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Abstract

Many web pages and resources are primarily relevant to
certain geographic locations. For example, in many queries
web pages on restaurants, hotels, or movie theaters are only
relevant to those users who are in geographic proximity to
these locations. Moreover, as the number of queries with a lo-
cal component increases, searching for web pages which are
relevant to geographic locations is becoming increasingly im-
portant. The performance of geographically-oriented search
is greatly affected by how we use geographic information to
rank web pages. In this paper, we study the issue of ranking
web pages using geographically-sensitive link analysis algo-
rithms. More precisely, we study the question of whether ge-
ographic information can improve search performance. We
propose several geographically-sensitive link analysis algo-
rithms which exploit the geographic linkage between pages.
We empirically analyze the performance of our algorithms.

1 Introduction

In the current web, it is not uncommon to find web pages
that are characterized by their geographic locality. For in-
stance, web pages about local restaurants, or local car deal-
ers providing information about their services, products and
addresses are prevalent on the Web. On the user side, there
is strong anecdotal evidence that a considerable number of
search engine queries are geographically oriented.1 Queries
like “find the movie theaters closest to LAX” or “find the
best pediatricians in Riverside” are examples of such queries.
We refer to the problem of finding and retrieving web pages
that match the subject in which the user is interested, and that
are also relevant to a particular geographic area the user has
specified as geographically-oriented search. Geographically-
oriented search has recently gained the substantial attention in
industry under the name of “local search”. Although there are
several available commercial local search engines (e.g. Local
Google2), we were not able to find any public domain infor-
mation on the ranking algorithms used by such local search
engines. Furthermore, it is not even clear whether they are
actually ranking web pages rather than businesses.

In this paper, we study the issue of ranking web pages us-
ing geographically-sensitive link analysis algorithms. Specif-
ically, we propose a set of alternative geographically-oriented
search algorithms that are based on incorporating geographic
semantics in different ways into link analysis algorithms. We

1Yahoo estimates that 20-25% of all search engine
queries have a local component. (See http://search-
enginewatch.com/searchday/article.php/3389591)

2http://local.google.com
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pages

first propose location-dependent geographically-sensitive link
analysis algorithms. That is, we precompute multiple im-
portance scores for each page relative to a given set of geo-
graphic locations. Then, these scores are combined at query
time based on the intended location associated with a user’s
query to produce the final ranking of pages. Next, we pro-
pose location-indepedent geographically-sensitive link analy-
sis algorithms which are computationally less expensive ap-
proximations of the original ones. These approximations first
compute offline a single geographic importance score, “inde-
pendent” of any specific geographic location, for each page.
Again, this score is used at query time based on a simple
treatment of the intended location associated with a user’s
query. All of our geographically-sensitive link analysis al-
gorithms are based on the hypothesis that when the semantics
of geographic locality are combined with the linkage relation
between pages, the performance of geographically-oriented
search is greatly enhanced. We empirically study our hypoth-
esis through a set of experiments on real web data. Impor-
tantly, our techniques do not assume perfect knowledge of
geographic scopes (something that will rarely be available),
but rather they rely on a simple, but efficient technique for
automatically computing geographic scope. Moreover, we as-
sume that during query time, the geographical context associ-
ated with user’s query is directly available from the user, from
IP-address, or using those techniques proposed in [15].

In Figure 1, we illustrate the link structure of several web
pages related to “restaurants in LA, CA” to show the ratio-
nale behind our proposed ranking algorithms. We assume
that if a page contains a geographic entity (e.g. an ad-
dress) as part of its content, then the page can be treated
as a geographically-aware page. Furthermore, if a page
points to a geographically-aware page or is pointed to by a
geographically-aware page, then it can be viewed, to some



degree, as a geographically-aware page as well. In tradi-
tional link analysis, the linkage relation between two pages is
viewed as an endorsement of content. In a similar manner, a
geographic entity shared by two pages can be viewed as an en-
dorsement of geographically sensitive content. We model the
presence of a geographic entity within the content of a page
using a geographic link. Additionally, a geographic entity
shared by two pages can be represented as a co-citation link.
In summary, for geographically-oriented search, the quality of
a page should be determined by (1) the quality of pages that
point to the page and (2) the quality of geographic entities that
are found within the content of page. Our main contributions
are:

• We propose several alternative graph models capturing the
semantics of the relations between geographic entities and
pages in addition to the page-to-page relations. For each
graph model, we propose a geographically-oriented link
analysis algorithm. In particular, we present a new al-
gorithm, GeoLink, that is based on a new model of ge-
ographic importance. GeoLink directly models the se-
mantics of geographic locality embedded in pages. It dis-
tinguishes the role geographic entities play on different
pages, in contrast to the other algorithms (GeoRank, an
extension of Page Rank and GeoHits, an extension of the
HITS algorithm).

