What's Wrong With Formal Programming Methods?

Eric C.R. Hehner
Department of Computer Science, University ofohto, Bronto M5S 1A4 Canada

The January 1991 issue 6Gbmputing Reseah Newsincludes the headlinEormal
Software Design Methods Next Step In Improving Quality with an
excellent article by Dick Kieburtz [0] explaining the advantage to industry of takir
this step. The trouble is: it's been the next step for ten years! In May 2882 T
Hoare [1] made the same argument very persuasively: software engineering is
worthy of the name, certainly is not a profession, until it is based on scienti
principles and is practiced with the same degree of precision as other professi
engineering. Since then, formal methods have been learned and used by a
companies in Europe, though it is not yet known how successfully (people are alw
ready to claim success for their latest efforts). In North America, formal metho
have hardly made a start. Why such a poor showing for something so hig
recommended?

Before answering, | should say what is meant by formal programming metho
There is a widespread misconception that “formal” means careful and detailed,
“informal” means either sloppy or sketchfgven authors of mathematical texts, who
should know betteisometimes make a statement (in English), followed by the wol
“Formally”, followed by a more careful and detailed statement (in English). B
“formal” we mean using a mathematical formalism. A mathematical formalism is
notation (set of formulas) intended to aid in the precise and concise expressiol
some limited discourse. A theory is a formalism together with some rules of prc
or calculation so that we can say what observations to expexicadvhave a theory
of almost anything, from a theory of maftéo a theory of motion, to a theory of
computation, to a theory of theories.

What good is a theory of programming? Who wants it? Thousands of programn
program every day without it. Why should they bother to learn it? The answer
the same as for any other theoyor example, why should anyone learn a theory o
motion? You can move around perfectly well without it.ol¥ can throw a ball
without it. Yet we think it important enough to teach a theory of motion in hig
school.

What's Right

One answer is that a mathematical theory gives a much greater degree of prec
by providing a method of calculation. It is unlikely that we could send a rocket
Jupiter without a mathematical theory of motion. And even baseball pitchers
finding that their pitch can be improved by hiring an expert who knows son
theory Similarly a lot of mundane programming can be done without the aid of
theory of programming, but the more difficult programming is very unlikely to b
done correctly without a good theoryhe software industry has an overwhelming
experience of buggy programs to support that statement. And even mund
programming can be improved by the use of a theory

Another answer is that a theory provides a kind of understanding. Our ability
control and predict motion changes from an art to a science when we lear
mathematical theorySimilarly programming changes from an art to a science whe
we learn to understand programs in the same way we understand mathema
theorems. Wh a scientific outlook, we change our view of how the world work
and what is possible. It is a valuable part of education for anyone.

Formal programming methods allows us to prove that a computation does what
specification says it should do. More importanflyrmal methods help us to write
specifications, and to design programs so that their computations will proval
satisfy a specification. This is analogous to the use of mathematics in all professit
engineering: civil engineers must know and apply the theories of geometry ¢
material stress; electrical engineers must know and apply electromagnetic the
So why don't software engineers know and apply a theory of programming?

What's Wrong

The reason most often cited is lack of programmer education. Even programn
with a degree in computer science from a respectable university are unlikely
know any formal programming methods, because only a small fraction
universities teach that subject, and where it is taught it is probably an optional cot
taken by a small fraction of the students there. It is usually placed late in i
curriculum, after students have been taught to program, and so implicitly taught 1
formal methods are not necessary

Education may be part of the reason, but | think there is another reason that
software industry has not yet adopted formal methods. The methods offered
academia so far have been clumsywieldy, awkward methods. They slow down
the process of software production without increasing the qudlitg just as easy to
make mistakes in the use of the formalism and in proofs as it is to make mistake
programming. The typical result at present is a buggy program together witt
buggy proof resulting in the erroneous conclusion: program proved correct.

