
Design Patterns

CSC207 – Software Design

Design Patterns

• Design pattern:

– A general description of the solution to a well-
established problem using an arrangement of classes 
and objects.

• Patterns describe the shape of code rather than 
the details.
– There are lots of them in CSC 301 and 302.



Loop patterns from first year

• Loop pattern: 
– A general description of an algorithm for processing items in a 

collection.

• All of you (hopefully) have some loop patterns in your heads.
• You don’t really need to think about these any more; you just use 

them, and you should be able to discuss them with your fellow 
students.

• Some first-year patterns:
– Process List
– Counted Loop
– Accumulator
– Sentinel 

Process list pattern

• Purpose: to process every item in a collection where 
you don’t care about order or context; you don’t need to 
remember previous items.

• Outline:

• Example:

• Other example: darken every pixel in a picture



Counted loop pattern

• Purpose: to process a range of indices in a collection.
• Outline:

• Example:

• Other example: print indices of even-length string 

Accumulator pattern

• Purpose: to accumulate information about items in a collection.
• Outline:

• Example:

• Other examples: sum, min, accumulate a list of items meeting a 
particular criterion.



Sentinel pattern
• Purpose: to remove a condition in a loop guard.
• Outline:

• Example:

Sentinel pattern, continued

• Here is the code that Sentinal replaces; note that 
i != list.size() is evaluated every time through 
the loop, even though it is false only once.



Design Pattern Categories

• Creational
– Purpose: control the way objects are created
– Examples: Singleton, Abstract Factory, Prototype

• Behavioural
– Purpose: process a collection of items
– Examples: Iterator, Visitor

• Structural
– Purpose: store data in a particular way
– Examples: Composite, Adapter

Creational Structural Behavioural Architecture

Factory method

Abstract Factory

Builder

Lazy instantiation

Object pool

Prototype

Singleton

Multiton

Resource 
acquisition is 
initialization

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Null Object

Null Object

Command

Interpreter

Iterator

Mediator

Memento

Observer

State

Chain of 
responsibility

Strategy

Specification

Template method

Visitor

Layers

Presentation-
abstraction-control

Three-tier

Pipeline

Implicit invocation

Blackboard system

Peer-to-peer

Model-View-
Controller

Service-oriented 
architecture

Naked objects



Singleton Pattern
• Purpose: to ensure there is exactly one instance of a class.
• Outline:

Uses: password verifier for a website, logger object for tracking events.
There are other options for an implementation. What are they? Why might there be an inner 
class here?

UML : Singleton Pattern 

• “-” means private
• “+” means public
• Only one is ever created.

• Examples:
– interface to a database
– logging system



Iterator Pattern

• Purpose: to separate the list contents from the object that iterates 
over them so that multiple iterators can be used.

• Outline:

Implementing the Iterator Pattern



UML: Iterator Pattern

+createIterator()

Aggregate

+first()
+next()
+isDone()
+currentItem()

Iterator

Client

+createIterator()

ConcreteAgregate ConcreteIterator

{ return ConcreteIterator(this); }

1 *

* * * *

UML: Iterator Pattern



Observer Pattern
• Purpose: to allow multiple objects to observe when another object changes.
• Outline:

• Uses:
– As an alternative (or enhancement) to MVC, where each view observes the 

model.
– RSS

UML: Observer



Sample Code

• How can the Observer pattern improve the 
design of Fraud Detection system?

Adapter Pattern

• Intent:
– implement an interface known to one set of classes 

so that they can communicate with other objects that 
don't know about the interface

• Context:
– want to use a class in a way that its original author 

didn't anticipate
• E.g. write data to a string instead of to a file

• Or apply regular expressions to streams instead of to strings



Adapter (cont'd)

• Motivation:
– You want to use a class as though it implemented an 

interface that it doesn't actually implement

– You do not want to modify or extend that class

– You can translate the operations you want to perform 
to the ones the class actually implements

• Solution: create an adapter that implements the 
interface you want, and calls the methods the 
class has

UML: Adapter Pattern



Adapter examples
a legacy Rectangle component’s display() method expects to receive “x, y, w, h”

parameters. But the client wants to pass “upper left x and y” and “lower right x and 
y”. This incongruity can be reconciled by adding an additional level of indirection –
i.e. an Adapter object. 


