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Abstract

Boosting algorithms and successful applications thereof abound for clas-
sification and regression learning problems, but not for unsupervised
learning. We propose a sequential approach to adding features to a ran-
dom field model by training them to improve classification performance
between the data and an equal-sized sample of “negative examples” gen-
erated from the model’s current estimate of the data density. Training in
each boosting round proceeds in three stages: first we sample negative
examples from the model’s current Boltzmann distribution. Next, a fea-
ture is trained to improve classification performance between data and
negative examples. Finally, a coefficient is learned which determines the
importance of this feature relative to ones already in the pool. Negative
examples only need to be generated once to learn each new feature. The
validity of the approach is demonstrated on binary digits and continuous
synthetic data.

1 Introduction

While researchers have developed and successfully applied a myriad of boosting algorithms
for classification and regression problems, boosting for density estimation has received rel-
atively scant attention. Yet incremental, stage-wise fitting is an attractive model for density
estimation. One can imagine that the initial features, or weak learners, could model the
rough outlines of the data density, and more detailed carving of the density landscape could
occur on each successive round. Ideally, the algorithm would achieve automatic model se-
lection, determining the requisite number of weak learners on its own. It has proven difficult
to formulate an objective for such a system, under which the weights on examples, and the
objective for training a weak learner at each round have a natural gradient-descent interpre-
tation as in standard boosting algorithms [10] [7]. In this paper we propose an algorithm
that provides some progress towards this goal.

A key idea in our algorithm is that unsupervised learning can be converted into supervised
learning by using the model’s imperfect current estimate of the data to generate negative
examples. A form of this idea was previously exploited in the contrastive divergence algo-
rithm [4]. We take the idea a step further here by training a weak learner to discriminate
between the positive examples from the original data and the negative examples generated
by sampling from the current density estimate. This new weak learner minimizes a simple
additive logistic loss function [2].



Our algorithm obtains an important advantage over sampling-based, unsupervised methods
that learn features in parallel. Parallel-update methods require a new sample after each
iteration of parameter changes, in order to reflect the current model’s estimate of the data
density. We improve on this by using one sample per boosting round, to fit one weak
learner. The justification for this approach comes from the proposal that, for stagewise
additive models, boosting can be considered as gradient-descent in function space, so the
new learner can simply optimize its inner product with the gradient of the objective in
function space [3].

Unlike other attempts at “unsupervised boosting” [9], where at each round a new com-
ponent distribution is added to a mixture model, our approach will add features in the
log-domain and as such learns a product model.

Our algorithm incrementally constructs random fields from examples. As such, it bears
some relation to maximum entropy models, which are popular in natural language pro-
cessing [8]. In these applications, the features are typically not learned; instead the al-
gorithms greedily select at each round the most informative feature from a large set of
pre-enumerated features.

2 TheMod€

Let the input, or state bs be a vector of D random variables taking values in some finite
domain SP. The probability of s is defined by assigning it an energy, E(s), which is
converted into a probability using the Boltzmann distribution,
1
P(s) = - exp [~ E(s)] Z = geXp [-E(s)] @
We furthermore assume that the energy is additive. More explicitly, it will be modelled as
a weighted sum of features,

E(s) =) Ei(s) = Y ugu(s; 6r) @)
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where {a;} are the weights, {¢;(-)} the features and each feature may depend on its own
set of parameters 6.

The model described above is very similar to an “additive random field”, otherwise known
as “maximum entropy model”. The key difference is that we allow each feature to be
flexible through its dependence on the parameters 6.

Learning in random fields may proceed by performing gradient ascent on the log-

likelihood:
M
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where d,, is a data-vector and S is some arbitrary parameter that we want to learn. This
equation makes explicit the main philosophy behind learning in random fields: the energy
of states ““occupied” by data is lowered (weighted by ﬁ) while the energy of all states is
raised (weighted by P(s)). Since there are usually an exponential number of states in the
system, the second term is often approximated by a sample from P(s). To reduce sampling
noise a relatively large sample is necessary and moreover, it must be drawn each time we
compute gradients. These considerations make learning in random fields generally very
inefficient.

Iterative scaling methods have been developed for models that do not include adaptive
feature parameters {6} but instead train only the coefficients {«;} [8]. These methods
make more efficient use of the samples than gradient ascent, but they only minimize a
loose bound on the cost function and their terminal convergence can be slow.