Formal methods with proofs potentially offer a far more powerful means of findir
errors in programs than testing, because a proof considers all possible computa
at once, whereas testing considers only one computation at a timeesalize this
potential, we must be able to do proofs accurateMerification of a finished
program against the original specification has been justifiably criticized as next
impossible. But proofs of programming steps, during program construction, he
been shown to be quite do-ableypically they are not too deep, but they involve a
lot of detail, and that's where the errors occiihat's exactly the sort of task that
computers should be helping us with. It is reasonable to hope that some d¢
prover will be as common and helpful a part of programming systems as a syr
checker and type checker are taddy history is any guide, the first ones will be
usable only by their own designers, and they may confirm negative feeling ab
formal methods. But latepolished provers will be able to say “bug on line 123",
with an indication of what's wrong, as reliably as syntax checkers and type checl
do now

Three formalisms

Let us examine some of the formal methods academia has offered indlis&yirst
usable theory was outlined by Hoare [2] in 1969 (based on earlier work by Floy
it is still probably the most widely known. In it, a specification is a pair o
predicates of the state, called the precondition and the postconditibeayTthat a
program or program fragmen§ satisfies the specification given by precondition
P and postconditionR we write

{P} S{R}
meaning: ifP is true at the start of execution &, then execution will terminate
and R will be true at the end. (The notation here is not the original one, but it
the one universally used now; the meaning here is total correctness, not the oric
partial correctness.) Let's try it on a trivial example. Informd#thg specification
Is to increase the value of integer varialdle Formally we face a problem: we are
given no way to relate the final value of a variable to its initial valuee héve to
use a trick: introduce an extra variable, not part of the state space, to carry
relation. V% write

[OX: {x =X} S{x>X}
meaning: whateverx may have been equal to at the start, it is greater than that
the end. ForS we might propose the assignmert= x+1 . To prove it correct,
we must use the assignment rule

{substitute e for x in R} x:=e{R}
In the example, this means

{x+1 >X} x:=x+1 {x > X}
The precondition is not what we want, so we now use the consequence rule

(Oo- AO P) O{P} S{R} O(Oo- RO zZ) O {A} S{Z}
where o (the state) stands for all variables. In the example, this means we m
prove

[x- x=X) O (x+1 >X)
which is now a simple theorem of ordinary logic. All that, just to prove th
obvious! Perhaps the example is unfair precisely because it is so obvious;
formalism is meant to help with problems that are not obvious. On the other ha
we fear that if trivial problems are this difficult, nontrivial ones will be impossible
We'll try a slightly bigger example laterAlso, a sequence of proof steps can b
collapsed into one step by the use of derived rules. There is a trade-off: fe
steps, but more rules to learn.

Dijkstra [3] designed a formalism in 1976 that defines the semantics of progra
explicitly by a function instead of implicitly by axioms. This formalism is probably
the most studied one, certainly the one used by most textbooks on formal mett
(including one by me). For program (fragmer8) and postconditiorR , wp(S, R)

IS the necessary and sufficient precondition for execution $f to end in
postconditionR . As before, we use a pair of predicates of the state as specificati
To say that a program or program fragme®at satisfies the specification given by
precondition P and postconditionrR we write

Oo- PO wp(S R)
To say “increasex ”, we still face the problem of relating final values to initial

values. W& write
[Ix, X- x=X) O wp(S, x > X)
As before, we can try the assignment x+1 for S. wp applied to an assignment
is defined as
wp(x:= e, R) = (substitutee for x in R)
SO we must prove, as before,
[x, X x=X) O (x+1 >X)

The formalism that has been used most by industry (in Europe) is Jones's VDM
As in the previous two, a specification is a pair of predicates, but the secc
predicate is a relation between the initial and final states. The formalis
automatically gives us a way to refer to the initial values of variables within tt
second predicate: the initial value af is an x with a left-pointing arrow over it.
My word processor lacks that typographic abildg | shall use ' x , which we can
pronounce “prex ”. The semantics of programs is given implicitly by axioms, as ir
Hoare logic, and the Hoare triple notation is used. The problem of increasing
becomes
{true} S{x> "%}
The preconditiontrue means that we want increased under all initial conditions.
Once again, let's takg:= x+1 for S. One of the two rules for assignment is
{true} x:=e{x = ¢}
In our example, that gives us
{true} x:=x+1 {x = x+1}
The postcondition is not what we want so we need to use the consequence rule
(Oo- A0 P) O{P} S{R} O(O0, c- RO Z) O {A} S{Z}
This means proving
X, x- x="x+1) O (x> X
as before.