• Our evaluation study shows the benefit of using the geo-
graphic-entity-to-page relation with the page-to-page rela-
tion in computing page reputations (as done by all three al-
gorithms GeoRank, GeoHITS and GeoLink). In addition,
the evaluation highlights the additional benefit of directly
modeling and exploiting the semantics of geographic en-
tities (as done in GeoLink). Our experimental results also
show that the performance gap (that is, the difference in
the rankings) between the location-dependent algorithms
and their more efficient approximations is relatively small,
suggesting that our algorithms are efficient in practice.

2 Geographic Entities
Note that the first step toward geographically-oriented

search is the estimation of the geographical scopes of web
pages. Several possible solutions have been proposed which
use both the linkage relation and semantic information [1, 6,
9]. However, none of them are completely efficient for es-
timating geographical scopes of web pages. We use a sim-
ple yet efficient technique in which address information found
within the page content is used as the basic unit for estimating
geographical scope. By a geographic entity or simply geo-
entity, we refer to the address description of a physical orga-
nization or entity3. Our assumption is that the presence of an
address within a page is a strong indication that the page is
associated with the physical entity corresponding to that par-
ticular address. While there might be several representations
for an address (and therefore a geo-entity) depending on the
region and the country, in this paper, we restrict our attention,
especially for our experiments, to those geo-entities which are

3Conceptually a geographic entity can be any representation of the geo-
graphical scope associated with a given page. In fact, our proposed algorithms
can be run with any types of geographic entities. However, in this paper, we
only consider those geographic entities in the address form especially for our
experiments

represented by standard US addresses. All geo-entities con-
sidered in this paper are text sequences of the form “Street
Number, Street Address, City Name, State Name”. We down-
load all common city name references whose population is
greater than 20,000 from http://www.city-data.com
obtaining a list of 4581 unique city name references. We con-
structed a database of all possible street names for each city
from the freely available 2004 TIGER/Line files.4 We refer to
this database as the StName Database.

Furthermore, we define a regular expression to
represent geo-entity patterns. That is, let D =
[s, south, n, north, w, . . .] be be the set of street direc-
tions. Let ST = [street, st, drive, dr, road, , . . .] be the set
of street abbreviations. Let States be the set of state names.
Let Cities be the set of city names. Each set also contains all
possible abbreviation forms. We define a extraction pattern
for addresses using the following regular expression:

σStNumber = [1 − 9]([0 − 9])∗

σStName = [a − Z]([a − Z0 − 9\.\s])∗

σStreet = σStNumber([D])?σStName[ST ]
σcity = [Cities], σstate = [States]
σaddress = σStreet\sσcity(\sσstate)?

In the above regular expressions, \. represents the char-
acter “.” and \s represents any separator (e.g., “,” or white
space). To extract a geo-entity, we match the content of a
given page against the above regular expression, and once ex-
tracted, we validate whether the extracted geo-entity is correct
or not using the StName Database (i.e., checking whether the
extracted street name is in the database or not). When we
extract city name references, we might have problems due to
aliasing (when different names or abbreviations are used for
the same city) and ambiguity (when the possible city name
candidate can refer to to city names in different states). We
deal with these problems following the approach proposed by
Ding et al. [9].

Based on the random sample of 500 extracted geo-entities,
we manually assessed the performance of our gazetteer-based
extractor and obtained 97% accuracy. Certainly, different or
more sophisticated techniques (with higher recall) could be
used to estimate geographic scope. However, one of our goals
is to see if even a simple (yet highly efficient) technique such
as this is sufficient to reveal the semantics of geographic lo-
cality encoded in web pages.

3 Algorithms
A query’s dominant location (QDL) refers to the intended

geographic location(s) associated with the given query. How
to obtain it from a search query is already addressed in [15] or
sometimes it can be obtained from user’s IP-address. There-
fore, we simply assume that QDL is available to our algo-
rithms during query time. In our approach, we first precom-
pute the importance scores of pages relative to geographic lo-
cations that are possibly relevant to QDLs. That is, we com-
pute offline multiple importance scores for each page with a
given set of geographic locations that are likely QDLs. Let
Ω denote the set of given geographic locations used for such
precomputation. There are many possible ways of defining
Ω (e.g., street level, zip code level, city level, state level) and
our algorithms can be run over any arbitrarily constructed Ω.
In our work, however, we construct Ω at the city level due to

4http://www.census.gov/geo/www/tiger/tiger2004se/tgr2004se.html
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the nature of experiments that we conducted. We define Ω as
a set of all (disambiguated) city names that are used in geo-
entities extracted from the dataset and used for ranking. At
query time, multiple importance scores for each page are com-
bined based on the actual QDL of the query to form a com-
posite ranking score for pages matching the query keyword.
Certainly, this score can be used in conjunction with other
IR-based scoring schemes (e.g., TF/IDF) to produce a final
rank for the resulting pages with respect to a geographically-
oriented search query.