3 An Algorithm for Self Supervised Boosting

Boosting algorithms typically implement 3 phases: a feature (or weak learner) is trained,
the relative weight of this feature with respect to the other features already in the pool is
determined, and finally the data vectors are reweighted. In the following we will discuss a
similar strategy in an unsupervised setting.

3.1 Finding New Features

In [7], boosting is reinterpreted as functional gradient descent on a loss function. Using the
log-likelihood as a negative loss function this idea can be used to find features for additive
random field models. Consider a change in the energy by adding an infinitesimal multiple
of a feature. The optimal feature is then the one that provides the maximal increase in
log-likelihood, i.e. the feature that maximizes the second term of
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Using Eqn. 3 with 0E /0 = ¢, we rewrite the second term as,
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where P(s) is our current estimate of the data distribution. In order to maximize this
derivative, the feature should therefore be small at the data and large at all other states. It is
however important to realize that the norm of the feature must be bounded, since otherwise
the derivative can be made arbitrarily large by simply increasing the length of ¢ (s).

Because the total number of possible states of a model is often exponentially large, the
second term of Egn. 5 must be approximated using samples s,, from P(s),
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These samples, or “negative examples”, inform us about the states that are likely under
the current model. Intuitively, because the model is imperfect, we would like to move its
density estimate away from these samples and towards the actual data. By labelling the
data with y = —1 and the negative examples with y = +1, we can map this to a supervised
problem where a new feature is a classifier. Since a good classifier is negative at the data
and positive at the negative examples (so we can use its sign to discriminate them), adding
its output to the total energy will lower the energy at states where there are data and raise it
at states where there are negative examples. The main difference with supervised boosting
is that the negative examples change at every round.

3.2 Weightingthe Data

It has been observed [6] that boosting algorithms can outperform classifications algorithms
that maximize log-likelihood. This has motivated us to use the logistic loss function from
the boosting literature for training new features.

Loss =) log (1+ e™¥P*) 7)
k

where & runs over data (y;, = —1) and negative examples (yrx = +1). Perturbing the
energy of the negative loss function by adding an infinitesimal multiple of a new feature:



E — FE + e¢; and computing the derivative w.r.t. £ we derive the following cost function
for adding a new feature,
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The main difference with Eqgn. 6 is the weights w;, on data and negative examples, that give
poorly “classified” examples (data with very high energy and negative examples with very
low energy) a stronger vote in changes to the energy surface. The extra weights (which are
bounded between [0,1]) will incur a certain bias w.r.t. the maximum likelihood solution.
However, it is expected that the extra effort on “hard cases” will cause the algorithm to
converge faster to good density models.

It is important to realize that the loss function Eqn. 7 is a valid cost function only when the
negative examples are fixed. The reason is that after a change of the energy surface, the
negative examples are no longer a representative sample from the Boltzmann distribution in
Egn. 1. However, as long as we re-sample the negative examples after every change in the
energy we may use Eqn. 8 as an objective to decide what feature to add to the energy, i.e.
we may consider it as the derivative of some (possibly unknown) weighted log-likelihood:
C = 0Ly, 0€|e=o.

By analogy, we can interpret p(y = —1|s) = o(—E(s)) as the probability that a certain
state s is occupied by a data-vector and consequently —E(s) as the “margin”. Note that
the introduction of the weights has given meaning to the “height” of the energy surface, in
contrast to the Boltzmann distribution for which only relative energy differences count. In
fact, as we will further explain in the next section, the height of the energy will be chosen
such that the total weight on data is equal to the total weight on the negative examples.

3.3 Adding the New Featureto the Pool

According to the functional gradient interpretation, the new feature computed as described
above represents the infinitesimal change in energy that maximally increases the (weighted)
log-likelihood. Consistent with that interpretation we will determine «; via a line search in
the direction of this “gradient”. In fact, we will propose a slightly more general change in
energy given by,

E(s) = E(s) + au¢i(s) + 1 )

As mentioned in the previous section, the constant -, will have no effect on the Boltzmann
distribution in Eqn. 1. However, it does influence the relative total weight on data versus
negative examples. Using the interpretation of C in Eqn. 8 as 9 L,,/d¢|.—¢ it is not hard to
see that the derivatives of L,, w.r.t. to oy and® -, are given by,
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Therefore, at a stationary point of L,, w.r.t. 7; the total weight on data and negative exam-
ples precisely balances out.

