Lecture 20: Support Vector Machines



Outline

e Discriminative learning of classifiers.

— Learning a decision boundary.

— Issue: generalization.

e Linear Support Vector Machine (SVM) classifier.

— Margin and generalization.

— Training of linear SVM.



Linear Classification

e Binary classification problem: we assign labels y € {—1, 1} to input data
X.

e Linear classifier: y = sign(w - x 4+ wg) and its decision surface is a
hyperplane defined by w - x + wg = O.

e Linearly separable: we can find a linear classifier so that all the training
examples are classified correctly.

y;[w - x; + wg] > 0, Vi=1,...,n




Perceptrons

e Find line that separates input patterns so that output o = 41 on one
side, o = —1 on other, and these match target values y

o(x) = sign(w - x + wp) =7y(x)

rewrite — for every training example :

yi(w-x; +wg) >0

e We can adjust weights {w,wqg} by Perceptron learning rule, which guar-
antees to converge to the correct solution in the linear separable case.

e Problem: which solution will has the best generalization?



Geometrical View of Linear Classifiers

e Margin: minimal gap between classes and decision boundary.

e Answer: The linear decision surface with the maximal margin.



Geometric Margin

e Some Vector Algebra:

— Any two points x; and x» lying in L, we have w - (x; — x2) = 0, which implies
w* = w/||w]| is the unit vector normal to the surface of L.

— Any point xp in L, w - Xg = —wo.

— The signed distance of x to L is given by
1

W*-(x—xo)zm(w-x-l—wo)

e Geometric margin of (x;, y;) W.r.t L: ; = inITlll(W . x; + wg).

e Geometric margin of {(x;, y;)i—1} w.r.t L: min; ;.



Linear SVM Classifier

e Linear SVM maximizes the geometric margin of training dataset:

MaxXw,w, C (1)
s.t. yZHTlﬂ(W X, +wg) >C, i=1,...,n

e For any solution satisfying the constraints, any positively scaled multiple
satisfies them too. So arbitrarily setting ||w|| = 1/C, we can formulate
linear SVM as: (min ||z|| & min1/2]||z||?)

MiNw wg %HWHQ (2)
st. y;(w-x; +wg)>1, i=1,...,n

e With this setting, we define a margin around the linear decision boundary
with thickness 1 /||w]||.



Solution to Linear SVM

e We can convert the contrained minimization to an unconstrained opti-
mization problem by representing the constraints as penality terms:

: 1 2 :
min §||w|| + penality term
e For data (x;, y;), use the following penality term:
O,yi(w-x; +wg) 21 _ (1 — o .
{ OO, Otherwise } - E;r;g)O( O‘z(l y’L[wO _I_ W X’L])
e Rewrite the minimization problem

.1
m{u%{_

2, - P .
o 2||W|| +i;23§6<az(1 yilwo +w-x;]) } (3)

_ L w2 S a1 — X,
= mb%{gjgé}{QHWH +i;az(1 yilwo +w - x;])}

e {«;}’s are called the Lagrange multipliers.



Solution to Linear SVM (cont’d)

e We can swap 'max’ and 'min’:

. L2 N . X
m{l}%{ggé}{EHWH +i;az(l_yz[w0+w x;])} (4)

{a;>0} Wo0 ' 2

\ 4

1 n
= max min {Z||w||?+ Y (1 - y;[wo +w-x;])}
i=1

J (w,wg;0)
e We first minimize J(w,wq; ) w.r.t {w,wqg} for any fixed setting of the
Lagrange multipliers:

a n
8—wJ(W’ wo, ) = W — Z; a;yix; = 0 (5)
a n
g : ; = ;. = 0 6
8w0 (W wQ Oz) Z;_ Y, ( )



Solution to Linear SVM (cont’d)

e Substitute (5) and (6) back to J(w, wq; a):

A w2 £ S (1 — .
{ggg}vgyvg{gllwll +i§1az(1 yilwo+w-x;D}  (7)

A\ >4

J(w,wo;a)
n 1 n
= max {> &~ > viyjoog(x; - x)}
U=

e Finally, we transform the original linear SVM training to a quadratic pro-
gramming problem (7), which has the unique optimal solution.

e We can find the optimal setting of the Lagrange multipliers {a;}, then
solve the optimal weights {w, wg}.

e Essentially, we transform the primal problem to its dual form. Why should
we do this?



Summary of Linear SVM

e Binary and linear separable classfication.
e Linear classifier with maximal margin.

e Training SVM by maximizing

Z oy — 2 Z yzyjazaj(xz ' )
' t,7=1

subjectto o; > O and >_; a;y; = O.

e Weights w = Z?:]_ QY X

e Only a small subset of a;’s will be nonzero and the corresponding data
x,;’S are called support vectors.

e Prediction on a new example x is the sign of

wo +X-W=wy+X- (Zazyzxz)—w0+ Z a;yi(x - x;)
1=1 eSSV