3.1 Location-Dependent Models
The first step toward our ranking is to generate the set of

ranking scores for each l ∈ Ω. For this purpose, we pro-
pose three types of geographically-sensitive link-analysis al-
gorithms. The basic intuition for our algorithms is as follows.
Given l ∈ Ω (e.g., Houston), we refer to a geo-entity that is
relevant to location l as an l-geoentity. Next, we augment the
web page graph to contain a node for each l-geoentity. More-
over, the presence of an l-geoentity within the content of a
page is viewed as the endorsement of authority from the corre-
sponding l-geoentity to the page. Therefore, each l-geoentity-
to-page relation is represented as a link between an l-geoentity
and page. Consequently, two pages which are geographically
similar with respect to l are co-cited by an l-geoentity. There-
fore, the quality of a page with respect to the geographic lo-
cation l depends on the quality of pages pointing to the page
as well as the quality of l-geoentity pointing to the page. The
quality of an l-geoentity, in turn, would depend on the quality
of pages this geo-entity points to.

3.1.1 GeoRank
The GeoRank algorithm is similar to the original PageRank
algorithm [5] in spirit. However, unlike PageRank which
only consider page-to-page links, GeoRank performs the ran-
dom walk over a graph with two types of edges (and nodes),
namely page-to-page links and geo-entity-to-page links. The
page-to-page relation is represented in the same way as in
traditional link-analysis algorithms. That is, there is a link
between two pages if there exists a hyperlink between these
pages. Additionally, there is a link between an l-geoentity and
a page if the page contains the l-geoentity in its content. Each
random walk is performed with respect to those geo-entities
relevant to l. In Figure 2(a), geo-entities relevant to Houston
point to those pages containing addresses about Houston and
these are used for the computation of GeoRank with respect
to Houston. Each time the random surfer jumps uniformly at
random to one of the page nodes with probability ε or decides
to follow a “link” with probability 1− ε. If the surfer decided

to follow a “link” then it can either follow a page-to-page link
with probability α or an l-geoentity-to-page link with proba-
bility 1 − α. In the former case, the random surfer follows
uniformly at random one of the page-to-page links from the
current page. In the latter case, the random surfer follows uni-
formly at random one of the l-geoentity-to-page links from the
current page, and then it picks one of l-geoentity-to-page links
from the chosen l-geoentity node to select the next page node.
This defines a Markov chain on pages where the stationary
distribution of this Markov chain is defined as the GeoRank
page values for l.

Formally, for page j, let F (j) denote the number of pages
that are pointed to by page j and let BG(j, l) denote the num-
ber of l-geoentities that point to page j. For l-geoentity k, let
FG(k, l) denote the number of pages that are pointed to by
l-geoentity k then the GeoRank value of page i for l, gr(i, l),
is given as

gr(i, l) =
ε

n
+ (1 − ε) · (α

∑

{j|j→i}

gr(j, l)

F (j)

+ (1 − α)
∑

{k|k⇒i}

∑

{j|k⇒j,j 6=i}

gr(j, l)

BG(j, l)FG(k, l)
)

where j → i means that page j points to page i and k ⇒
j means that l-geoentity k points to page j. It is shown in
[4] that those markov chains similar to that associated with
our GeoRank algorithm are uniformly ergodic and therefore
convergent. Therefore, the standard power-iteration method,
used for the computation of principal eigenvectors, can also
be applied to the computation of each GeoRank value.

