
1

Multithreaded Programming
using Java Threads

Slides are kindly provided by:
Professor Rajkumar Buyya

University of Melbourne, Australia
http://www.buyya.com

CSC207 – Software Design

2

Agenda

Introduction
Thread Applications
Defining Threads
Java Threads and States

Priorities
Accessing Shared Resources

Synchronisation
Assignment 1:

Multi-Threaded Math Server
Advanced Issues:

Concurrency Models: master/worker, pipeline, peer processing
Multithreading Vs multiprocessing

3

A single threaded program

class ABC
{
….

public void main(..)
{
…
..
}

}

begin

body

end

4

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

5

Single and Multithreaded
Processes

Single-threaded Process

Single instruction stream Multiple instruction stream

Multiplethreaded Process
Threads of
Execution

Common
Address Space

threads are light-weight processes within a process

6

Printing ThreadPrinting Thread

Editing ThreadEditing Thread

Modern Applications need Threads (ex1):
Editing and Printing documents in background.

7

Multithreaded/Parallel File Copy

reader()

{

- - - - - - - - -
-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -
-

}

reader()

{

- - - - - - - - -
-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -
-

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

buff[0]buff[0]

buff[1]buff[1]

Cooperative Parallel Synchronized
Threads

Cooperative Parallel Synchronized
Threads

8

Server
Threads

Server ProcessClient 1 Process

Client 2 Process

Multithreaded Server: For Serving
Multiple Clients Concurrently

Internet

9

Web/Internet Applications:
Serving Many Users Simultaneously

Internet
Server

PC client

Local Area Network

PDA

10

Code-Granularity
Code Item
Large grain
(task level)
Program

Medium grain
(control level)
Function (thread)

Fine grain
(data level)
Loop (Compiler)

Very fine grain
(multiple issue)
With hardware

Code-Granularity
Code Item
Large grain
(task level)
Program

Medium grain
(control level)
Function (thread)

Fine grain
(data level)
Loop (Compiler)

Very fine grain
(multiple issue)
With hardware

Task i-lTask i-l Task iTask i Task i+1Task i+1

func1 ()
{
....
....
}

func1 ()
{
....
....
}

func2 ()
{
....
....
}

func2 ()
{
....
....
}

func3 ()
{
....
....
}

func3 ()
{
....
....
}

a (0) =..
b (0) =..

a (0) =..
b (0) =..

a (1)=..
b (1)=..

a (1)=..
b (1)=..

a (2)=..
b (2)=..

a (2)=..
b (2)=..

++ xx LoadLoad

Sockets/
PVM/MPI

Threads

Compilers

CPU

Levels of Parallelism

11

What are Threads?

A piece of code that run in concurrent with
other threads.
Each thread is a statically ordered sequence of
instructions.
Threads are being extensively used express
concurrency on both single and
multiprocessors machines.
Programming a task having multiple threads of
control – Multithreading or Multithreaded
Programming.

12

Java Threads

Java has built in thread support for
Multithreading
Synchronization
Thread Scheduling
Inter-Thread Communication:

currentThread start setPriority
yield run getPriority
sleep stop suspend
resume

Java Garbage Collector is a low-priority thread.

13

Threading Mechanisms...

Create a class that extends the Thread class
Create a class that implements the Runnable
interface

Thread

MyThread

Runnable

MyClass

Thread

(objects are threads) (objects with run() body)

[a] [b]

14

1st method: Extending Thread
class

Create a class by extending Thread class and override
run() method:
class MyThread extends Thread
{

public void run()
{

// thread body of execution
}

}

Create a thread:
MyThread thr1 = new MyThread();

Start Execution of threads:
thr1.start();

Create and Execute:
new MyThread().start();

15

An example

class MyThread extends Thread {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx1 {
public static void main(String [] args) {

MyThread t = new MyThread();
t.start();

}
}

16

2nd method: Threads by
implementing Runnable interface

Create a class that implements the interface Runnable and
override run() method:

class MyThread implements Runnable
{
.....
public void run()
{

// thread body of execution
}

}

Creating Object:
MyThread myObject = new MyThread();

