
Lecture 20: Support Vector Machines



Outline

� Discriminative learning of classifiers.

� Learning a decision boundary.

� Issue: generalization.

� Linear Support Vector Machine (SVM) classifier.

� Margin and generalization.

� Training of linear SVM.



Linear Classification

� Binary classification problem: we assign labels � � ������ to input data

�.

� Linear classifier: � � ������ � � � ��� and its decision surface is a
hyperplane defined by � � �� �� � �.

� Linearly separable: we can find a linear classifier so that all the training
examples are classified correctly.
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Perceptrons

� Find line that separates input patterns so that output � � �� on one
side, � � �� on other, and these match target values �

���� � ������ � �� ��� ������

rewrite – for every training example �:

���� � ��� ��� � �

� We can adjust weights ��� ��� by Perceptron learning rule, which guar-
antees to converge to the correct solution in the linear separable case.

� Problem: which solution will has the best generalization?



Geometrical View of Linear Classifiers

� Margin: minimal gap between classes and decision boundary.

� Answer: The linear decision surface with the maximal margin.



Geometric Margin

� Some Vector Algebra:
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� Any two points �� and �� lying in �, we have � � ��� � ��� � �, which implies

�

� � ������� is the unit vector normal to the surface of �.

� Any point �� in �, � � �� � ���.

� The signed distance of � to � is given by

�
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� Geometric margin of ���� ��� w.r.t �: 	� � ��
�
�����
�� � ��� ���.

� Geometric margin of ����� �������� w.r.t �: 	
�� 	�.



Linear SVM Classifier

� Linear SVM maximizes the geometric margin of training dataset:
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� For any solution satisfying the constraints, any positively scaled multiple
satisfies them too. So arbitrarily setting ����� � �

, we can formulate
linear SVM as: (	
� ����� 	 	
��
�������)
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�With this setting, we define a margin around the linear decision boundary
with thickness �
�����.



Solution to Linear SVM

� We can convert the contrained minimization to an unconstrained opti-
mization problem by representing the constraints as penality terms:
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� For data ���� ���, use the following penality term:
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� Rewrite the minimization problem
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� ����’s are called the Lagrange multipliers.



Solution to Linear SVM (cont’d)

� We can swap ’max’ and ’min’:
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� We first minimize ���� ����� w.r.t ��� ��� for any fixed setting of the
Lagrange multipliers:
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Solution to Linear SVM (cont’d)

� Substitute (5) and (6) back to ���� �����:
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� Finally, we transform the original linear SVM training to a quadratic pro-
gramming problem (7), which has the unique optimal solution.

� We can find the optimal setting of the Lagrange multipliers �����, then
solve the optimal weights ���� ����.

� Essentially, we transform the primal problem to its dual form. Why should
we do this?



Summary of Linear SVM

� Binary and linear separable classfication.

� Linear classifier with maximal margin.

� Training SVM by maximizing
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subject to �� � � and

�
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� Weights �� �

��
��� �������.

� Only a small subset of ���’s will be nonzero and the corresponding data

��’s are called support vectors.

� Prediction on a new example � is the sign of
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