3.1.2 GeoHITS and NGeoHITS
Unlike the PageRank algorithm, which assigns a single rank
value to each page, the HITS algorithm assigns two rank val-
ues (authority and hub values) to each page. In the original
HITS formulation, hub and authority values are calculated
from a mutually reinforcing relationship where good hubs are
those that point to good authorities, and good authorities are
those that are pointed to by good hubs. We extend this mu-
tually reinforcing relationship for relations among web pages
and geographic entities. More precisely, page-to-page links
and l-geoentity-to-page links are constructed following the
GeoRank algorithm with the only exception that we distin-
guish hub pages from authority pages. In Figure 2(b), we
illustrate an example of the graph model for the GeoHITS al-
gorithm. Thus, for the GeoHITS algorithm, a good authority
with respect to l is a page that is pointed to by both good hubs
and good geographic entities relevant to l. Similarly, a good
hub relevant to l is a page that points to good authorities rele-
vant to l and is pointed to by good geographic entities relevant



to l. Let A and H be the set of authorities and hubs, respec-
tively. Let H(j, l) and A(i, l) denote the hub value of page j
and the authority value of page i respectively. Let G(k, l) de-
note the geographic rank value of l-geoentity k. Then, the
GeoHITS algorithm calculates each hub/authority and geo-
graphic rank values for l using the following equations:

H(j, l) = α
∑

{i|j→i}

A(i, l) + (1 − α)
∑

{k|k⇒j}

G(k, l)

A(i, l) = α
∑

{j|j→i}

H(j, l) + (1 − α)
∑

{k|k⇒i}

G(k, l)

G(k, l) = β
∑

i∈A
k⇒i

A(i, l) + (1 − β)
∑

j∈H
k⇒j

H(j, l)

Bharat and Henzinger [3] point out that it is possible that the
simple mutual reinforcing relationship approach of HITS may
give undue weight to some pages. Therefore, a highly con-
nected set of pages can dominate the results of the HITS al-
gorithm. Note that similar phenomenon might occur in the
geographically-oriented search context. In other words, it
would be desirable for each l-geoentity/page to have the same
influence on other pages to which it is connected. Thus, fol-
lowing [3], we modify the GeoHITS algorithm by normaliz-
ing the number of forward links from a page or an l-geoentity
using the number of pages to which it points. In a similar man-
ner, all backward links are normalized. We refer to this modi-
fied GeoHITS algorithm as NGeoHITS. Similar iterative com-
putation as that of the HITS algorithm can be done. Therefore,
one can easily prove the convergence of GeoHITS and NGeo-
HITS algorithms in a similar manner as that of [3, 16].

3.1.3 GeoLink

Both GeoRank and GeoHITS exploit the existence of geo-
graphic entities in ranking web pages by using geographic
content to endorse pages. However, they do not strictly ex-
ploit the semantics of geographic entities as they also con-
sider those linkage relations that are not directly related to
the quality of geographic entities. In the GeoLink algorithm,
though, we take a stricter view by only considering those link-
age structure that are directly derived from the semantics of
geographic entities. In the GeoLink algorithm, we classify
pages containing at least one l-geoentity into two categories,
namely l-strong geographic hubs and l-strong geographic au-
thorities. We say a page is a l-strong geographic authority if it
contains exactly one unique l-geoentity in its content, and we
say it is a l-strong geographic hub if it contains more than one
unique l-geoentity in its content. As mentioned in Section 1,
pages that point to or are pointed to by those pages with geo-
entities embedded into their content can be viewed, in some
degree, as geographically-aware pages. Therefore, we say that
a page is a l-weak geographic authority if it is pointed to by
some l-strong geographic hub, and we say that it is a l-weak
geographic hub if it points to a l-strong geographic authority.
An l-geographic authority is a page that is either an l-strong
or l-weak geographic authority, and similarly, an l-geographic
hub is a page that is either an l-strong and l-weak geographic
hub. Intuitively, an l-geographic authority is a page which is
possibly geographically-aware for a physical entity relevant
to l. It contains the address information relevant to l for a
single physical entity or it is pointed to by an l-strong geo-

graphic hub, which is associated with multiple physical en-
tities relevant to l. Similarly, an l-geographic hub is a page
which is possibly geographically-aware for multiple physical
entities relevant to l, whose status is gained through multiple
addresses relevant to l embedded in its content or by pointing
to a strong geographic authority.

The graph model for the GeoLink algorithm is constructed
using the set of l-geographic hubs and authorities as follows.
The page-to-page graph is first constructed following the con-
ventional web graph model. There is a link from page i to
page j if there is a hyperlink from i to j. Next, only the edges
(hyperlinks) from l-geographic hubs to l-geographic author-
ities are kept while the rest of the edges are discarded. For
the l-geoentity-to-page relation, only forward links from the
l-geographic hubs are allowed, and similarly only backward
links from the l-geographic authorities are allowed . More
specifically, there is a link from an l-geographic hub, j, to l-
geoentity k if j contains the l-geoentity k, as part of its content
along with other geographic entities. Similarly, there is a link
from l-geoentity k to l-geographic authority i, if l-geoentity k

is the only l-geoentity found in the content of page i. In Fig-
ure 2(c), we illustrate an example of the graph model for the
GeoLink algorithm.