Creating Thread Object:
Thread thr1 = new Thread(myObject);

Start Execution:
thr1.start();

17

An example

class MyThread implements Runnable {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx2 {
public static void main(String [] args) {

Thread t = new Thread(new MyThread());
t.start();

}
}

18

Life Cycle of Thread
new

ready

start()

running

deadstop()

dispatch

completion

wait()

waiting
sleeping blocked

notify()

sleep()

Block on I/O

I/O completed

Time expired/
interrupted

suspend()

resume()

19

A Program with Three Java Threads

Write a program that creates 3 threads

20

Three threads example
class A extends Thread
{

public void run()
{

for(int i=1;i<=5;i++)
{

System.out.println("\t From ThreadA: i= "+i);
}
System.out.println("Exit from A");

}
}

class B extends Thread
{

public void run()
{

for(int j=1;j<=5;j++)
{

System.out.println("\t From ThreadB: j= "+j);
}
System.out.println("Exit from B");

}
}

21

class C extends Thread
{

public void run()
{

for(int k=1;k<=5;k++)
{

System.out.println("\t From ThreadC: k= "+k);
}

System.out.println("Exit from C");
}

}

class ThreadTest
{

public static void main(String args[])
{

new A().start();
new B().start();
new C().start();

}
}

22

Run 1
[raj@mundroo] threads [1:76] java ThreadTest

From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5

Exit from A
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B

23

Run2
[raj@mundroo] threads [1:77] java ThreadTest

From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B
Exit from A

24

Process Parallelism

int add (int a, int b, int & result)
// function stuff
int sub(int a, int b, int & result)
// function stuff

pthread t1, t2;

pthread-create(&t1, add, a,b, & r1);

pthread-create(&t2, sub, c,d, & r2);

pthread-par (2, t1, t2);

pthread t1, t2;

pthread-create(&t1, add, a,b, & r1);

pthread-create(&t2, sub, c,d, & r2);

pthread-par (2, t1, t2);

MISD and MIMD Processing

a
b
r1
c
d
r2

a
b
r1
c
d
r2

addadd

subsub

Processor

Data

IS1

IS2

Processor

25

do
“
“

dn/2

dn2/+1

“
“
dn

SortSort

Data

IS

Data Parallelism

sort(int *array, int count)
//......
//......

pthread-t, thread1, thread2;
“
“
pthread-create(& thread1, sort, array, N/2);
pthread-create(& thread2, sort, array, N/2);
pthread-par(2, thread1, thread2);

pthread-t, thread1, thread2;
“
“
pthread-create(& thread1, sort, array, N/2);
pthread-create(& thread2, sort, array, N/2);
pthread-par(2, thread1, thread2);

SIMD Processing

SortSort

Processor

Processor

26

Thread Priority

In Java, each thread is assigned priority, which
affects the order in which it is scheduled for
running. The threads so far had same default
priority (NORM_PRIORITY) and they are served
using FCFS policy.

Java allows users to change priority:
ThreadName.setPriority(intNumber)

MIN_PRIORITY = 1
NORM_PRIORITY=5
MAX_PRIORITY=10

27

Thread Priority Example
class A extends Thread
{

public void run()
{

System.out.println("Thread A started");
for(int i=1;i<=4;i++)
{

System.out.println("\t From ThreadA: i= "+i);
}
System.out.println("Exit from A");

}
}

class B extends Thread
{

public void run()
{

System.out.println("Thread B started");
for(int j=1;j<=4;j++)
{

System.out.println("\t From ThreadB: j= "+j);
}
System.out.println("Exit from B");

}
}

28

Thread
Priority

Example

class C extends Thread
{

public void run()
{

System.out.println("Thread C started");
for(int k=1;k<=4;k++)

{
System.out.println("\t From ThreadC: k= "+k);

}
System.out.println("Exit from C");

}
}

class ThreadPriority
{

public static void main(String args[])
{

A threadA=new A();
B threadB=new B();
C threadC=new C();

threadC.setPriority(Thread.MAX_PRIORITY);
threadB.setPriority(threadA.getPriority()+1);
threadA.setPriority(Thread.MIN_PRIORITY);
System.out.println("Started Thread A");
threadA.start();

System.out.println("Started Thread B");
threadB.start();

System.out.println("Started Thread C");
threadC.start();
System.out.println("End of main thread");

}
}

Results

30

Accessing Shared Resources

Applications Access to Shared Resources need
to be coordinated.

