Design Patterns

CSC207 — Software Design

Design Patterns

* Design pattern:

— A general description of the solution to a well-
established problem using an arrangement of classes
and objects.

» Patterns describe the shape of code rather than
the detalils.

— There are lots of them in CSC 301 and 302.

Loop patterns from first year

Loop pattern:

— A general description of an algorithm for processing items in a
collection.

All of you (hopefully) have some loop patterns in your heads.

You don'’t really need to think about these any more; you just use
them, and you should be able to discuss them with your fellow
students.

Some first-year patterns:
— Process List

— Counted Loop

— Accumulator

— Sentinel

Process list pattern

Purpose: to process every item in a collection where
you don’t care about order or context; you don’t need to
remember previous items.
Outline:
for (Object o : list) {
// process o

}

Example: // Print every item in a list.
for (Object o : list) {
System.out.println(o);
}

Other example: darken every pixel in a picture

Counted loop pattern

Purpose: to process a range of indices in a collection.
Outline:

for (int 1 = @; 1 != max index; i++) {
// process item at index i
¥
Example:

// Bubble through a list: swap items that are out of order.
for (int 1 = 8; 1 != list.size() - 1; i++) {
if (list.get(i) < list.get(i + 1)) {
swap(list, i, i + 1); // assuming helper function swap
}
}

Other example: print indices of even-length string

Accumulator pattern

Purpose: to accumulate information about items in a collection.
Outline:

result = some appropriate base case, such as an empty list or 8
for (Object o : list) {

// Modity result with information from o.
}

Example:
// Find the longest String in a list.
result = “;
for (String s : list) {
if (s.length() » result.length()) {
result = s;
¥
}

Other examples: sum, min, accumulate a list of items meeting a
particular criterion.

Sentinel pattern

» Purpose: to remove a condition in a loop guard.

« Outline:
add an item “sentinel” with a particular value at the end of a list
int 1 = @;
while (list.get(i) != sentinel) {

1++;

¥

remove the sentinel from the end
 Example:

// find the index of o in list, if it’s there.
list.add(o); // make sure o is in list.

int 1 = 8;

while (l!o.equals(list.get(i))) {

1++;

}

list.remove(list.size() - 1); // remove the sentinel

J/ if 1 == list.size(), o was not in the list.

Sentinel pattern, continued

* Here is the code that Sentinal replaces; note that
i 1= list_size() IS evaluated every time through
the loop, even though it is false only once.

// find the index of o in list, if it’s there.

int 1 = ©;

while (i != list.size() && !o.equals(list.get(i))) {
i++;

}

// if 1 == list.size(), o was not in the list.

Design Pattern Categories

 Creational

— Purpose: control the way objects are created
— Examples: Singleton, Abstract Factory, Prototype

 Behavioural

— Purpose: process a collection of items

— Examples: Iterator, Visitor

« Structural
— Purpose: store data in a particular way

— Examples: Composite, Adapter

Creational | Structural | Behavioural | Architecture

Factory method Adapter Null Object Layers

Abstract Factory Bridge Null Object Presentation-

Builder Composite Command abstraction-control

Lazy instantiation Decorator Interpreter Three-tier

Object pool Facade lterator Pipeline

Prototype Flyweight Mediator Implicit invocation

Singleton Proxy Memento Blackboard system

Multiton Observer Peer-to-peer

Resource State Model-View-

acquisition is Chain of Controller

initialization responsibility Service-oriented
Strategy architecture

Specification
Template method
Visitor

Naked objects

Singleton Pattern

* Purpose: to ensure there is exactly one instance of a class.
e Outline:

// This was generated by NetBeans.
public class NewSingleton {

private NewSingleton() {}

public static NewSingleton getInstance() {
return NewSingletonHolder.INSTANCE;

private static class NewSingletonHolder {
private static final NewSingleton INSTANCE = new NewSingleton();

}

Uses: password verifier for a website, logger object for tracking events.
There are other options for an implementation. What are they? Why might there be an inner
class here?

UML : Singleton Pattern

singleton

-instance : Singleton

-Singleton()
+Instance() : Singleton

means private
e “+"means public
e Only one is ever created.