Formally, let F (i) denote the number of pages that are
pointed to by page i, and let B(j) denote the number of pages
that point to page j. Let FG(k, l) denote the number of pages
that are pointed to by l-geoentity k and let BG(k, l) denote
the number of pages that point to l-geoentity k. Let FS(i, l)
denote the number of l-geoentities pointed to by page i and let
BS(i, l) denote the number of l-geoentities that point to page
i. Let H(j, l) be the hub value of page j for l, let A(i, l) be
the authority value of page i for l, and let G(k, l) be the geo-
graphic rank value of l-geoentity k. Finally, let n denote the
number of l-geographic hub pages, let m denote the number
of l-geographic authority pages, and let s denote the number
of l-geoentities. The GeoLink algorithm consists of the fol-
lowing self-consistent equations:

H(j, l) =
ε

n
+ (1 − ε)(α

∑

j→i

A(i, l)

B(i)
+ (1 − α)

∑

k,j⇒k

G(k, l)

BG(k, l)
)

A(i, l) =
ε

m
+ (1 − ε)(β

∑

j→i

H(j)

F (j)
+ (1 − β)

∑

k⇒i

G(k, l)

FG(k, l)
)

G(k, l) =
ε

s
+ (1 − ε)(γ

∑

k⇒i

A(i)

BS(i, l)
+ (1 − γ)

∑

j⇒k

H(j, l)

FS(j, l)
)

The computation of hub/authority values and geographic
rank values can be performed in a similar manner to that of
the previous algorithms. The convergence of the GeoLink al-
gorithm can be proved using techniques similar to those used
in LinkFusion [16].

4 Location-Independent Models
Our geographically-sensitive link analysis algorithms pre-

sented in the previous section require the computation of a
page importance score for each l ∈ Ω. Since the size of
Ω might be very large,5 the computation cost for our algo-
rithms might be expensive. In a dataset consisting of 10
million pages, we found 1083 different cities from the ex-
tracted geo-entities. We also found through our experiments
that the convergence rate of our algorithms is slower than

5In our case, cities with population size greater than 20,000 well exceed
few thousands.



that of the traditional link-analysis algorithms. For instance,
for the dataset “Hotel in Austin,TX” which consists of 9544
pages, 88478 links, 1743 l-geoentities, and 4421 geo-links.
We found that both HITS and PageRank reach the desired
residual ratio (≤ 0.001) after 18 and 13 iterations, respec-
tively, while the geographically-sensitive link analysis algo-
rithms require more than 30 iterations. Therefore, in what fol-
lows we propose a simple heuristic method for approximat-
ing our (location-dependent) geographically-sensitive link-
analysis algorithms which eliminates the need for computing
page’s ranking with respect to each location (e.g., city). With-
out loss of generality, we only focus on the GeoLink algorithm
since the approximation of others can be easily done in a sim-
ilar manner. Our heuristic algorithms treat “all” geo-entities
within a page as being relevant, something which will rarely
be true. However, this simplification will allow us to compute
a ranking more efficiently. In a page relevant to “Los Ange-
les”, our heuristic will assume that most geo-entities found
within the page are relevant to “Los Angeles” (or equivalently
that the presence of a few geo-entities about other cities does
not skew the ranking too much). Therefore, approximations of
our original geographically-sensitive link analysis algorithms
are location-independent. More precisely, the basic assump-
tion for the approximation6 is that GeoLink values satisfy:

a(p, l) ∝ gt(p, l) · ã(p) , h(p, l) ∝ gt(p, l) · h̃(p)

where ã(p) and h̃(p) refer to location-independent GeoLink
values, and gt(l, p) is defined as the ratio between the num-
ber of l-geoentities found within page p and the total number
of geo-entities found within the page. Location-independent
GeoLink values are computed using the original GeoLink al-
gorithm with the only exception that the construction of page-
to-page and geo-entity-to-page links is not limited to any par-
ticular l ∈ Ω.

5 Query-Time Page Importance
Static rankings like those produced by link-analysis-based

ranking algorithms are normally combined with the tra-
ditional IR-type content-based rankings to produce the fi-
nal rank for the page. In this section, we describe one
possible way of combining the rankings produced by our
geographically-sensitive link-analysis algorithms with the
content-based rankings to produce the final rank of a page
given a geographically-sensitive query.