Printer (two person jobs cannot be printed at the
same time)
Simultaneous operations on your bank account.
Can the following operations be done at the same
time on the same account?

Deposit()
Withdraw()
Enquire()

31

Online Bank: Serving Many Customers
and Operations

Internet Bank
Server

PC client

Local Area Network

PDA
Bank

Database

32

Shared Resources

If one thread tries to read the data and other
thread tries to update the same data, it leads
to inconsistent state.
This can be prevented by synchronising access
to the data.
Use “Synchronized” method:
public synchronized void update()
{

…

}

33

the driver: 3rd Threads sharing
the same object

class InternetBankingSystem {
public static void main(String [] args) {

Account accountObject = new Account ();
Thread t1 = new Thread(new MyThread(accountObject));
Thread t2 = new Thread(new YourThread(accountObject));
Thread t3 = new Thread(new HerThread(accountObject));

t1.start();
t2.start();
t3.start();

// DO some other operation
} // end main()

}

34

Shared account object
between 3 threads

class MyThread implements Runnable {
Account account;

public MyThread (Account s) { account = s;}
public void run() { account.deposit(); }

} // end class MyThread

class YourThread implements Runnable {
Account account;

public YourThread (Account s) { account = s;}
public void run() { account.withdraw(); }

} // end class YourThread

class HerThread implements Runnable {
Account account;

public HerThread (Account s) { account = s; }
public void run() {account.enquire(); }

} // end class HerThread

account
(shared
object)

35

Monitor (shared object access):
serializes operation on shared object

class Account { // the 'monitor'
int balance;

// if 'synchronized' is removed, the outcome is unpredictable
public synchronized void deposit() {

// METHOD BODY : balance += deposit_amount;
}

public synchronized void withdraw() {
// METHOD BODY: balance -= deposit_amount;

}
public synchronized void enquire() {
// METHOD BODY: display balance.

}
}

Producer and Consumer Problem
Classical multithread synchronization problem

two threads, the producer and the consumer, who share a common,
fixed-size buffer.

The producer’s job is to generate a piece of data and put it into the
buffer.

The consumer is consuming the data from the same buffer
simultaneously.

The problem is

to make sure that the producer will not try to add data into the buffer if
it is full
that the consumer will not try to remove data from an empty buffer.

Producer and Consumer Problem

The solution for this problem involves two
parts.

The producer should wait when it tries to put
the newly created product into the buffer
until there is at least one free slot in the
buffer.
The consumer, on the other hand, should
stop consuming if the buffer is empty.

Code
Section 14.9.2 – page 382

Producer and Consumer Problem

39

Server
Threads

Message Passing
Facility

Server Process
Client Process

Client Process

User Mode

Kernel Mode

Multithreaded ServerMultithreaded Server

40

Assignment 1: Multithreaded MathServer –
Demonstrates the use of Sockets and Threads

Multithreaded
MathServer

(sin, cos, sqrt, etc.)

A Client Program
What is sqrt(10)?

A Client Program
What is sin(10)?

A Client
Program in “C++”
What is sin(10)?

A Client
Program in “C”
What is sin(10)?

“sqrt 4.0”

“2.0”

41

A Multithreaded Program

MathThreads

MathSin MathCos MathTan

start start start

MathThreads

join join join

46

References

Rajkumar Buyya, Thamarai Selvi,
Xingchen Chu, Mastering OOP with
Java, McGraw Hill (I) Press, New Delhi,
India, 2009.
Sun Java Tutorial – Concurrency:

http://java.sun.com/docs/books/tutorial/esse
ntial/concurrency/