A New View

People often confuse programs with computer behavidrey talk about what a
program “does”; of course it just sits there on the page or screen; it is the comp
that “does” something. They ask whether a program “terminates”; of course it dc
it is the execution that may not terminate. A program is not computer behawior
a description or specification of computer behaviéurthermore, a computer may
not behave as specified by a program for a variety of reasons: a disk head
crash, a compiler may have a bug, or a resource may become exhausted (¢
overflow, number overflow), to mention a fewThen the difference between a
program and computer behavior is obvious.

As we shall see, this small confusion has been a large hindrance in the developi
of formal methods. W have always talked about “the specification of programs’
and “a program satisfies a specification”.e\Wave always had two languages: the
specification language (usually ordinary logic), and the programming language. |
we arenot specifying programs; we are specifying computation. A progsam
specification. W& neednelanguage.

A program is a specification, but not every specification is a program. A progre
Is an implemented specification, one that a computer can execatbe 30, it must
be written in a subset of the specification language, called the programmi
language.

A specification serves as a contract between a client who wants a computer to be
a certain way and a programmer who customizes a computer to behave as des
For this purpose, a specification must be written as cleaslyunderstandahlys
possible. The programmer then refines the specification to obtain a program, wi
a computer can execute. Sometimes the clearest, most understandable specificai
already a program. When that is so, there is no need for any other specification,
no need for refinement. Howeydhe programming notations are only part of the
specification notations: those that happen to be implemented. Specifiers should
whatever notations help to make their specifications claaluding but not limited

to programming notations.

A New Formalism

To go with the change in view offer a new formalism, described in [5] and in a
forthcoming book [6]. In it, a specification is a single predicate in the initial ar
final values of the variables. The initial value &f is undecorated, and the final
value isx'. To say thatx is to be increased, we write simply

X'>X
That is surely the clearest and simplest form of specification. As we will seg lai
the reduction to a single predicate is no loss of information. Since a program i
specification, a program must also be a predicate in the initial and final values of
variables. For example, an assignmett e is a predicate that could be written in
conventional logic notation as

(x=€¢) = X=ely'=yQ...)
saying thatx'=e and all other variables are are unchanged. Semantics is explicit,
in Dijkstra's formalism, using initial and final values of variables as in Jones
formalism.

Given a specificationS, the programmer's problem is to find a progrdm such
that computer behavior satisfying also satisfiesS. In logic terms, that means
PO S
With specificationx' > x and programx:= x+1 we must prove
(x'=x+1) 0 (x'>Xx)
This is the same as in the previous formalisms, but we arrive here directly

Multiplication, Hoare-style

A more reasonable comparison of these formal methods can be made with a slic
larger example. Letx and y be integer variables; wher and y are initially
nonnegative, we want their produgixy to be the final value of variablex . The
program could be just

X:= XXy
except that we disallow multiplication, allowing only addition, multiplication by 2

division by 2, testing for even or odd, and testing for zero. This is exactly t
situation of the designer of a multplier in a binary compued our program will
be the standard binary multiplication.

First let us use Hoare Logic. The most convenient way to use it is not to quote rt
explicitly, but implicitly by the placement of the predicates. Predicates surroundi
an assignment must be according to the assignment rule.

{substitute e for x in R}

X:=e

{R}
The sequential composition rule

{P A{Q} U{Q} B{Rt O {P} AB{R}
simply places the intermediate predicate between the statements.

{P

A,

{Q}

B

{R}
Predicates placed next to one another must be according to the consequence rul
first implying the second. A predicate beforei&statement must be copied to the
start of each branch, in one case conjoined with the condition, and in the ot
conjoined with its negation. The predicate after the entisgatement must be the
disjunction of the predicates at the ends of the two branches.