To compute the final rank of a page using our original
location-dependent rankings, we do the following. We only
describe this step for the GeoLink algorithm as the other al-
gorithms are similar. Given a geographically-oriented search
query q, let k(q) be the set of keyword terms and let l(q) be
the query’s dominant location (QDL). For example, given the
query q, “Hotel in Los Angeles”, k(q) would be “hotel” and
l(q) would be “los angeles”. Using a text index, we retrieve all
pages containing the original keyword terms, k(q). The Ge-
oLink values of each page p with respect to l(q) are computed
as:

a(p) =
∑

l∈Ω

pr(l|l(q))a(p, l) , h(p) =
∑

l∈Ω

pr(l|l(q))h(p, l)

6Our assumption is experimentally supported. We observe in the MSN
dataset (see Section 6) used for our experiments that the similarity between
location-independent rankings and location-dependent rankings is 0.7445 in
average using a variant of the Kendall’s distance measure [10] with n=500.

Avg HR ratio Avg R ratio
PageRank 1.04 3.64

HITS 2.05 4.9
GeoRank-A 2.82 5.26

GeoRank 2.39 5.7
GeoHITS-A 3.09 5.71

GeoHITS 3.2 6
NGeoHITS-A 2.87 5.32

NGeoHITS 2.22 5.19
GeoLink-A 3.52 6.13

GeoLink 3.66 6.65

Table 1. Comparison of our algorithms against traditional
link analysis algorithms

where pr(l|l(q)) denotes the probability that the query’s dom-
inant location, l(q), is related to the geographic location l.
Since Ω consists of cities, pr(l|l(q)) will express the relevancy
of l(q) to the city l. Since geographically-oriented search
queries used in our experiments are at the city level, we will
have pr(l|l(q)) = 1 if l = l(q) and Pr(l|l(q)) = 0 otherwise.
We also compute the content-based rank of each page with
respect to k(q) using some traditional IR-approaches. Let
tr(p, k(q)) denote such a rank value of page p. Finally, we
combine tr(p, k(q)) of page with that a(p) or h(p) of page as
a linear sum of these values (following [7] and others) to pro-
duce the final rank of page 7. We can do the same computation
using our location-independent rankings, in which case we
will use our query time approximations for a(p) and h(p):

a(p) =
∑

l∈Ω

pr(l|l(q))gr(p, l)ã(p) , h(p) =
∑

l∈Ω

pr(l|l(q))gr(p, l)h̃(p)

6 Experiments
We present the results of experiments that we ran to de-

termine the feasibility of our algorithms in practice. Due to
the unavailability of benchmark for testing our algorithms,
we decided to construct our own the dataset for testing. We
first chose the following 11 samples keywords: Day Care, Fi-
nancial Service, Fitness, Health, Shopping, Seafood, Hotel,
Italian Restaurant, Plumbing, Real Estate, School. Then, we
chose the following 7 locations: (Austin, TX), (Chicago, IL),
(Houston, TX), (Miami, FL), (Los Angeles, CA), (New York,
NY), (Tucson, AZ). Each keyword and location were com-
bined to build a query string (e.g. School in Austin). Next,
each constructed query string was sent to the MSN search en-
gine8 and the top 200 returned pages were retained as the Root
Set. For each page in the Root Set, we included all pages that
are pointed to by this page using the MSN search engine and
the first 300 pages (in the order returned by the MSN search
engine) that point to the page. The total number of pages col-
lected in this way was around 665,000. We call our dataset
MSN dataset 9.

6.1 User Study
As our first evaluation study, we compared our geographi-

cally-sensitive link analysis algorithms (both location-indepe-
dent and dependent) against those traditional link analysis al-
gorithms using the randomly chosen 20 sample queries from
our MSN dataset (e.g. “Hotel in New York”). For each query,
both geographically-sensitive and traditional link analysis al-
gorithms like HITS and PageRank were run without using

7We expect that more sophisticated use of content-based ranking would
yield even better rankings.

8http://search.msn.com
9The dataset construction was performed in March 2006



any IR-ranking to produce the final top 10 ranked pages. We
conducted a user study using the precision over the top-10
(p@10) as the measure for the evaluation. More precisely, let
the high relevance ratio be the fraction of pages within the
top 10 results returned by each algorithm that are highly rel-
evant to the given query. Let relevant ratio be the fraction of
pages within the top 10 results that are relevant, or highly rel-
evant to the given query. Similar measurements are used in
the literature [14] and the TREC conferences. The relevance
rating of results was obtained through a user study. In Ta-
ble 1, we present the average high relevance and relevance ra-
tios of our algorithms, and classical link analysis algorithms.
In the figure, the algorithm name followed by “-A” refers to
the approximation version (location-independent) of the cor-
responding algorithm. One can observe from Table 1 that
when the semantics of geographic entities are combined with
link analysis of pages, the performance of geographically-
oriented search is clearly improved. The performance of tra-
ditional link-analysis algorithms like the PageRank and the
HITS algorithms, on the other hand, is substantially worse
than geographically-sensitive algorithms.

