-

T TTAWRIME

TR T I TN

T




strapping, units were highly shift-tuned within 50
learning iterations, and by 250 iterations the algo-
rithm nearly always found a globally optimal solu-
tion where the mutual information reached 1 bit (in
43 out of b0 repetitions). Without bootstrapping,

while the top-level units always became highlyshift-

tuned, only in 7 out of 50 repetitions did they con-
verge to the giobal maximum.

Modules with real-valued outputs

* The binary output, units we used in our initial exper-
iments are suitable for extracting binary features,
but they make it difficult to represent depth in more
realistic images that contain smoothly curved sur-
faces which have real-valued depths. In the follow-
ing simulations, we use images like those shown in
figure 2 and modules with deterministic, real-valued
outputs that learn to represent real-valued depths
(disparities) with sub-pixel accuracy.

We starl by making the following very simple
coherence assumption (which will be relaxed later):
There is some locally detectable parameter which
is approximately constant for nearby patches. So,
given two modules A and B that receive input from
neighboring patches, we want the output of A, a,
to be approximately equal to the output of B, b.

We can think of b as a signal that we are trying

to predict and a as a noisy version of that signal
that is corrupfed by additive, independent, gaussian
noise. If we assuine that both a and & have gaussian
distributions, the information (ignoring a factor of

2) that a provides about b is determined by the ratio
of two variances:

V(signal + nozse) = log V(&)

Loy = log V(noise) Via—1b)

So, for a o provide a lot of information about &
we need a to have high variance but a — b to have
low variance. For symmetry, we actually optimize
the following function:

_Via}

log — (&) _ T V)

Iy=Iap + Ina = +1o
TR B EVE-5)

Some possible variations of this objective func-
tion are discussed in (Becker and Hinton, 1989).

Speeding the learning using radial ba-
~ sis functions

Instead of using the bootstrapping method de-
scribed above to speed the learning, we used an
alternative method in which the adaptive hidden
"units of each module are replaced by a large num-
ber of non-adaptive radial basis functions (Mocody
. and Darken, 1989). Each radial basis unit has a
“center” that is equal to a typical input vector se-
lected at random, and gives an output which is a

Y

Figure 3: The eactivily of the output of a module
(vertical azis} as a function of the disparity (hori-
zontal azis) for ell 3000 iraining cases using planar
surfacc strips.

gaussian function of the distance between the cur-
rent input vector and the unit’s “center”. All the
gaussians have the same variance which is chosen
by hand. So the only adaptive weights in a module

" are those from the radial basis units to the output

unit. In the experiments with curved surface strips
each module had 8 by 2 input units connected to a
layer of 100 radia! basis units. Every module used
exactly the same set of radial basis functions so that
we could constrain all the mcduies to compute the
same function.

Discovering real-valued depth for pla-
nar surfaces

Figure 2 shows how we generate stereo images of
curved surface strips. The same technique can be
applied to generate images of planar surfaces with
randomly chosen slants. Using 3000 training cases
of this simpler type of input, we trained a network
that contained 10 modules each of which tried to
maximize I* with the immediately adjacent mod-
ules. Each update of the weights involves two com-
plete passes through the training set. In the first
pass, we compute the mean and variance of each
output value and the mean and variance of each
pairwise difference between output values given the

current weights. In the second pass we compute

the derivatives of I for each pair of modules, and

use these derivatives o accurnulate dI* fdw for all

weights, w, from the radial basis units to the output,
units. Then we update all the weights in paralle] us-
ing steepest descent with a simple line search. Af-

ter each weight update, we average corresponding

weights in all the modules in order to enforce the
constraint that every module computes exactly the
same function of ils input vector. After 30 weight
updates, the output of a typical module gave a good
representation of the disparity as shown in figure 3.
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More complex types of coherence

So far, we have used a very simple model of coher-
ence in which an underlying parameter at one lo-
cation is assumed to be approximately equal to the
parameter al a neighboring location. This model
is fine for [ronto-parallel surfaces but it is {ar {rom
the-best model of slanted or curved surfaces. For-
. tunately, we can use a far more general model of
‘coherence in which the parameter at one location
-1s assumed {o be an unknown linear function of the
parameters at nearby locations. The particular lin-
ear function that is appropriate can be learned by
the network.

We used a network of the type shown in figure 4
(but with 10 modules and with a contextual predic-
tor unit for all modules except the two at the ends).
© We tried to maximize I* between the output of each
module and the contextual prediction of this output
thai. was produced by computing a linear function of
the outputs of one adjacent module on each side. We
used weight averaging lo constrain this interpolat-
ing function to be identicai for all modules. We also
back-propagated the error derivatives through the
interpolating weights. Belore applying this new ob-
Jective function, we first used a bootstrapping stage
in which we maximized I* between adjacent pairs
of modules as before, for 30 learning iterations.

After having been trained for 100 iterations on
" 3000 patterns, the two weights learned for the inter-
polating function were .55,.54. The output of each
of these units is similar to the response profile shown
in figure 3, but even more finely depth-tuned. Thus,
the interpolating units have learned that the depth
at one patch on a planar surface can be approxi-
mated by the average of the depths of surrounding
patches.