{P}

if cthen{PUOc} A{Q} else{P~c} B{R}

{QUR}
The predicate before while-loop must be of a particular form: 0 O<v where |
Is called the invariant, andv is an integer expression called the variant. The
predicate after the loop must be the invariant conjoined with the negation of
condition. UsingV as an extra variable to stand for the initial value of the varian
the body of the loop must satisfy the specification shown below

{1 O0=sv}

while cdo {I O0<v=V Oc} B {I O0<sv<V}

{1 O0-¢}

Here it all is in action.

X, Y- {0<x=X 0 0=<sy=Y}
s=0
{0=<x=X 0O 0<y=Y [s=0};
{s+ xxy = XxY [0y}
while y=0do
{s+ xxy = XxY [0 0<y=Y}
If everfy) then begin
{s+ xxy = XxY [0 0<y=Y [everty)}
{s+ xx2xy/2 = XxY [00<gy/2<Y}

X:= XX2:

{s+ xxy/2 = XxY [0<gy/2<Y}

y:=yl2

{s+ xxy = XxY [00<y<Y} end
else begin

{s+ xxy = XxY O 0<y=Y -everfy)}
{s+ x + xx(y—=1) =XxY [0<(y—1)/2<Y}
S= StX;
{s+ xx2x(y-1)/2 =XxY 00<(y-1)/2<r}
X:= XX2:
{s+ xx(y-1)/2 =XxY 0 0<(y-1)/2<Y}
y:= (y-1)/2
{s+ xxy = XxY [00<y<Y } end
{s+ xxy = XxY [00gy<Y}

{s+ xxy = XxY [Oy=0};

{s=XxY}

X:=§S

{x = XxY}

Multiplication, Dijkstra-style

To use Dijkstra's formalism for the multiplication problem we will need to appl
wp to if , while , and sequential composition, in addition to assignmewbo af
them are reasonably easy:

wp(if cthenAelseB,R) = O wp(A, R)) O(-c wp(B, R))

wp(A; B, R) = wp(A, wp(B, R))
The treatment of loops is more difficult. ehust definewp(W, R) where W is
the loop while cdo B . We do so as the limit of a sequence of approximations. W
define Wy, W1, W), ... as follows:

wp(Wy, R) = false

wp(Wpi1, R) =wp(if cthen beginB; W, end, R)
From this recurrence we can calculatg(W,, R) for any naturaln. Then

wp(W, R) = [h- wp(W,, R)

Unfortunately this is not directly usable for the development and practical provir

of programs. Instead, we use it to prove a theorem similar tavihie rule in
Hoare Logic.

| O0O0<sv Ol O0gv=V Oc O wp(B, | O0sv<V)) O wp(W, I O=c)
It says roughly: if the invariant is true before the start of the loop, and the bao
maintains the invariant and decreases the variant but not below zero, then the
execution terminates and results in the invariant and the negation of the Ic
condition.

Most users of Dijkstra's formalism do not state their proof obligations explicitly i
terms of wp; instead they present them implicitly by the placement of assertions
the program text, exactly as do the user's of the Hoare formalism. In practice,
two formalisms are used the same way

Multiplication, Jones-style

Jones offers two formats for the use of VDM. One is to name every piece o
program, and to state separately the pre- and postcondition for each name.
other is to place them in the program text as in the Hoare style. But there i
difference: for Jones, a predicate cannot serve as both the postcondition for
statement and the precondition for the sequentially following statement becaus
precondition is a predicate of one state and a postcondition is a predicate of
states. The rule for sequential composition is

{P} A{Q} O (Uo 0 QUR) UO{R}B{S O {P AB{QST
where Q;S is relational composition, defined as

(Q9(0o, 0 = Uo" Q(ag 0") UY0", 0)
The VDM book suggests that these predicates be placed in the program in
following format:

(P}
(P}
A
Y
(R
B
(s
{Q:S

It seems we must pay for the convenience of having initial values given to us in
formalism by making the sequential composition rule more complicated.pak
even more for thevhile rule.

{1 O0=<v}

whilecdo{l O0O<sv Oc} B{l O0sv<vIR}

{Il O-cO(RO0K}
where R must be a transitive relation, arak is the identity relation. The rule for
I f is unchanged from Hoare logic.