6.2 Link Based Ranking+IR-Ranking
To assure the previous experimental results, we conducted

an additional experimental study to assess the ranking quality
of our algorithms when they are combined with traditional IR-
ranking. Similar to the previous case, we used randomly cho-
sen 13 sample queries from the MSN dataset. We produced 2
types of rankings: (1) We wished to have a baseline ranking
for comparison. For each sample query q (e.g. “Seafood in
Houston”), we used PageRank and HITS unchanged to pro-
duce rankings, and then we filtered their results based on a
simple notion of geographic relevance. Specifically, we re-
moved those pages not containing any geo-entity relevant to
the query’s dominant location. In this way, we were able
to get rid of those pages that are not relevant to the given
query’s dominant location. We computed a content-based
ranking of each page with respect to the full set of query terms
(“Seafood in Houston” in our example). (2) We combined
our link analysis algorithms with IR-ranking as follows. For
each query, we first computed both the location-independent
and location-dependent rankings (“Houston” in our example)
as described in Section 4 and 5. Then, we computed the
content-based ranking of each page with respect to the query
keyword (“Seafood” in our example). The cosine similarity
and the TF/IDF weighting were used for IR-ranking. For ev-
ery algorithm, the final rank of a page was a linear sum of
static ranking (either geographically-sensitive or traditional
link based) and content-based IR ranking as described in Sec-
tion 6. To evaluate the quality of the results returned by each
algorithm, this time, we constructed a ground-truth set as fol-
lows. We first merged all top 10 pages returned by each algo-
rithm and those from MSN into one single set. Without having
any knowledge about from which algorithm the corresponding
page came from, we rate each page as either “non-relevant”,
“relevant”, or “highly relevant” by carefully analyzing its con-
tent. We used the following basic criteria for this evaluation
step: (1) A page is highly relevant if it contains information
that are definitely relevant to the query term as well as to the
query’s dominant location. (2) A page is relevant if it con-
tains information that are related to, but not necessarily rele-

Avg HR ratio Avg R ratio
PageRank-IR 1.65 3.65

HITS-IR 1.65 3.5
MSN 2.77 6.23

GeoRank-A 2.82 5.26
GeoRank-IR 4.73 7.15
GeoHITS-A 3.09 5.71
GeoHITS-IR 4.54 6.85
NGeoHITS-A 2.87 5.32
NGeoHITS-IR 4.77 6.85

GeoLink-A 3.52 6.13
GeoLink-IR 5.15 7.92

Table 2. Performance comparison of our link analysis algo-
rithms against traditional link analysis algorithms and MSN
(combined with IR-ranking)

vant to both the query term and the query domination location
or it contains some sections that are relevant to both the query
term and the query’s dominant location. (3) A page is not rel-
evant if it is irrelevant to either the query term or the query’s
dominant location. Using this ground-truth set, we assessed
the quality of our rankings by comparing this set against the
top 10 results returned by each algorithm. Once again, we
used the precision over the top-10 (p@10) as the measure for
the evaluation. In Table 2, we report the average high rele-
vance and relevance ratios of our algorithms (with IR-ranking)
against those traditional methods (with IR-ranking), and the
original MSN results.

Once again, one can observe from Table 2 that when the
semantics of geographic entities are combined with a link
analysis of pages, the performance of geographically-oriented
search is clearly improved reinforcing the conclusions of our
first experimental study.

6.3 Discussion
Our algorithms that capture the relevant semantics of

geographic locality in the web perform well for the
given geographically-oriented searches. When the page
is geographically-aware, the number of l-geoentities found
within its content and its linkage structure are valuable for
determining what type of page it is. For instance, a page
which contains reviews of local restaurants may contain sev-
eral addresses as part of its content, and possibly links to
homepages of local restaurants. On the other hand, there is
a strong probability that the homepage of a local restaurant
only contains one single address corresponding to the geo-
graphic location of the restaurant and may also be pointed to
by a review page of local restaurants. Our GeoLink algorithm,
which captures this subtle difference among geographically-
aware pages by distinguishing l-strong/weak geographic au-
thorities from l-strong/weak geographic hubs, emerges clearly
as the best among all of our algorithms.