When iteratively updating a; we not only change the weights wy, but also the Boltzmann
distribution, which makes the negative examples no longer representative of the current

ISince P(s) is independent of ~;, it is easy to compute the second derivative LI, = >, Ynwy,
and we can do Newton updates to compute the stationary point.
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Figure 1: (a - left). Training error (lower 2 curves) and test error (higher 2 curves) for the
weighted boosting algorithm (solid curves) and the un-weighted algorithm (dashed curves).
(b —right). Features v; found by the learning algorithm.

estimated data distribution. To correct for this we include importance weights g,, on the
negative examples that are all 1/N at a; = 0. It is very easy to update these weights
from iteration to iteration using g, — g, exp(—day ¢:(s,)) and renormalizing. It is well
known that in high dimensions the effective sample size of the weighted sample can rapidly
become too small to be useful. We therefore monitor the effective sample size, given by
1/ 3", g%, where the sum runs over the negative examples only. If it drops below a thresh-
old we have two choices. We can obtain a new set of negative examples from the updated
Boltzmann distribution, reset the importance weights to 1/N and resume fitting «;. Alter-
natively, we simply accept the current value of «; and proceed to the next round of boosting.
Because we initialize oz = 0 in the fitting procedure, the latter approach underestimates
the importance of this particular feature, which is not a problem since a similar feature can
be added in the next round.

4 A Binary Example: The Generalized RBM

We propose a simple extension of the "restricted Boltzmann machine” (RBM) with (+1,-
1)-units [1] as a model for binary data. Each feature is parametrized by weights v; and a
bias 3;:

a;dy(s) = —ay log cosh(v]'s + 5;) (12)
where the RBM is obtained by setting all «; = 1. One can sample from the summed
energy model using straightforward Gibbs sampling, where every visible unit is sampled
given all the others. Alternatively, one can design a much faster mixing Markov chain by
introducing hidden variables and sampling all hidden units independently given the visible
units and vice versa. Unfortunately, by including the coefficients «; this trick is no longer
valid. But an approximate Markov chain can be used

aylog cosh(v;‘rs + Bt) ~ logcosh(ayvys + agf5y) (13)

This approximate Gibbs sampling thus involves sampling from an RBM with scaled
weights and biases,

P(hy =1]s) = U(Qatvth +2a:8;) P(si=1lh) = 0(22 oyvighy) (14)
t
When using the above Markov chain, we will not wait until it has reached equilibrium but

initialize it at the data-vectors and use it for a fixed number of steps, as is done in contrastive
divergence learning [4].



When we fit a new feature we need to make sure its norm is controlled. The appropriate
value depends on the number of dimensions in the problem; in the experiment described
below we bounded the norm of the vector [w], 3;] to be no larger than 0.1. The updates
are thus given by v; — v; + dv; and 8; — B¢ + §5; with,

vy o anyn tanh(vl's, + B;)s, 0 x anyn tanh(v]s, + ;) (15)
n
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where the weights w,, are proportional to o(—y, E,). The coefficients «; are determined
using the procedure of Section 3.3.

To test whether we can learn good models of (fairly) high-dimensional, real-world data, we
used the 16 x 16 real-valued digits from the “br” set on the CEDAR cdrom # 1. We learned
completely separate models on binarized “2”s and “3”s. The first 600 data cases of each
class were used for training while the remaining 500 digits of each class were used for test-
ing. The minimum effective sample size for the coefficients a;; was set to 60%. We used 2
different sets of negative examples, 600 examples each, to fit ¢;(-) and ;. After a new fea-
ture was added, the total energies of all “2”’s and “3”'s were computed under both models.
The energies of the training data (under both models) were used as two-dimensional fea-
tures to compute a separation boundary using logistic regression, which was subsequently
applied to the test data to compute the total misclassification. In Figure 1a we show the total
error on both training data and test data as a function of the number of features in the model.
For comparison we also plot the training and test error for the un-weighted version of the
algorithm (w, = 1, V n). The classification error after 100 rounds of boosting for the
weighted algorithm is about 0.65%, and only very gradually increases to about 0.75% after
600 rounds of boosting. This is good as compared to logistic regression (2.7%), k-nearest
neighbors (1.0%, k = 1 is optimal), while a parallel-trained RBM with 50, 100, 200 hidden
units achieves 0.9%, 0.7%, 0.85% respectively. The un-weighted learning algorithm con-
verges much more slowly to a good solution, both on training and test data. In Figure 1b
we show every 10" feature v; between rounds 1 and 200 for both digits.