Putting it all togethemwe get the following.

{0<x O 0=y}
{O=y}
s=0
{x="x 0 0<y="y =0}

{O=y}
while y=0do

{0<y} _
If everfy) then begin

{O<y O everty)}

{O<y O every)}
X:= X%X2
{x="x/200<y="yUeverf'y) Uss}

{O<y Ueverty)}
y:=yl2
{x="x0Oy="yl200<yOeverfy) [0s=s}
{O0<y<’y Ostxxy = s+ xx'y} end
else begin
{O<y U -everfy)}

{0<y U -everfy)}
S=stX
{x="x0O0<y="yO-everfy) 0s=s+x}

{O<y O ~eveny)}
X:= X%2
{x="xx2 00<y="y O-everfy) Oss}

{O<y U -everfy)}
y:= (y-1)/2
{x="x O y=(y-1)/2 0 0<y O -everfy) O

{O<y<’y Ostxxy = s+ xx'y} end
{0<y<’y [0 stxxy = s+ xx'y}
{y=00(stxxy = st xx'y [0 x=xOy=x0s=9)}
{s="s+ xxy}

{true}

X:=S

{x="¢}
{x =%}

Multiplication, new way

In order to use a formalism for program construction, not just for after-the-fa
verification, a programmer has to be able to progress from specification to progr
in small steps. In general, one may need to form a sequence of specificgfiBns
S, ... §, starting with the given specificatio; and ending with a prograng, .
Each specification is said to be “refined” by the next. Intermediate specificatiol
and even the original specification, may be partly in programming notation a
partly in nonprogramming notation waiting to be refined. Refinement relates t\
specifications, not necessarily a specification and a program.sal specification
S is refined by specificatiorR , written S: R, if all computer behavior satisfying
R also satisfiesS. We define it formally as

(S:R) = g, d- SO R)
where O is “is implied by”.

In this formalism, a program is a predicate, and it could be written in tradition
predicate noations. The empty (do nothing) prograknis the identity relation:

ok = (X'=x0Oy'=y s'=9
We saw assignment previouslyror example,

(xi=xx2) = k'=xx20y'=y s'=9
SpecificationsP and Q can be composed by relational compositie) @ . And if
then else is just a ternary boolean operator that can be defined by a truth table
by equating to other boolean operators.

if cthenaelseb = cOa 0 -cOb
We simplify our lives enormously by leaving out tiaile loop in favor of
recursion.

Here is the multiplication example.
X'=xxy:: s=0; S'=s+XXy; X:=8S

s'=s+xxy-: if y=0then ok
else ifeverfy) then (x:= xx2; y:=y/2; s'=s+ xxy)
else(s=stx; x:i=xx2; y:= (y=1)/2; s'= s+ xxy)

Each of these refinements is a theorem of ordinary logic. The first says that

specification x' = xxy is implied by the relational composition of three predicates
This relational composition is now a new specification, most of which is already
programming notation. ®@just need to refine the middle part. There are no speci
inference rules for programming. eéA¢an make them look like traditional logic by
making the translations we have given, then prove them in the ordinary ®@ay
better yet, we can prove some laws about programming notations and use the
prove these theorems more directiyor example, the Substitution Law says

(x:=€e P) = (substitutee for x in P)
This is not an axiom or postulate, but an easily proven lasing it to simplify the
y+0 [everfy) case, we get

X:= XX2; y:=y/2; S'=s+ XXy
X:= XX2; s'= s+ xxy/2
= S'=s+ xx2xy/2
= S'=s+ XXy
Similarly in the y+0 [0 -everfy) case, making all three substitutions at once,
S=stX; Xi=xx%2; y:= (y=1)/2; s'=s+ xxy
= S'=skx + xx2x(y-1)/2
= S'=s+ XXy
Each of these cases implies (in fact, equals) the specification being refined. All 1
remains is

y=0 [0 ok
= y=00x'=xUy'=y s=s
[0 s'=s+xxy
Clearly these proofs are completely trivial, and can be carried out automatically «
silently by a prover

To a prover the programming notations are predicateso a compiler the
nonprogramming notations are just identifiers.o0 & compiler the above
refinements look like this:

P: s=0; Q; x=s

Q-: if y=0then ok
else ifeverfy) then (x:= xx2; y:=y/2; Q)
else(s=s+x; x:=xx2; y:= (y=1)/2; Q)

The occurrence ofQ in the first line can be compiled as an inline “macro”. The
occurrences ofQ at the ends of the last two lines can be compiled as branches b
to the labellingQ , and that is the loop.