Furthermore, by comparing Tables 1 and 2, one can ob-
serve that the performance of our algorithms is stregthed when
they are combined with IR-ranking. The performance of tra-
ditional link-analysis algorithms like PageRank and HITS, on
the other hand, is still substantially worse, even when they
are combined with IR-ranking, than geographically-sensitive
algorithms. The main reason why classical link-based rank-
ing methods failed was due to their inability to distinguish the
ranking respect to query’s dominant location from that respect



Title Webpage URL
Geolink Ranking

Fitness Chicago http://www.depofitness.com/fitnesschicago/
Fitness-Salon And Spa Beauty Fitness http://fitness.researcheasy.com

/salonandspabeautyfitness/
The Fitness Chicago resource! http://www.alexfitness.com/fitnesschicago/
qovexfitness.com http://www.qovexfitness.com/chicagofitness/
Chicago Crunch Fitness Il http://model.fitnesshub.info/

chicago-crunch-fitness-il.html
PageRank

Gapers Block:Author-James Allenspach http://www.gapersblock.com/../author/jma/
Chicago - welcome to Bar Chicago http://www.dchicago.com/barchicago/
Chicago - welcome to Salon Chicago http://www.dchicago.com/salonchicago/
Chicago Hotels in Chicago Illinois http://www.readio.com/../chicago-hotels.html
Chicago - welcome to Chicago Illinois http://www.dchicago.com/chicagoillinois/

Table 3. Top 5 Results returned by Geolink and PageRank
on the query “Fitness in Chicago IL”

to keyword terms. We have found in numerous query samples
that the content-based ranking using the full set of query terms
were biased due to the query’s dominant location term. For in-
stance, in the query “Fitness in Chicago”, the top 5 pages re-
turned by GeoLink algorithm are all highly relevant, while the
top 5 pages returned by PageRank are all non-relevant since
they had a high frequency of the term “Chicago” in their con-
tent as shown in Table 3.

7 Related Work
The first generation of link analysis algorithms like the

HITS [11] and PageRank [5] algorithms only consider one
type of linkage relation (specifically, the hyperlink relation
between web pages) for their ranking. Recently, some re-
searchers have started to consider linkage relations among
different types of data objects. For example, Xi et al. [16]
propose a unified link-analysis framework, called link fusion,
for multi-type data objects by extending the traditional al-
gebraic link-analysis ranking algorithms. However, they do
not consider how to create good graph models for specific
types of data objects, and notably they do not consider ob-
jects that model geographic locality. Other work has consid-
ered specific types of data objects, but most model these ob-
jects, and relationships between them, independently of the
standard page linkage relation. This work includes a modified
version of HITS, proposed by Miller et al. [12], that models
both pages and user behavior as objects in a graph. Addi-
tionally, Davison [8] calculates authority and hub values of
pages by representing the term-term, doc-doc, term-doc and
doc-term relationships in a single matrix model. Cai et al. [7]
propose an enhanced link-analysis ranking algorithm in which
each web page is first partitioned into blocks using a vision-
based page segmentation algorithm and then the link analy-
sis is performed over block-to-page and page-to-block graph
models. Balmin et al. [2] propose the ObjectRank system
which applies authority-based ranking to keyword search in
databases modeled as labeled graphs where the co-occurence
of keywords in a tuple corresponds to an edge in the graph.
Nie et al. [13] propose PopRank in which objects relevant to
a specific application domain are ranked in terms of their rel-
evancy and popularity to answer user queries using the web
information about these objects.

Our work follows the general theme of considering new
types of data objects (i.e., geographic entities) to improve
search performance. Our proposed approaches combine geo-
graphic locality and page linkage semantics to produce a sin-
gle graph. Moreover, unlike most previous work, we com-

pare different graph models to understand how to effectively
capture the semantics of geographic entities embedded in
web content. Hence, our geographically-sensitive link anal-
ysis algorithms can properly exploit correlations in the way
page linkage and geographic linkage semantics are modeled.
Zhang et al. [17] have also considered the use of a graph
model that includes geographic entities. They propose a dif-
ferent graph model (which is hard to be generalized), and use
the original HITS algorithm directly on this model. In con-
trast, we compare the performance of several algorithms (in-
cluding a HITS style algorithm) and consider the scalability
issue. More importantly, we empirically show that our Ge-
oLink algorithm, which is designed to fully use the correla-
tion between geographic locality and page linkage semantics,
outperforms the other algorithms in geographically-oriented
search.

8 Conclusion
We proposed several link-based algorithms to rank web

pages in a geographically sensitive fashion. In addition to
the hyperlinks between pages, the existence of an l-geoentity
within a page is represented as a link as well. Both linkage
relations are explored by our algorithms showing that geo-
graphic content can be exploited to improve the performance
of geographically-oriented search. As for future research, we
plan to extend our link analysis approaches.
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