
Design Patterns

CSC207 – Software Design

Design Patterns

• Design pattern:

– A general description of the solution to a well-
established problem using an arrangement of classes 
and objects.

• Patterns describe the shape of code rather than 
the details.
– There are lots of them in CSC 301 and 302.



Loop patterns from first year

• Loop pattern: 
– A general description of an algorithm for processing items in a 

collection.

• All of you (hopefully) have some loop patterns in your heads.
• You don’t really need to think about these any more; you just use 

them, and you should be able to discuss them with your fellow 
students.

• Some first-year patterns:
– Process List
– Counted Loop
– Accumulator
– Sentinel 

Process list pattern

• Purpose: to process every item in a collection where 
you don’t care about order or context; you don’t need to 
remember previous items.

• Outline:

• Example:

• Other example: darken every pixel in a picture



Counted loop pattern

• Purpose: to process a range of indices in a collection.
• Outline:

• Example:

• Other example: print indices of even-length string 

Accumulator pattern

• Purpose: to accumulate information about items in a collection.
• Outline:

• Example:

• Other examples: sum, min, accumulate a list of items meeting a 
particular criterion.



Sentinel pattern
• Purpose: to remove a condition in a loop guard.
• Outline:

• Example:

Sentinel pattern, continued

• Here is the code that Sentinal replaces; note that 
i != list.size() is evaluated every time through 
the loop, even though it is false only once.



Design Pattern Categories

• Creational
– Purpose: control the way objects are created
– Examples: Singleton, Abstract Factory, Prototype

• Behavioural
– Purpose: process a collection of items
– Examples: Iterator, Visitor

• Structural
– Purpose: store data in a particular way
– Examples: Composite, Adapter
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Singleton Pattern
• Purpose: to ensure there is exactly one instance of a class.
• Outline:

Uses: password verifier for a website, logger object for tracking events.
There are other options for an implementation. What are they? Why might there be an inner 
class here?

UML : Singleton Pattern 

• “-” means private
• “+” means public
• Only one is ever created.

• Examples:
– interface to a database
– logging system



Iterator Pattern

• Purpose: to separate the list contents from the object that iterates 
over them so that multiple iterators can be used.

• Outline:

Implementing the Iterator Pattern



UML: Iterator Pattern
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UML: Iterator Pattern



Observer Pattern
• Purpose: to allow multiple objects to observe when another object changes.
• Outline:

• Uses:
– As an alternative (or enhancement) to MVC, where each view observes the 

model.
– RSS

UML: Observer



Sample Code

• How can the Observer pattern improve the 
design of Fraud Detection system?

Adapter Pattern

• Intent:
– implement an interface known to one set of classes 

so that they can communicate with other objects that 
don't know about the interface

• Context:
– want to use a class in a way that its original author 

didn't anticipate
• E.g. write data to a string instead of to a file

• Or apply regular expressions to streams instead of to strings



Adapter (cont'd)

• Motivation:
– You want to use a class as though it implemented an 

interface that it doesn't actually implement

– You do not want to modify or extend that class

– You can translate the operations you want to perform 
to the ones the class actually implements

• Solution: create an adapter that implements the 
interface you want, and calls the methods the 
class has

UML: Adapter Pattern



Adapter examples
a legacy Rectangle component’s display() method expects to receive “x, y, w, h”

parameters. But the client wants to pass “upper left x and y” and “lower right x and 
y”. This incongruity can be reconciled by adding an additional level of indirection –
i.e. an Adapter object. 