Execution Time

In one respect, we have been cheating. If the specification were really as we
said, we could have written a simpler program, say one that runs in linear time.
wanted logarithmic time, but we never said so, and never proved that we h:i
achieved it. This criticism applies to all developments so far

The problem is easily solved: we just add a time varidbl@nd increase its value
to represent the passage of timee ¥dn use the formalism we already have, withou
change, to reason about the final valuetofand thus find the execution time. The
time variable is ignored by the compiler; it is there for the prover

In the multiplication example, we place an assignmeatt+something in each of
the two parts of thelf that take time. If we know enough about the compiler an
the hardware to know exactly how long each part takes, we can increbgehat

amount and find the real-time of execution. If not, let's just increalsg 1 .
P: s=0; Q; x=s

Q-: if y=0Othen ok
else ifeverfy) then (x:= xx2; y:=y/2; t:=t+1; Q)
else(s=stx; x:i=xx2; y:= (y-1)/2; t:=t+1; Q)

Each of these refinements is a theorem when we reptaaad Q by

if y<Othent'-t=o else ify=0Othent'-t=0elset't<1 +logyy

This says that ify starts negative, exection time is infinite; ¥ starts at 0 ,
execution time is 0 ; ify starts positive, execution time is bounded by lbgyy .

The proof proceeds by cases; we'll look at the gagell everfy) . In this case, we
have

X:=Xx2; y:=y/2; t=1t+1; t'+t <1 +logyy
t'—(t+1) < 1 +logy(y/2)
t'<t<1 +logyy

In the previous formalisms, we proved termination by finding a variant. A varia
is really a time bound, though we did not call it that; the variant we used prov
that execution time was at most linear yn. We then threw away the bound, and
concluded only that execution time was finiteo cbnclude that execution terminates
(without stating a bound) is of no practical use, for it gives no clue how long o
must wait for a result. If a program is claimed to have finite execution time, but
fact has infinite execution time, there is no time at which a complaint can be m:
that execution has taken too long.

It is sometimes important to be able to say and prove that execution will r
terminate. If we refineP-: P, we have an infinite loop. Charging time 1 for eact
iteration, we can prove
t't=o0 tiI=t+]; t't =00
The right side of this refinement can be simplified according to the Substitution L:
as follows:
t=t+1;, t't =0

= t'—(t+l) = oo
= t'H=oo+l
= t'H4=o

which implies (and equals) the left side.

Multiplication, one more time

Here is another solution to the multiplication problem, one that does not use an e
variable s to accumulate a sum. Since multplication is not allowed,xxy is not

a program, but it is still a perfectly good specification of what is wanted (ignorir
time). It can be refined as follows.

x:=xxy-. if x=0then ok
else ifeverfx) then (x:= x/2; x:= xxy; X:=XX2)
else(X:= (x=1)/2; x:= xxy; X:=X%2; X:= XtY)

The uses ofx:= xxy on the right are compiled as calls. The proof is very,easy
we leave it as an exercise.