5 A Continuous Example: The Dimples Model

For continuous data we propose a different form of feature, which we term a dimple because
of its shape in the energy domain. A dimple is a mixture of a narrow Gaussian and a broad
Gaussian, with a common mean:

Pr(s) = —log [N (s; p,01) + N (s; p, 02)] (16)

where the mixing proportion is constant and equal, and o5 is fixed and large. Each round
of the algorithm fits 1 and o for a new learner. A nice property of dimples is that they can
reduce the entropy of an existing distribution by placing the dimple in a region that already
has low energy, but they can also raise the entropy by putting the dimple in a high energy
region [5].

Sampling is again simple if all a; = 1, since in that case we can use a Gibbs chain which
first picks a narrow or broad Gaussian for every feature given the visible variables and then
samples the visible variables from the resulting multivariate Gaussian. For general « the
situation is less tractable, but using a similar approximation as for the generalized RBM,

CklOg [N(S;NJUI) +N(S;/J/7 02)] ~ IOg [N(S;uaal)a +N(S;”702)a] (17)

This approximation will be accurate when one Gaussian is dominating the other, i.e., when
the responsibilities are close to zero and one. This is expected to be the case in high-
dimensional applications. In the low-dimensional example discussed below we imple-
mented a simple MCMC chain with isotropic, normal proposal density which was initiated
at the data-points and run for a fixed number of steps.
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Figure 2: (a). Plot of iso-energy contours after 400 rounds of boosting. The crosses rep-
resent the data and the dots the negative examples generated from the model. (b). Three
dimensional plot of the negative energy surface. (c). Contour plot for a mixture of 30
Gaussians learned using EM. (d). Negative energy surface for the mixture of 30 Gaussians.

The type of dimple we used in the experiment below can adapt a common mean (u) and
the inverse-variance of the small Gaussian (71) in each dimension separately. The update
rules are givenby, p — p + dp and 71 — 71 + 71 With

i o< Y wnyn(Xin — i) (r1,nT1i + T2,072,0) (18)
0Ty, X — anyrﬂ“l,n (X — pa)? — 1/71,4) (19)

where r1, = Ni/(NM + N2) and ro,, = 1 — 7y, are the responsibilities for the narrow
and broad Gaussian respectively and the weights are given by w,, = o(—y,E,). Finally,
the combination coefficients a4 are computed as described in Section 3.3.

To illustrate the proposed algorithm we fit the dimples model to the two-dimensional data
(crosses) shown in Figure 2a-c. The data were synthetically generated by defining angles
p+ = Emu with w uniform between [0, 1] and a radius 7. = 10 + ny4 with n standard
normal, which were converted to Euclidean coordinates and mirrored and translated to pro-
duce the spirals. The first feature is an isotropic Gaussian with the mean and the variance
of the data, while later features were dimples trained in the way described above. Figure 2a
also shows the contours of equal energy after 400 rounds of boosting together with exam-
ples (dots) from the model. A 3-dimensional plot of the negative energy surface is shown in
Figure 2b. For comparison, similar plots for a mixture of 30 Gaussians, trained in parallel
with EM, are depicted in Figures 2c and 2d.

The main qualitative difference between the fits in Figures 2a-b (product of dimples) and



2¢-d (mixture of Gaussians), is that the first seems to produce smoother energy surfaces,
only creating structure where there is structure in the data. This can be understood by
recalling that the role of the negative examples is precisely to remove “dips” in the energy
surface where there is no data. The philosophy of avoiding structure in the model that is
not dictated by the data is consistent with the ideas behind maximum entropy modelling
[11] and is thought to improve generalization.

6 Discussion

This paper discusses a boosting approach to density estimation, which we formulate as a
sequential approach to training additive random field models. The philosophy is to view
unsupervised learning as a sequence of classification problems where the aim is to discrim-
inate between data-vectors and negative examples generated from the current model. The
sampling step is usually the most time consuming operation, but it is also unavoidable since
it informs the algorithm of the states whose energy is too low. The proposed algorithm uses
just one sample of negative examples to fit a new feature, which is very economical as
compared to most non-sequential algorithms which must generate an entire new sample for
every gradient update.

There are many interesting issues and variations that we have not addressed in this paper.
What is the effect of using approximate, e.g. variational distributions for P(s)? Can we
improve the accuracy of the model by fitting the feature parameters and the coefficients
a; together? Does re-sampling the negative examples more frequently during learning
improve the final model? What is the effect of using different functions to weight the data
and how do the weighting schemes interact with the dimensionality of the problem?
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