Discovering coherence in curved sur-
faces

As we introduce curvature in the surfaces, the pre-
diction of depth from neighboring patches becomes
more difficult; at regions of high curvature, a sim-
ple average of the depths of 2 adjacent patches will
under- or over-estimate the true depth. In this case,
_ a better interpolator would base its predictions on
more than two local measurements of depth, thereby
taking curvature into account. ’

We trained a network of 10 modules on 1000
of the stereograms of curved surface strips, using
the same architecture and objective function as for
the planar sutface task, for 30 iterations. We then
added an interpolating layer; this time, however, the

" contextual prediction of a given module was a lin-
ear function of the outpuls of fwe adjacent mod-
ules on either side. After 100 iterations, the four
weighis learned for the interpolating function were

- —.04, .64, .65, —.04. Positive weights are given to in-
puts coming from the immediately adjacent mod-

contextually
predicted

localty
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Figured: A network in which the goal of the learning

is to.mazimize the information between the oulpul of

a local module and the contextually predicted oulpul

that is computed by using a linear function of the
outpuls of nearby modules.

ules, and smaller negative weights are given to in-
puts coming from the more distant neighbors. The
activity of these units is well tuned to disparity, as
shown in figure 5. Given noise-iree depth values, the

optimal linear interpolator for the surface strips we
‘used is approximately -.2, .7, .7, -.2. But with noisy

depth estimates it is betier to use an interpolator
more like the one the network learned because the
noise amplification is determined by the sum of the
squares of the weights.

Discussion

Discovering how to predict one value from a lin-
ear combination of nearby values is equivalent to
finding a linear combination of all the values that

‘always equals zero (Richard Durbin, personal com-

municaiion). This amounts to discovering invari-
ant higher-order properties by learning invariance
detectors that have low variance even though their
input lines have high variances {when weighted by
the squares of the weights). One atfractive aspect
of this view is that the actual output of an invari-
ance detector would represent the extent to which
the current input violates the network’s model of the
regularities in the world. This is an eflicient way of
transmitting information about the curreni input.

An invariance detector that minimizes the ratio
of its oulput variance divided by the variance that
would be expected if the input lines were indepen-

- dent gaussian variables is a real-valued, determin-

istic version of the G-Maximization learning proce-
dure (Pearlmutter and Hinton, 1986) which finds
regularities by maximizing the extent to which the
independence assumption is incorrect in predicting
the cutput of a unit. It also has an interesting rela-
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Figure 5: The output of a unit (vertical azis) as a
Junction of the local disparity (horizontal azis) when
trained on 1000 curved surface strips. The unit
learned to predict the depih locally extracted from
one module as e linear function of the oufpuls of
the 2 adjacent modules on either side.

tion to Linsker’s learning procedure (Linsker, 1988).
Linsker assumes the variances and covariances of the
aclivities on the input lines to a unit are fixed (be-
cause he does not backpropagate derivatives) and he
shows that, with the appropriate gaussian assump-
tions, the information conveyed by the unit about
its input vector is maximized by using weights which
mazimize the ratio of the output variance divided by
the sum of the squares of the weights.

~ We have described the learning procedure for
modules which each have a single real-valued out-
put. For modules with several real-valued outputs,
the natural way to generalize the objective function
is to replace the variance by the determinant of the
covariance matrix. It remains to be seen .whether
this causes unacceptable problems with the learn-
. ing speed and whether it can be modified to avoid
the difficulties that arise as the covariance matrix
becomes singular.

We have also ignored the ubiquitous problem of

discontinuities. Images of real scenes have strong lo-
cal coherence punctuated by discontinuities. We do
not want our learning procedure to smear out the
strong Jocal coherence by trying to convey informa-
tion across the discontinuities. We would prefer a
module to make accurate predictions in continuity
cases and no predictions in other cases rather than
making rather inaccurate predictions in all cases.
We can achieve this by letting each module use a
mixture of iwo gaussian models to predict the out-
put of a neighboring module. One part of the mix-
ture mode! is for continuity cases, and the other
part is for discontinuity cases. During learning, the
module computes the probability that the current

case is an example of continuity by comparing the
probability densities, under both its continuity and
its discontinuity models, of the observed output of
its neighbor. The contribution to the accumulated
gradient is then made proportional to the probabil-
ity that the current case is a continuity case. This
means that clear cases of discontinuity do not affect
the weights learned by the continuity model.

In-this paper, we have used coherence across
space, but the same techniques could be applied to
coherence across time. The procedure we have de-

scribed has several appealing properties. First, it

builds into the objective function (and the architec-
ture) a type of prior knowledge that is strongly con-
straining but widely applicable to perceptual tasks.
Second, using the bootstrapping approach it may
be possible to train deep networks fairly rapidly,
provided the domain is such that the very high-
order features that exhibit very long-range coher-

- ence can be built out of lower-order features that

exhibit shorter range coherence.
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