 Examples:
— interface to a database
— logging system

Iterator Pattern

» Purpose: to separate the list contents from the object that iterates
over them so that multiple iterators can be used.

e Qutline:;

interface java.util.Iterable: the collection of information.

One method: Tterator<T> iterator()

interface java.util.Iterator: an object that knows the internals of that collection and can give

them back one by one.

Methods: Object next(), boolean hasNext(), wvoid remove()

Uses:

Iterator itr = alist.iterator();
while(itr.hasNext())
/{ process itr.next()

This also allows you to plug into the Java foreach loop:

for (Object o : list) ...

Implementing the Iterator Pattern

public class MyCollection<T»> implements Iterable<T> {

private int size;

private T[] list = ...;

public Tterator<T> iterator() {
return new MyIterator<T>();

}

private class MyIterator<T> implements Iterator<T> {
int current = @;
public boolean hasNext() {
public T next() {
T res = list[current];

return current < list

current++;

return res;

¥
// optional operation; what are the difficulties?
public void remove() {}

Use:

/f Given m, a variable of

[/ type MyCollection<String>.
Iterator itr = m.iterator();

while(itr.hasNext()) {
String s = itr.next();

}

.size(); }

Use:
for (String s : m) {

// do something with s
}

UML.: Iterator Pattern

Iterator
Aggregate
+first()
+createlterator() :gg(;ge()
+currentltem()

T

ConcreteAgregate| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _________2 > Concretelterator

+createlterator() 1 -

T

\
\

\
\

{ return Concretelterator(this); }

UML: [terator Pattern

Client Collection

+oreate TraversalObject() - TraversalAbstraction

I
| |

ListCollection MapCollection

TraversalAbstraction

+Ueata'|-'raversalﬂbject{] *treaie?rawrsall:lbject[}

+Hirst() T -
+nextl) J I
HisDone() ! I
LF I
Jf return new ListTraversal{this);
| Ly
MapTraversal ListTraversal

———————————]

Observer Pattern

* Purpose: to allow multiple objects to observe when another object changes.
e Outline:

class java.util.Observable: the item being watched.
Classes to be watched extend this class.
Methods (the most important ones):
void addObserver(Observer o), boolean hasChanged(), void notifyObservers()
interface java.lang.Observer: an object that wants to know when the watched item changes.

Methods: void update(Observable o, Object arg)

e Uses:

— As an alternative (or enhancement) to MVC, where each view observes the
model.

- RSS

UML: Observer

Subject
obearer Observer
+Attachiin Observer)
+Detachiin Observer) +Update()
+Motify() S
L
*
foreach o in cbservars
o.Update()
ConcreteSubject subject ConcreteObserver
-subjectSiate - abserverStale
+GetStatal) | +Updatel) |

l I
| |

observerState =

refurn subjectStale subject GelState()

Sample Code

 How can the Observer pattern improve the
design of Fraud Detection system?

Adapter Pattern Q‘:

e |ntent:

— implement an interface known to one set of classes
so that they can communicate with other objects that
don't know about the interface

e Context:

— want to use a class in a way that its original author
didn't anticipate
» E.g. write data to a string instead of to a file
» Or apply regular expressions to streams instead of to strings

Adapter (cont'd)

* Motivation:

— You want to use a class as though it implemented an
interface that it doesn't actually implement

— You do not want to modify or extend that class

— You can translate the operations you want to perform
to the ones the class actually implements

« Solution: create an adapter that implements the
interface you want, and calls the methods the
class has

UML.: Adapter Pattern

aTarget recuest(); %
Client 1 ATarget

ATaxget : aTarget + void : request()
wold recpuest() T
{

adaptee specificRequest();, | Ohjectddapier i =
} ﬁd.ﬁptee - adaptee + woid ; specificRequest()
+ void : request!)

Adapter examples

a legacy Rectangle component’s display() method expects to receive “X, y, w, h”
parameters. But the client wants to pass “upper left x and y” and “lower right x and
y”. This incongruity can be reconciled by adding an additional level of indirection —
i.e. an Adapter object.

Client winterfaces
Shape
+displayiin xT1, in 1, in x2, in y2)

i

wadaptees
Rectangle LegacyRectangle
display(in x1. in y1, in x2, in y2) rdisplay(in x1, in y1, in X2, In y2)

I
I
|
|

Delegate and map to adaptee Ij