Data Representation

The formal definition of data types has followed a well-established mathemati
tradition: we define a space of values of the type, and functions (operations)
these values. Here is the well-worn stack example. intvoduce the syntaxstack
as a new type in terms of some already known t¥pe We also introduceempty,
push, pop, and top of the following types.

empty stack

push stackX X - stack

pop stack- stack

top: stack- X
And we can compare stacks for equality and inequalithe type stack can be
defined by a domain axiom and an induction axiom

stack = empty + stackX X

(Os P(g)) = P(empty O0s, x- (P(s) O P(pusHs, x)))
where P: stack- bool. Consequently we can say that all stacks are formed either
the empty stack or by pushing something onto a stack. sLietstack and x, y: X ;
then

pusl(s, X) # empty

(pushis, x) = pushit, y)) = (s=t) U (x=y)

pop(pusi(s, X)) =s

top(push(s, x)) = x

These axioms are modelled on the Peano axioms for the natural numbers, and
provide us with a powerful formal apparatus for the investigation of stacks. \
have definedpush and pop as functions, but most programming is not functional;
it is imperative. W& program push and pop as procedures with the result that the
theory is not applicable. And a programmer has no need to prove anything abou
possible stacks by induction. All we want is some way to prove that data placec
the stack will be found there later when needed. Here is a simple imperative si
theory

We introduce three namegush (a procedure with parameter of type), pop (a
parameterless procedure), atap (an expression of typ&) with the axioms
top=x-: pushXx)
ok-: pushx); pop
where x: X .

The first axiom says thapush{x) makes thetop equal x . The second axiom says
that a pop undoes apush. To illustrate their use, we begin with the first axiom,
and sequentially compose thpeish with two occurrences of the empty actiark .
top=x-: pushx); ok ok
Next we use the second axiom to refine each of the occurrenass. of
top=x-: push(x); pushy); pop pusiz); pop
Let's throw in one more occurrence of the empty action
top=x-: pust(x); pushly); ok pop pushz); pop
and refine it
top=x-: push(x); pusiy); pushw); pop, pop pusiz); pop
We see that properly balancepustes and pops will never disturb data from an
earlier push; it will be there when wanted, and that's all a programmer needs
prove.

Conclusion

What's wrong with formal programming methods? They are not yet ready 1
general use. | have tried to illustrate, with a few examples, that formal methods
program development can be greatly simplified without loss, and thereby grec
improved, over the methods found currently in textbooks. If | had more space
could show that the opportunities for simplification are even greater f(
programming with interaction, with parallelism, with communicating processes.
Is reasonable and necessary for us to go through a period of exploration; least f
points and continuitytemporal logic, and sets of interleaved communicatiotl
sequences are all good academic research, but they are not the tools that ind
needs.

Can programmers learn formal methods? Every programmer has learne
formalism: a programming language is a formal language. But programmers
naturally reluctant to learn a formalism that seems to be too complicated for
benefits. When industry was offered the first usable high-level programmi
language (Fortran), they jumped at it; when something much better came al
shortly afterward (Algol), they were already committed. This time, they are n
making the same mistake.

With the new simplified methods outlined in this paper and elsewhere [5, 6], | a
optimistic that Kieburtz is right, that the use of formal design methods is just arou
the corner

References

[]
[1]

[2]
[3]
[4]
[5]
[6]

R.B.Kieburtz: “Formal Software Design Methods Next Step In Improving
Quality”, Computing Resealn News January 1991 p14.

C.A.R.Hoare: “Programming is an engineering profession”, PRG-27, Oxfo
University May 1982. Also published in.PL. Wallis (ed.): Softwae
Engineering State of the art report, Pergamon, 1983wiB p77-84. Also
published as “Programming: Sorcery or ScientdeEE Softwae, April 1984
p5-16. Also published in Hoare & Jones (e&3says in Computing Science
Prentice-Hall, 1989 p315-324.

C.A.R.Hoare: *“An axiomatic basis for computer programminQACM
October 1969 v12 n10 p576-580, 583. Also published in Hoare & Jones (el
Essays in Computing Sciend¢&rentice-Hall, 1989 p45-58.

E.W.Dijkstra: A Discipline of Pogramming Prentice-Hall, 1976.

C.B.Jones: Systematic SoftwarDevelopment Using VDMPrentice-Hall,
1986, second ed. 1990.

E.C.R.Hehner: “A Practical Theory of Programmin§tience of Computer
Programming North-Holland, 1990, v14 p133-158.

E.C.R.Hehner:A Practical Theory of Rigramming (to be published) 1991.

